
Factored Recurrent Neural Network Language Model in
TED Lecture Transcription

Youzheng Wu, Hitoshi Yamamoto, Xugang Lu, Shigeki Matsuda, Chiori Hori, Hideki Kashioka

Spoken Language Communication Laboratory,
National Institute of Information and Communications Technology,

Kyoto, Japan
youzheng.wu@nict.go.jp

Abstract
In this study, we extend recurrent neural network-based lan-

guage models (RNNLMs) by explicitly integrating morpho-

logical and syntactic factors (or features). Our proposed

RNNLM is called a factored RNNLM that is expected to en-

hance RNNLMs. A number of experiments are carried out on

top of state-of-the-art LVCSR system that show the factored

RNNLM improves the performance measured by perplexity

and word error rate. In the IWSLT TED test data sets, ab-

solute word error rate reductions over RNNLM and n-gram

LM are 0.4∼0.8 points.

1. Introduction
Language models (LM) are a critical component of many

application systems such as automatic speech recognition

(ASR), machine translation (MT) and optical character

recognition (OCR). In the past, statistical back-off n-gram

language models with sophisticated smoothing techniques

have gained great popularity because of their simplicity and

good performance. Recently, neural network based lan-

guage models (NNLMs), such as the feed-forward NNLM

[3, 19], the recurrent NNLM (RNNLM) [15, 16] and the deep

NNLM [2], have been continuously reported to perform well

amongst other language modeling techniques. Among them,

RNNLMs are state-of-the art [2, 14], which embed words in

a continuous space in which probability estimation is per-

formed using artificial neural networks consisting of input

layer, hidden layer, and output layer. Due to consistent im-

provement in terms of perplexity and word error rate and

their inherently strong generalization, they have become an

increasingly popular choice for LVCSR and statistical MT

tasks.

Many of these RNNLMs only use one single feature

stream, i.e., surface words, which are limited to generalize

over words without using linguistic information, including

morphological, syntactic, or semantic. In this paper, we ex-

tend word-based RNNLMs by explicitly integrating morpho-

logical and syntactic factors (or features), called a factored

RNNLM (fRNNLM), and show its performance in a LVCSR

system. The experimental results of our state-of-the-art rec-

ognizer on transcribing TED lectures1 demonstrate that it

significantly enhances performance measured in perplexity

and word error rate (WER).

This paper is organized as follows: In Section 2, we de-

scribe our proposed factored RNNLM in detail. Section 3

shows the performance of our model as measured by both

perplexity and WER. We introduce related studies in Section

4. We finally summarize our findings and outline future plans

in Section 5.

2. Proposed method
The purpose of this paper is to integrate additional linguis-

tic information into a RNNLM, called a factored RNNLM,

which can improve the generalization of RNNLM using mul-

tiple factors of words (stems, lemmas, parts-of-speech, etc.)

instead of surface forms of words as input to recurrent neural

networks. First of all, let us use an example to illustrate the

shortcomings of surface word RNNLM. In extreme cases, the

training data might only contain the following sentence: “dif-

ference between developed countries and developing coun-

tries”. During training in the RNNLM that treats each word

as a token in itself, the bi-gram “developing countries” is

a completely unseen instance. However, for our factored

RNNLM that incorporates stem features, “developing coun-

tries” belongs to seen instances in a sense because it shares

the same stem bi-gram “develop countri” with the previous

bi-gram “developed countries.” This coincides with our intu-

ition; “developed” and “developing” should add knowledge

to each other during training. Our factored RNNLM may be

more effective for such morphologically rich languages as

Czech, Arabic, or Russian. This paper however, only evalu-

ates it on English.

2.1. fRNNLM

The architecture of our factored RNNLM is illustrated in Fig.

1. It consists of input layer x, hidden layer s (state layer), and

output layer y. The connection weights among layers are de-

noted by matrixes U and W . Unlike RNNLM, which pre-

1http://www.ted.com/

　　　　　　　　　　　　 222

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

hidd l

�

input layer, x

output layer, y

fi-1
1

F(wi-1)

f1(•)

functions of
factor extraction

s

hidden layer, s

�

�
class
p(c(wi)|F(wi-1), si-1)

.

.

.

WU

�

word
p(wi|F(wi-1), si-1, c(wi))

fi-1
K

fi-1
2

�

�

�

�

�

�

�

wi-1 f2(•)

fK(•)

c(wi) stands for the class that
si-1

delay copy

contains wi

Figure 1: Architecture of factored recurrent NNLM.

Table 1: An example of factor sequences.
Word: difference between developed countries and developing countries

Lemma: difference between developed country and developing country

Stem: differ between develop countri and develop countri

Part-of-speech: NN IN JJ NNS CC VBG NNS

dicts probability P (wi|wi−1, si−1), our factored RNNLM

predicts probability P (wi|F (wi−1), si−1) of generating fol-

lowing word wi and is explicitly conditioned on a collection

or bundle of K factors of one preceding word. It is implicitly

conditioned on the factors of the entire history by the delay

copy of hidden layer si−1. Here, F (wi−1) is the vector con-

catenated from K factor vectors fk
i−1

(k = 1, ..., K), fk
i−1

stands for the k-th factor vector encoded from the k-th factor

of preceding word wi−1, and the functions of factor extrac-

tion fk
(·) are used to extract the corresponding factors. A

word’s factors can be anything, including the word itself, its

morphological class, its root, and any other linguistic fea-

tures. An example is shown in Table 12.

In the input layer, the extracted factors are encoded into

the factor vectors using the 1-of-n coding. Assume, for ex-

ample, that the factor extracted by function fk
(wi−1) is the

m-th element in the k-th factor vocabulary, which is then en-

coded to |fk|-dimension vector fk
i−1

by setting the m-th ele-

ment of the vector to 1 and all the other elements to 0. Here,

|fk| stands for the size of the k-th factor vocabulary. The K
factor vectors are concatenated into F (wi−1) as expressed in

Eq. (1). Finally, the input layer is formed by concatenating

factor vectors F (wi−1) of the preceding word wi−1 and hid-

den layer si−1 at the preceding time step, as shown in Eq.

(2).

F (wi−1) = [f1

i−1
, f2

i−1
, ..., fK

i−1
] (1)

2http://www.cis.upenn.edu/˜treebank/

xi = [F (wi−1), si−1] (2)

Using the concatenation operation, our factored RNNLM

can simultaneously integrate all factors and the entire history

in stead of backing-off to fewer factors and a shorter context.

The weight of each factor is represented in connection weight

matrix U . Therefore, it can address the optimization problem

well in factored n-gram LM [4, 7]. In the special case that

f1

i−1
is a surface word factor vector and fk

i−1
(k = 2, ..., K)

are dropped, our proposed factored RNNLM goes back to the

RNNLM.

The hidden layer employs a sigmoid activation function:

sm
i = f(

∑

j

(xj
i × umj)) ∀m ∈ [1,H]

f(z) =
1

1 + e−z

(3)

where H is the number of hidden neurons in the hidden layer

and umj is an element in matrix U denoting the correspond-

ing connection weight.

Like [10, 16], we assume that each word belongs to ex-

actly one class and divide the output layer into two parts: the

first estimates the posterior probability distribution over all

classes,

yl
c = g(

∑

j

(sj
i × wlj)) ∀l ∈ [1, C] (4)

where C is the number of predefined classes. The sec-

ond computes the posterior probability distribution over the

　　　　　　　　　　　　 223

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

words that belong to class c(wi), the one that contains pre-

dicted word wi:

yo
w = g(

∑

j

(sj
i × woj)) ∀o ∈ [1, nc(wi)] (5)

where nc(wi) is the number of words belonging to class

c(wi) and wlj and woj are the corresponding connection

weights.

To ensure that all outputs are between 0 and 1, and their

sum equals to 1, the output layer employs a softmax activa-

tion function shown below:

g(zd) =
ezd

∑
x ezx

(6)

Finally, probability P (wi|F (wi−1), si−1) is the product

of two posterior probability distributions:

P (wi|F (wi−1), si−1) = P (c(wi)|F (wi−1), si−1) ×
P (wi|F (wi−1), si−1, c(wi))

= yl
c|l=classid(c(wi))

× yo
w|o=wordid(wi)

(7)

The architecture of splitting the output layer into two

parts can greatly speedup the training and the test processes

of RNNLM without sacrificing much performance. Many

word clustering techniques can be employed. In this pa-

per, we map words into classes with frequency binning [16],

which proportionally assigns words to classes based on their

frequencies.

2.2. Training

To use the factored RNNLM, connection weight matrixes U
and W must be learned. To learn them, training is performed

with the back-propagation through time (BPTT) algorithm

[5] by minimizing an error function defined in Eq. (8).

L =
1

2
×

N∑

i=1

(ti − pi)
2

+ γ × (

∑

lk

u2

lk +

∑

tl

w2

tl) (8)

where N is the number of training instances, ti denotes the

desired output; i.e., the probability should be 1.0 for the pre-

dicted word in the training sentence and 0.0 for all others.

The first part of this equation is the summed squared error

between the output and the desired probability distributions,

and the second part is a regularization term that prevents

RNNLM from over-fitting the training data. γ is the regu-

larization term’s weight, which is determined experimentally

using a validation set.

The training algorithm randomly initializes the matrixes and

updates them with Eq. (9) over all the training instances in

several iterations. In Eq. (9), ψ stands for one of the connec-

tion weights in the neural network and η is the learning rate.

After each iteration, it uses validation data for stopping and

controlling the learning rate. Usually, the factored RNNLM

needs 10 to 20 iterations.

ψnew
= ψprevious − η × ∂L

∂ψ
(9)

3. Experiments
To evaluate our factored RNNLM in the context of large

vocabulary speech recognition, we use the data sets for

the IWSLT large vocabulary continuous speech recognition

shared task [9] to recognize TED talks published on the TED

website. TED talks touch on the environment, photography

and psychology without adhering to a single genre. This task

reflects the recent increase of interest in automatically tran-

scribing lectures to make them either searchable or accessi-

ble.

The IWSLT evaluation campaign defines a closed set of

publicly available English texts as training data for LM, in-

cluding a small scale of in-domain corpus (TED transcrip-

tions) and a large scale of general-domain corpora (En-

glish Gigaword Fifth Edition and News Commentary v7).

All training data are preprocessed by a non-standard-word-

expansion tool that converts non-standard words (such as

CO2 or 95%) to their pronunciations (CO two, ninety five

percent). The most frequent 32.6K words are extracted

from the preprocessed in-domain corpora, which, with the

CMU.v0.7a pronunciation dictionary3, are used as the LM

vocabulary. Our vocabulary contains 156.3K entries with an

OOV rate of 0.8% on the dev2010 data set. Additionally, the

IWSLT data sets of tests 2010, 2011 and 2012 are used. Their

statistics are shown in Table 2.

Table 2: Summary of the IWSLT test data sets

LM training data

corpora #sentences #words

in-domain 142K 2,402K
general-domain 123.4M 2,726.6M

Test sets

data sets #talks #utterances #words

dev2010 8 934 17.5K
test2010 11 1664 27.0K
test2011 8 818 12.4K
test2012 11 1124 21.9K

For the in-domain and general-domain corpora, modified

Kneser-Ney smoothed 3- and 4-gram LMs are constructed

using SRILM [21], and interpolated to form a baseline of 3-

and 4-gram LMs by optimizing the perplexity of the dev2010

data set.

Acoustic models are trained on 170h speech segmented

from 788 TED talks that were published prior to 2011. We

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

　　　　　　　　　　　　 224

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

0 3

0.6
0.7

1.4

2.5

0.8

0 3

0.8
0.7

1.3

0.9
1

1.7

0.8 0.8

0.5

0 3

0.9

1.2

0.8

0.6

2.5

1.4

0.9

0.6

0.9

0.4

0.6

0 5

1

1.5

2

2.5

3

0.3

-0.2

0.3
0.2

0

0.2
0.3

-0.2

0.1

-0.8

0.1
0.2

0.1

-1

-0.5

0

0.5

1
2
9

2
2
7

4
5
3

4
5
7

5
3
1

5
3
5

6
9

9
3

7
6
7

7
6
9

7
7
9

7
8
3

7
8
5

7
9
0

7
9
2

7
9
9

8
0
5

8
2
4

8
3
7

1
1
6
9

1
1
7
4

1
1
7
5

1
1
7
8

1
1
8
1

1
1
8
2

1
1
8
3

1
1
8
7

1
4
0
9

1
4
1
1

1
4
1
3

1
4
1
6

1
4
1
7

1
4
1
9

1
4
2
1

1
4
2
2

1
4
2
4

1
4
2
5

1
4
2
7

dev2010 tst2010 tst2011 tst2012

Figure 2: Absolute WER improvement on each talk.

employ two types of schemes, a Hidden Markov Model

(HMM) and a Subspace Gaussian Mixture Model (SGMM)

for each context-dependent phone and train them with the

Kaldi toolkit [18]. HMM consists of 6.7K states and 240K

Gaussians that are discriminatively trained using the boosted

Maximum Mutual Information criterion. SGMM consists of

9.2K states. In addition, we apply speaker adaptive training

with feature space maximum likelihood linear regression on

top of the HMM and SGMM. The acoustic feature vectors

have 40 dimensions. For each frame, we extract 13 static

MFCCs, splice 9 adjacent frames, and apply LDA to reduce

its dimension with maximum likelihood linear transform.

First, we employ a Kaldi speech recognizer [18] to de-

code each utterance using the trained AM and the 3-gram

LM. Second, we use the 4-gram LM for lattice re-scoring and

generate n-best lists. The n-best size is at most 100 for each

utterance. Finally, we use RNNLM and factored RNNLM to

re-score the n-best (n=100). Since it is very time consum-

ing to train RNNLM and factored RNNLM on large data,

the usual way is to train RNNLM on a small scale of in-

domain corpus. This paper also employs this setting. The

corpus is automatically tagged with parts-of-speech4. In the

fRNNLM, we investigate three commonly used types of fac-

tors: word, stem5 and part-of-speech (POS). We set the num-

ber of hidden neurons in the hidden layer and the number of

classes in the output layer for both the RNNLM and factored

RNNLM to 480 and 300.

3.1. Overall results

The best re-scoring results measured by word error rate

(WER) are demonstrated in Table 3. Note that RNNLM and

fRNNLMs are interpolated with 4-gram LM. The weight of

4-gram LM is empirically set to 0.8 to optimize the perfor-

mance on the dev2010 set.

The results show that fRNNLMwsp and fRNNLMwp

4http://www.nactem.ac.uk/tsujii/software.html
5http://tartarus.org/˜martin/PorterStemmer/

Table 3: n-best re-scoring performance in WER. Subscript

numbers are the absolute improvements over 4-gram LM.

fRNNLMwsp denotes the factored RNNLM incorporating

the word, stem and POS.

dev2010 test2010 test2011 test2012

4-gram LM 16.5 13.8 12.3 13.9

RNNLM 16.30.2 14.0−0.2 12.20.1 13.90.0

fRNNLMwp 15.8 13.1 11.9 13.4

fRNNLMwsp 15.70.8 13.20.6 11.80.5 13.30.6

significantly improve upon 4-gram LM and RNNLM. The

largest absolute improvements over the 4-gram LM and

RNNLM are 0.8 points. However, no significant differences

are found among the factored RNNLMs with various combi-

nations of factors. Although the size of the parts-of-speech

is the smallest (only 37), they have the largest impact on our

factored RNNLM. The main reason may lie in that syntactic

factor (POS) has stronger complementariness to the surface

word factor, while morphological factors (stem and lemma)

are too similar to the word itself, limiting such complemen-

tariness. Table 4 demonstrates the re-scoring results sampled

from RNNLM and fRNNLMwsp. This table shows that the

results of fRNNLMwsp are more grammatically fluent. Fig.

2 illustrates the absolute improvements of fRNNLMwsp over

RNNLM for each talk in the sets of tests 2010 and 2011.

Our approach improves most talks, expect talks 535, 1178

and 1183.

3.2. Free parameter & time complexity

The number of free parameters, i.e., the size of matrices U
and W in Fig. 1, in the RNNLM and factored RNNLM are

(|V | + H) × H + H × (C + |V |) and (|f1| + ... + |fK | +
H) × H + H × (C + |V |), respectively. That means, our

factored RNNLM has (|f1| + ... + |fK | − |V |) × H addi-

　　　　　　　　　　　　 225

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

Table 4: Re-scoring results sampled from RNNLM and fRNNLMwp. * denotes deletion errors, capitalized words denote substi-

tution errors, and underlined words show their differences. #e stands for the number of errors.

model #e result

Reference or we’ll be here all day with my childhood stories
RNNLM 5 THE WORLD we * * ARE all day with my childhood stories
fRNNLMwp 1 or * be here all day with my childhood stories

Reference she’s painting here a mural of his horrible final weeks in the hospital
RNNLM 2 she’s painting * HERO mural of his horrible final weeks in the hospital
fRNNLMwp 0 she’s painting here a mural of his horrible final weeks in the hospital

Reference and so you are standing there and everything else is dark but there’s this portal that you wanna jump in
RNNLM 7 and so you are * STAYING IN ANYTHING else is dark but there’s THE SPORT ALL that you WANT TO jump in
fRNNLMwp 5 and so you are * STAYING IN ANYTHING else is dark but there’s this HORRIBLE that you WANT TO jump in

Reference my worlds of words and numbers blur with color emotion and personality
RNNLM 4 my WORLD SO FLOATS and numbers BELAIR with color emotion and personality
fRNNLMwp 1 my worlds of words and numbers BELAIR with color emotion and personality

tional free parameters. If the factored RNNLM only employs

word factor (f1) and POS factors (f2), then, it has 39 × H
additional free parameters. In experiments, H is usually set

to 300− 1000, |V |, the word vocabulary’s size, is usually set

to several hundreds of thousands.

The time complexities in the RNNLM and factored

RNNLM are (1 + H) × H × τ + H × |V | and (K + H) ×
H × τ + H × |V |, respectively. That means, the factored

RNNLM has (K − 1) × H × τ additional computational

complexity. τ is usually set to 4 or 5. This means that

H × |V | � (K − 1)×H × τ , and the increased complexity

can be neglected. On the contrary, our factored RNNLM con-

verges faster and reduces training time due to the additional

free parameters. Table 5 shows the training time of an iter-

ation, the training time of all iterations, and the test time on

a PC with 1006GB of memory and 24 2660MHz processors.

From this table, we observe the following: (1) No significant

difference of elapsed time is found between RNNLM and

fRNNLMwsp during an iteration of training and test stage.

(2) For the time of all iterations, RNNLM takes more time

than fRNNLMwsp because it takes 16 iterations to reach a

convergence and fRNNLMwsp uses 13 iterations. This ex-

periment shows that although fRNNLM has more free pa-

rameters and time complexities, it saves time owing to its

fast convergence.

Table 5: Elapsed time during training and test. #1 and #2

denote time of an iteration and time of all iterations during

training, m=minute, s=second.

#1 #2 time on testing tst2010

RNNLM 120m 1923m 35.7s

fRNNLMwsp 141m 1843m 43.4s

Figure 3 demonstrates the convergence progress of

RNNLM, fRNNLMwp and fRNNLMwsp. From this figure,

we can observe that fRNNLMwsp outperforms RNNLM at

all iterations, however, the relative improvements decrease

with increasing iterations.

185

205

225

245

RNNLM RNNLMwp RNNLMwsp

ppl

125

145

165

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

iteration

Figure 3: Convergence curve on the dev2010 set.

3.3. Training corpus size

This subsection analyzes the influence of training corpus

size to RNNLM and fRNNLMwsp. The training corpus is

gradually increased by selecting sentences from the general-

domain corpus [17, 20]. Note that, we change the order of

the training data as follows, the training starts with the sen-

tences selected from the general-domain data, and ends with

the in-domain data. The selected sentences are also sorted in

descending order of perplexities.

The results are shown in Table 6. This experiment in-

dicates that the impacts of morphological and syntactic in-

formation become smaller with increasing of training data.

The largest improvement of fRNNLMwsp trained on the in-

domain data (2.4M words) reaches 0.8 points. However, this

improvement reduces to 0.2 points when the model is trained

on the larger training data (30M words).

4. Related work
Neural network language models to LVCSR were first pre-

sented in [3], which was a feed-forward NNLM with a fixed-

length context consisting of projection, input, hidden, and

output layers. Arisoy et al. [2] proposed a deep NNLM that

uses multiple hidden layers instead of single hidden layer in

　　　　　　　　　　　　 226

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

of words in training data dev2010 test2010 test2011 test2012

RNNLM fRNNLM RNNLM fRNNLM RNNLM fRNNLM RNNLM fRNNLM

2.4M 16.3 15.7 14.0 13.2 12.2 11.8 13.9 13.3

9.0M 15.5 15.4 13.0 13.1 11.4 11.3 13.1 13.0

19.4M 15.4 15.3 12.9 12.9 11.3 11.2 13.0 13.0

30M 15.2 15.0 12.9 12.7 11.1 11.2 12.9 12.8

Table 6: Impact of training corpus size.

feed-forward NNLMs. Furthermore, several speedup tech-

niques such as shortlists, regrouping and block models have

been proposed [19]. Feed-forward NNLMs, which predict

following word wi based on any possible context of length

n-1 history, remain a kind of n-gram language model.

Recurrent NNLM (RNNLM) [15, 16], which has differ-

ent architecture at the input and output layers, can be consid-

ered as a deep neural network LMs because of its recurrent

connections between input and hidden layers, which enable

RNNLMs to use their entire history. Compared with feed-

forward NNLMs, recurrent NNLMs reduce computational

complexity and have relatively fast training due to the fac-

torization of the output layer. Other experiments [2, 14, 13]

demonstrated that RNNLM significantly outperforms feed-

forward NNLM. Therefore, this paper uses RNNLM as a

baseline and improves it by incorporating additional infor-

mation other than surface words, such as morphological or

syntactic features.

Although few studies incorporate morphological and

syntactic features into RNNLM, using multiple features in

language modeling is not novel. For example, Bilmes and

Kirchhoff [4] presented a factored back-off n-gram LM

(FLM) that assumes each word is equivalent to a fixed num-

ber (K) of factors, i.e., W ≡ f1:K , and produces a statistic

model of the following form: p(f1:K
i |f1:K

i−n+1:i−1
). The stan-

dard back-off in an n-gram LM first drops the most distant

word (wi−n+1 in the case of Eq. (1)), and then the second

most distant word etc. until the unigram is reached. How-

ever, the factors in FLM occur simultaneously, i.e., with-

out forming a temporal sequence, so the order in which they

should be dropped is not immediately obvious. In this case,

FLM creates a large space of back-off graphs that cannot

be exhaustively searched. Duh and Kirchhoff [7] employed

a genetic algorithm (GA) that, however, provides no guar-

antee of finding the optimal back-off graph. Our factored

RNNLM addresses this optimization problem well, as de-

scribed in Section 3. In addition, some studies [1, 2, 8, 12]

introduced various syntactic features into their feed-forward

NNLMs and discriminative language models.

5. Conclusion

In this paper we follow the architecture of a state-of-the-

art recurrent neural network language model (RNNLM) and

present a factored RNNLM by integrating additional mor-

phological and syntactic information into RNNLM. In exper-

iments, we investigate the impacts of three commonly used

types of features on our factored RNNLM: word, stem and

part-of-speech. We carry out extensive experiments to eval-

uate the factored RNNLM performance. Our experimental

results prove that factored RNNLM consistently outperforms

n-gram LM and RNNLM in terms of the IWSLT 2010�2012

development and test data sets.

6. References
[1] Alexandrescu, A. and Kirchhoff, K. (2006). Factored

neural language models. In Proceedings of the NAACL
2006, pages 1–4, New York, USA.

[2] Arisoy, E., Sainath, T. N., Kingsbury, B., and Ramab-

hadran, B. (2012). Deep neural network language mod-

els. In Proceedings of NAACL-HLT 2012 Workshop:
Will We Ever Really Replace the N-gram Model? On
the Future of Language Modeling for HLT, pages 20–

28, Montreal, Canada.

[3] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.

(2003). A neural probabilistic language model. Journal
of Machine Learning Research, pages 1137–1155.

[4] Bilmes, J. A. and Kirchhoff, K. (2003). Factored lan-

guage models and generalized parallel backoff. In Pro-
ceedings of NAACL 2003, pages 4–6, USA.

[5] Boden, M. (2002). A guide to recurrent neural networks

and backpropagation. In The Dallas Project, Sics Tech-
nical Report.

[6] Chelba, C. and Jelinek, F. (1998). Exploiting syntactic

structure for language modeling. In Proceedings of the
36th Annual Meeting of the Association for Computa-
tional Linguistics and 17th International Conference on
Computational Linguistics, pages 225–231, Montreal,

Canada.

[7] Duh, K. and Kirchhoff, K. (2004). Automatic learning

of language model structure. In Proceedings of COL-
ING 2004, pages 148–154, Geneva, Switzerland.

[8] Emami, A. and Jelinek, F. (2004). Exact training of

a neural syntactic language model. In Proceedings of
ICASSP 2004, pages 245–248, Montreal, Canada.

　　　　　　　　　　　　 227

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

[9] Federico, M., Bentivogli, L., Paul, M., and Stuker, S.

(2011). Overview of the iwslt 2011 evaluation cam-

paign. In Proceedings of IWSLT 2011, pages 11–27,

San Francisco, USA.

[10] Goodman, J. (2001). Classes for fast maximum entropy

training. In Proceedings of ICASSP 2001, Utah, USA.

[11] Khudanpur, S. and Wu, J. (2000). Maximum entropy

techniques for exploiting syntactic, semantic and collo-

cational dependencies in language modeling. Computer
Speech and Language, pages 355–372.

[12] Kuo, H.-K. J., Mangu, L., Emami, A., Zitouni, I.,

and Lee, Y.-S. (2009). Syntactic features for ara-

bic speech recognition. In Proceedings of Automatic
Speech Recognition & Understanding (ASRU) 2009,

pages 327–332, Merano, Italy.

[13] Kuo, H.-K. J., Arisoy, E., Emami, A., and Vozila, P.

(2012). Large scale hierarchical neural network lan-

guage models. In Proceedings of Interspeech 2012.

[14] Mikolov, T., Anoop, D., Stefan, K., Burget, L., and

Cernocky, J. (2011a). Empirical evaluation and com-

bination of advanced language modeling techniques. In

Proceedings of INTERSPEECH 2011, pages 605–608,

Florence, Italy.

[15] Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. H.,

and Khudanpur, S. (2010). Recurrent neural network

based language model. In Proceedings of INTER-
SPEECH 2010, pages 1045–1048, Makuhari, Japan.

[16] Mikolov, T., Kombrink, S., Burget, L., Cernocky, J.,

and Khudanpur, S. (2011b). Extensions of recurrent

neural network language model. In Proceedings of
ICASSP 2011, pages 5528–5531, Prague, Czech Re-

public.

[17] Moore, C., Lewis, W. (2010). Intelligent Selection of

Language Model Training Data. In Proceedings of the
ACL 2010 Conference Short Papers, pages 220C224,

Hawaii, USA.

[18] Povey, D., Ghoshal, A., Boulianne, G., Burget, L.,

Glembek, O., Goel, N., Hannemann, M., Motlicek, P.,

Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and

Vesely, K. (2011). The kaldi speech recognition toolkit.

In IEEE 2011 Workshop on Automatic Speech Recogni-
tion and Understanding. IEEE Signal Processing Soci-

ety. IEEE Catalog No.: CFP11SRW-USB.

[19] Schwenk, H. (2007). Continuous space language mod-

els. Computer Speech and Language, 21(3):492–518.

[20] Schwenk, H., Rousseau A., and Attik, M. (2012) Large,

Pruned or Continuous Space Language Models on a

GPU for Statistical Machine Translation. In Proceed-
ings of NAACL workshop on the Future of Language
Modeling, pages 11–19, Canada.

[21] Stolcke, A. (2002). Srilm - an extensible language mod-

eling toolkit. In Proceedings of INTERSPEECH 2002,

pages 901–904, Colorado, USA.

[22] Xu, P., Chelba, C., and Jelinek, F. (2002). A study on

richer syntactic dependencies for structured language

modeling. In Proceedings of ACL 2002, pages 191–

198, Philadelphia, USA.

[23] Xu, P. and Jelinek, F. (2004). Random forests in lan-

guage modeling. In Proceedings of EMNLP 2004,

pages 325–332, Barcelona, Spain.

　　　　　　　　　　　　 228

The 9th International Workshop on Spoken Language Translation
　　　　　 Hong Kong, December 6th-7th, 2012

