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Abstract
We present a novel approach for continuous space language

models in statistical machine translation by using Restricted

Boltzmann Machines (RBMs). The probability of an n-gram

is calculated by the free energy of the RBM instead of a feed-

forward neural net. Therefore, the calculation is much faster

and can be integrated into the translation process instead of

using the language model only in a re-ranking step.

Furthermore, it is straightforward to introduce additional

word factors into the language model. We observed a faster

convergence in training if we include automatically gener-

ated word classes as an additional word factor.

We evaluated the RBM-based language model on the

German to English and English to French translation task of

TED lectures. Instead of replacing the conventional n-gram-

based language model, we trained the RBM-based language

model on the more important but smaller in-domain data and

combined them in a log-linear way. With this approach we

could show improvements of about half a BLEU point on the

translation task.

1. Introduction
Language models are very important in many tasks of natu-

ral language processing like, for example, machine transla-

tion or speech recognition. In most of these tasks, n-gram-

based language models are successfully used. In this model

the probability of a sentence is described as a product of the

probabilities of the words given the previous words. For the

conditional word probability a maximum likelihood estima-

tion is used in combination with different smoothing tech-

niques. Although this is often a very rough estimation, espe-

cially for rarely seen words, it can be trained very fast. This

enables us to make use of huge corpora which are available

for many language pairs.

But there are also several tasks where we need to build

the best possible language model from a small corpus. When

using a machine translation system, in many real-world sce-

narios we do not want to have a general purpose translation

system, but a specific translation system performing well on

one task, e.g. like translation of talks. For these cases, it has

been shown that the translation quality can be improved sig-

nificantly by adapting the system to the task. This has suc-

cessfully been done by using an additional in-domain lan-

guage model in the log-linear model used in statistical ma-

chine translation (SMT).

When adapting an MT system, we need to train a good

language model on small amounts of in-domain data. Then

the conventional n-gram-based language models often need

to back-off to smaller contexts and the models do no longer

perform as well. In contrast, continuous space language

models (CSLMs) use always the same context size. Further-

more, the longer training time of CSLMs is no problem for

small training corpora.

In contrast to most other continuous space language mod-

els, which use feed-forward neuronal nets, the probability in

a Restricted Boltzmann Machine (RBM) can be calculated

very efficiently. This enables us to use the language models

during the decoding of the source sentence and not only in a

re-scoring step.

The remaining paper is structured as follows: First we

will review related work. Afterwards a brief overview of

Restricted Boltzmann Machines will be given before we de-

scribe the RBM-based language model. In Section 5 we de-

scribe the results on different translation tasks. Afterwards,

we will give a conclusion.

2. Related Work
A first approach to predict word categories using neural net-

works was presented in [1]. Later, [2] used neuronal net-

works for statistical language modelling. They described

in detail an approach based on multi-layer perceptrons and

could show that this reduces the perplexity on a test set com-

pared to n-gram-based and class-based language models. In

addition, they gave a short outlook to energy minimization

networks.

An approach using multi-layer perceptrons has success-

fully been applied to speech recognition by [3], [4] and [5].

One main problem of continuous space language models is

the size of the output vocabulary in large vocabulary continu-

ous speech recognition. A first way to overcome this is to use

a short list. Recently, [6] presented a structured output layer

neural network which is able to handle large output vocab-

ularies by using automatic word classes to group the output

vocabulary.
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A different approach also using Restricted Boltzmann

Machines was presented in [7]. In contrast to our work,

no approximation was performed and therefore, the calcu-

lation was more computation intensive. This approach and

the beforementioned ones based on feed-forward networks

were compared by Le et al. in [8].

Motivated by the improvements in speech recognition ac-

curacy as well as in translation quality, authors tried to use

the neural networks also for the translation model in a sta-

tistical machine translation system. In [9] as well as in [10]

the authors modified the n-gram-based translation approach

to use the neural networks to model the translation probabil-

ities.

Restricted Boltzmann machines have already been suc-

cessfully used for different tasks like user rating of movies

[11] and images [12].

3. Restricted Boltzmann Machines

In this section we will give a brief overview on Restricted

Boltzmann Machines (RBM). We will concentrate only on

the points that are important for our RBM-based language

model, which will be described in detail in the next section.

RBMs are a generative model that have already been used

successfully in many machine learning applications. We use

the following definition of RBMs as given in [13].

3.1. Layout

The RBM is a neural network consisting of two layers. One

layer is the visible input layer, whose values are set to the

current event. In the case of the RBM-based language model

the n-gram will be represented by the states of the input layer.

The second layer consists of the hidden units. In most cases

those units are binary units, which can have two states. For

the RBM-based language model we use “softmax” units in-

stead of binary units for the input layer. The softmax units

can have K different states instead of only two. They can be

modeled as K different binary states with the restriction that

exactly one binary unit is in state 1 while all others are in

state 0.

In an RBM there are weighted connections between the

two layers, but no connections within the layer. The layers

are fully connected to each other.

3.2. Probability

The network defines a probability for a given set of states of

the input and hidden units by using the energy function. Let

v be the vector of all the states of the input units and h be the

vector of states of the hidden units. Then the probability is

defined as:

p(v, h) =
1

Z
e−E(v,h) (1)

using the energy function

E(v, h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij

(2)

and the partition function

Z =
∑
v,h

e−E(v,h) (3)

In these formulas ai is the bias of the visible units, while

bj is the bias of the hidden units. wij is the weight of the

connection between the visible unit vi and the hidden unit

hj .

If we want to assign the probability to a word sequence,

we only have the input vector, but not have the hidden value.

Therefore, we would like to have the probability of this word

sequence with any given hidden value. Therefore, the proba-

bility of a visible vector is defined as:

p(v) =
1

Z

∑
h

e−E(v,h) (4)

The problem of this definition is that it is exponential in the

number of hidden units. A better way to calculate this prob-

ability is to use the free energy of the visible vector F (v):

e−F (v) =
∑
h

e−E(v,h) (5)

The free energy can by calculated as:

F (v) = −
∑
i

viai −
∑
j

log(1 + exj ) (6)

In this definition xj is defined as bj +
∑

i viwij . Using

this definition, we are still not able to calculate the proba-

bility p(v) efficiently because of Z. However, we can calcu-

late eF (v) efficiently, which is proportional to the probability

p(v), since Z is constant for all input vectors.

3.3. Training

In most cases RBMs are trained using Contrastive Diver-

gence [14]. The aim during training is to increase the prob-

ability of the seen training example. In order to do this, we

need to calculate the derivation of probability of the example

given the weights:

δlogp(v)

δwij
=< vihj >data − < vihj >model (7)

where <> indicates the expectation of the value between the

brackets given the distribution indicated after the brackets.

The first term can be calculated easily, since there are no in-

terconnections between the hidden units.

For the second term we use the expected value under a

reconstructed distribution instead of the model distribution.

This leads to a very rough approximation of the gradient,

but in several experiments it was shown that it performs very

well.
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4. RBMs for Language modeling
After giving a general overview of RBMs we will now de-

scribe the RBM that is used for language modeling in detail.

Furthermore, we will describe how we derive the sentence

probability from the probabilities calculated by the RBM and

how we integrate the RBM into the translation process.

4.1. Layout

The layout of the RBM used for language modeling is shown

in Figure 1. The input layer of the n-gram language model

consists of N blocks of input units for every word of the n-

gram. Each of these blocks consists of a softmax unit, which

can assume V different states representing the words of the

vocabulary, where V is the vocabulary size. These softmax

units are modeled by V binary units, where always exactly

one unit has the value 1 and the other units have the value 0.

The vocabulary consists of all the words of the text as well as

the sentence end and beginning mark (< s >,< /s >) and

the unknown word < unk >.

The hidden layer consists of H hidden units, where H is

a free parameter, which will be set.

Using this setup, we need to train N ∗ V ∗ H weights

connecting the hidden and visible units as well as N ∗V +H
bias values.

4.1.1. Word Factors

For some tasks, it is interesting to not only use the surface

form of the word, but consider different word factors. We

can, for example, use also the part-of-speech (POS) tags of

the words or we can use automatically generated word clus-

ters. Such abstract word classes have the advantage, that

they are seen more often and therefore, their weights can be

trained more reliably. In this case, the additional word factor

can be seen as a kind of smoothing.

The layout described before can be easily extended to

also use different word factors. In that case, each of the N
blocks consists of W sub-blocks, where W is the number of

word factors that are used. These sub-blocks are then soft-

max units with different sizes depending on the vocabulary

size of the factor. Like it is in the original layout, all the soft-

max units are then fully connected to all hidden units. The

remaining layout of the framework stays the same.

4.2. Training

As it is done in most RBMs we train our model using con-

trastive divergence. In a first step, we collect all n-grams of

the training corpus and shuffl them randomly. We then split

the training examples into chunks of m examples to calculate

the weight updates. This is done by calculating the difference

between the products mentioned in Equation 7. The first term

of the equation is straightforward to calculated. The second

term is approximated using Gibbs sampling as suggested in

[13]. Therefore, first the values of the hidden values are cal-

culated given the input. Then the values of the visible units

given the hidden values is calculated. And finally, a second

forward calculation is used. In our experiments we only used

one iterations of Gibbs sampling. In our experiments we use

a value of 10 for m.

After calculating the updates, we average over all exam-

ples and then update the weights using a learning rate of 0.1.

As described in [13], by averaging over the examples the size

of the update is independent of m and therefore the learning

rate does not need to be changed depending on the batch size.

Unless stated otherwise, we perform this training for one it-

eration on the whole corpus.

4.3. Sentence Probabilty

Using the network described before we are able to calculate

eF (v) efficiently, which is proportional to the probability of

the n-gram P (w1 . . . wN ).

If we want to use the language model as part of a trans-

lation system, we are not interested in the probability of

an n-gram, but the probability of a sentence S =< s >
w1 . . . wL < /s >. In an n-gram-based language model this

is done by defining the probability as a product of the word

probabilities given its history P (S) =
∏L+1

i=1 P (wi|hi),
where we use wi =< s > for i ≤ 0 and wi =< /s >
for i > L. In an n-gram-based approach P (wi|hi) is approx-

imated by P (wi|wi−N+1 . . . wi−1).

In our approach we are able to calculate a score pro-

portional to P (w1 . . . wN ) efficiently, but for the conditional

probability we would need to sum over the whole vocabulary

as shown in Equation 8, which would no longer be efficient.

P (wi|wi−N+1 . . . wi−1) =
P (wi−N+1 . . . wi)∑

w′∈V P (wi−N+1 . . . wi−1w′)
(8)

One technique often used for n-gram-based language

models is to interpolate the probabilities of different history

lengths. If we use the geometric mean of all n-gram proba-

bilities up to the length N in our model we get the following

definition for the conditional probability:

P ′
GM (wi|hi) = N

√√√√ N∏
j=1

Pj(wi|wi−j+1 . . . wi−1) (9)

PGM (wi|hi) =
1

Zhi

P ′
GM (wi|hi) (10)

where Zhi
=

∑
w′ P ′

GM (w′|hi). Using this definition we

can express the sentence probability PRBM (S) of our RBM-
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Figure 1: RBM for Language model

based language model as:

PRBM (S) =
L+1∏
i=1

PGM (wi|hi) (11)

=
L+1∏
i=1

1

Zhi

∗ N

√
P ′
RBM (S)

P ′
RBM (S) =

L+1∏
i=1

N∏
j=1

P (wi|wi−j+1 . . . wi−1)

(†)
=

L∏
i=1

P (wi−N+1 . . . wi)

∗
N∏
j=2

P (wL−j+2 . . . wL < /s >)

P (< s >)
∗ P (< /s >)

=
1

ZS

L+N−1∏
j=1

1

ZM
eF (wj−N+1...wj)

In (†) we used the fact that P (wi|wi−j+1 . . . wi−1) =
P (wi−j+1 . . . wi−1wi)/P (wi−j+1 . . . wi−1). Then, except

for the beginning and the end, all n-gram probabilties for

n < N cancel out. In the last line, ZM is the partition func-

tion of the RBM and ZS = P (< /s >)/P (< s >)N−1.

To use the probability in the log-linear model we get:

log(PRBM (S)) = − 1

N
(log(ZS) + (N − 1) ∗ log(ZM ))

− L

N
∗ log(ZM ) (12)

−
L+1∑
i=1

log(Zhi
)

+
1

N

∑
j∈L+N−1

F (wj−N+1 . . . wj)

Here the first term is constant for all sentences, so we do not

need to consider it in the log-linear model. Furthermore, the

second term only depends on the length of the sentence. This

is already modeled by the word count model in most phrase-

based translation system. We cannot calculate the third term

efficiently. If we ignore this term, it means that we approx-

imate all n-gram probabilities by the unigram probabilities

in this term, because in this case Zhi
is zero. By using this

approximation, we can use the last term as a good feature

to describe the language model probability in our log-linear

model. As described before, this part can be calculated effi-

ciently.

The integration to the decoding process is very similar to

the one used in n-gram-based language models. If we extend

one translation hypothesis by a word, we have to add the ad-

ditional n-gram probability to the current feature value as it is

also done in the standard approach. We also have to save the

context of N −1 words to calculate the probability. The only

difference is that we add at the end of the sentence not only

one n-gram ending with < /s >, but all the ones containing

< /s >.

5. Evalutation
We evaluated the RBM-based language model on different

tasks. We will first give a brief description of our SMT sys-

tem. Then we will describe in detail our experiments on

the German to English translation task. Afterwards, we will

describe some more experiments on the English to French

translation task.

5.1. System description

The translation system was trained on the European Parlia-

ment corpus, News Commentary corpus, the BTEC corpus

and TED talks1 . The data was preprocessed and compound

splitting was applied for German. Afterwards the discrim-

inative word alignment approach as described in [15] was

applied to generate the alignments between source and target

words. The phrase table was built using the scripts from the

1http://www.ted.com
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Moses package [16]. A 4-gram language model was trained

on the target side of the parallel data using the SRILM toolkit

[17]. In addition we used a bilingual language model as de-

scribed in [18].

Reordering was performed as a preprocessing step using

POS information generated by the TreeTagger [19]. We used

the reordering approach described in [20] and the extensions

presented in [21] to cover long-range reorderings, which are

typical when translating between German and English.

An in-house phrase-based decoder was used to gener-

ate the translation hypotheses and the optimization was per-

formed using MERT[22].

We optimized the weights of the log-linear model on a

separate set of TED talks and also used TED talks for test-

ing. The development set consist of 1.7K segments contain-

ing 16K words. As test set we used 3.5K segments contain-

ing 31K words.

5.2. German to English

The results for translating German TED lectures into English

are shown in Table 1. The baseline system uses a 4-gram lan-

guage model trained on the target side of all parallel data. If

we add a 4-gram RBM-based language model trained only

on the TED data for 1 iteration using 32 hidden units we

can improve the translation quality on the test data by 0.8

BLEU points (RBMLM H32 1Iter). We can gain additional

0.6 BLEU points by carrying out 10 instead of only 1 itera-

tion of contrastive divergence.

If we use a factored language model trained on the sur-

face word forms and the automatic clusters generated by the

MKCLS algorithm [23] (FRBMLM H32 1Iter), we can get

an improvement of 1.1 BLEU points already after the first

iteration. We grouped the words into 50 word classes by the

MKCLS algorithm.

If we add an n-gram-based language model trained only

on the in-domain data (Baseline+NGRAM), we can improve

by 1 BLEU point over the baseline system. So the factored

RBM-based language model as well as the one trained for 10

iteration can outperform the second n-gram-based language

model.

We can get further improvements by combining the n-

gram-based in-domain language model and the RBM-based

language model. In this case we use 3 different language

models in our system. As shown in the lower part of Table 1,

additional improvements of 0.3 to 0.4 BLEUs points can be

achieved compared to the system not using any RBM-based

language model. Furthermore, it is no longer as important to

perform 10 iteration of training. The difference between one

and 10 training iterations is quite small. The factored version

of the language model still performs slightly better than the

language model trained only on words.

Table 1: Experiments on German to English

Iterations BLEU Score

Dev Test

Baseline 26.31 23.02

+ RBMLM H32 1Iter 27.39 23.82

+ RBMLM H32 10Iter 27.61 24.47

+ FRBMLM H32 1Iter 27.54 24.15

Baseline+NGRAM 27.45 24.06

+ RBMLM H32 1Iter 27.64 24.33

+ RBMLM H32 10Iter 27.95 24.38

+ FRBMLM H32 1Iter 27.80 24.40

5.3. Network layout

We carried out more experiments on this task to analyse the

influence of the network layout on the translation quality.

Therefore, we used a smaller system only using the n-gram-

based or RBM-based in-domain language model trained on

the target side of the TED corpus. The results of these ex-

periments are summarised in Table 2. The first system uses

an n-gram-based language model trained on the TED corpus.

The other systems use all an RBM-based language model

trained for one iteration on the same corpus.

When comparing the BLEU scores on the development

and test data, we see that we can improve the translation

quality by increasing the number of hidden units to up to 32

hidden states. If we use less hidden states, the network is not

able to store the probabilities of the n-grams properly. If we

increase the number of hidden units further, the performance

in translation quality decreases again. One reason for this

might be that we have too many parameters to train given the

size of the training data.

Table 2: Experiments using different number of hidden units

System Hidden Units BLEU Score

Dev Test

NGRAM 27.09 23.80

8 25.65 23.16

RBMLM 16 25.67 23.07

32 26.40 23.41

64 26.12 23.18

5.4. Training iterations

One critical point of the continuous space language model is

the training time. While an n-gram-based language model

can be trained very fast on a small corpus like the TED cor-

pus without any parallelization, the training of the continuous

space language model takes a lot longer. In our case the cor-

pus consists of 942K words and the vocabulary size is 28K.

We trained the RBM-based language model using 10 cores

in parallel and it took 8 hours to train the language model for
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one iteration.

Therefore, we analysed in detail the influence of the num-

ber of iterations on the translation performance. The experi-

ments were again performed on the smaller system using no

large n-gram-based language model mentioned before (No

Large LM) and the system using a large n-gram language

model trained on all data mentioned in the beginning (Large

LM). They are summarized in Table 3. In the first line we

show the performance of the system using a n-gram-based

language model trained only on the TED corpus for compar-

ison.

In these experiments, we see that the performance in-

creases up to 10 iterations of the training data. Using 10

instead of one iteration, we can increase the translation qual-

ity by up to 0.5 BLEU points on the development data as well

as on the test data. Using the large language model we could

outperform the small n-gram-based language model by the

RBM-based language model trained for 10 iterations. Per-

forming more than 10 iterations does not lead to further im-

provements. The translation quality even decreases again.

The reason for this might be that we are facing over-fitting

after the 10th iteration. In the smaller setup, using the RBM

language model cannot help to outperform the n-gram-based

language model.

Table 3: Experiments using different number of training iter-
ations

System Iterations No Large LM Large LM

Dev Test Dev Test

NGRAM 27.09 23.80 27.45 24.06

1 26.40 23.41 27.39 23.82

5 26.72 23.38 27.40 23.98

RBMLM 10 26.90 23.51 27.61 24.47

15 26.57 23.47 27.63 24.22

20 26.16 23.20 27.49 24.30

5.5. RBMLM for English-French

We also tested the RBM-based language model on the En-

glish to French translation task of TED lectures. We trained

and tested the system on the data provided for the official

IWSLT Evaluation Campaign 2012. The system is similar

to the one used on the German to English tasks, but uses

language model and phrase table adaptation to the target do-

main. The results for this task are shown in Table 4.

The difference between the Baseline system and the sys-

tems using RBM-based language models is smaller than in

the last experiments, since the baseline system uses already

several n-gram-based language models. On the development

set both the RBM-based language model as well as the fac-

tored RBM-based language model using also automatic word

classes could improve by 0.1 BLEU points. For the test set

only the factored version can improve the translation quality

by 0.1 BLEU points.

Table 4: Experiments on English to French

Iterations BLEU Score

Dev Test

Baseline 28.93 31.90

RBMLM 28.99 31.76

FRBMLM 29.02 32.03

6. Conclusions
In this work we presented a novel approach for continuous

space language models. We used a Restricted Boltzmann

Machine instead of a feed-forward neuronal net. Since this

network is less complex, we were able to integrate it directly

into the decoding process. Using this approach, the run-time

for the calculation of the probability no longer depends on

the vocabulary size, but only on the number of hidden units.

The layout of the network allows an easy integration of

different word factors. We were able to improve the qual-

ity of the language model by using automatically determined

word classes as an additional word factor.

As shown in the experiments, this type of language model

works especially well for quite small corpora as they are typ-

ically used in the domain adaptation scenario. Therefore, the

longer training time of a continuous space language model

does not matter as much as for language models trained on

huge amounts of data.

By integrating this language model into our statistical

machine translation system, we could improve the transla-

tion quality by up to 0.4 BLEU points compared to a baseline

system using already an in-domain n-gram-based language

model.
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Canada: Association for Computational Linguistics,

Jun. 2012.

[11] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted

boltzmann machines for collaborative filtering,” in Pro-
ceedings of the 24th international conference on Ma-
chine learning, ser. ICML ’07. New York, NY, USA:

ACM, 2007.

[12] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-

ing algorithm for deep belief nets,” Neural Comput.,
vol. 18, no. 7, Jul. 2006.

[13] G. Hinton, “A Practical Guide to Training Restricted

Boltzmann Machines,” Tech. Rep., 2010.

[14] G. E. Hinton, “Training products of experts by

minimizing contrastive divergence,” Neural Comput.,
vol. 14, no. 8, pp. 1771–1800, Aug. 2002.

[15] J. Niehues and S. Vogel, “Discriminative Word Align-

ment via Alignment Matrix Modeling.” in Proc. of
Third ACL Workshop on Statistical Machine Transla-
tion, Columbus, USA, 2008.

[16] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,

M. Federico, N. Bertoldi, B. Cowan, W. Shen,

C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,

and E. Herbst, “Moses: Open Source Toolkit for Statis-

tical Machine Translation,” in ACL 2007, Demonstra-
tion Session, Prague, Czech Republic, 2007.

[17] A. Stolcke, “SRILM – An Extensible Language Mod-

eling Toolkit.” in Proc. of ICSLP, Denver, Colorado,

USA, 2002.

[18] J. Niehues, T. Herrmann, S. Vogel, and A. Waibel,

“Wider Context by Using Bilingual Language Models

in Machine Translation,” in Sixth Workshop on Statisti-
cal Machine Translation (WMT 2011), Edinburgh, UK,

2011.

[19] H. Schmid, “Probabilistic Part-of-Speech Tagging Us-

ing Decision Trees,” in International Conference on
New Methods in Language Processing, Manchester,

UK, 1994.

[20] K. Rottmann and S. Vogel, “Word Reordering in Statis-

tical Machine Translation with a POS-Based Distortion

Model,” in TMI, Skövde, Sweden, 2007.
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