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Abstract1 
We describe a novel two-way speech-to-speech (S2S) 
translation system that actively detects a wide variety of 
common error types and resolves them through user-friendly 
dialog with the user(s). We present algorithms for detecting 
out-of-vocabulary (OOV) named entities and terms, sense 
ambiguities, homophones, idioms, ill-formed input, etc. and 
discuss novel, interactive strategies for recovering from such 
errors. We also describe our approach for prioritizing different 
error types and an extensible architecture for implementing 
these decisions. We demonstrate the efficacy of our system by 
presenting analysis on live interactions in the English-to-Iraqi 
Arabic direction that are designed to invoke different error 
types for spoken language translation. Our analysis shows that 
the system can successfully resolve 47% of the errors, 
resulting in a dramatic improvement in the transfer of 
problematic concepts.  

1. Introduction 
Great strides have been made in Speech-to-Speech (S2S) 
translation systems that facilitate cross-lingual spoken 
communication [1][2][3]. While these systems [3][4][5] 
already fulfill an important role, their widespread adoption 
requires broad domain coverage and unrestricted dialog 
capability. To achieve this, S2S systems need to be 
transformed from passive conduits of information to active 
participants in cross-lingual dialogs by detecting key causes 
of communication failures and recovering from them in a 
user-friendly manner. Such an active participation by the 
system will not only maximize translation success, but also 
improve the user’s perception of the system. 

The bulk of research exploring S2S systems has focused 
on maximizing the performance of the constituent automatic 
speech recognition (ASR), machine translation (MT), and 
text-to-speech (TTS) components in order to improve the rate 
of success of cross-lingual information transfer. There have 
also been several attempts at joint optimization of ASR and 
MT, as well as MT and TTS [6][7][8]. Comparatively little 
effort has been invested in the exploration of approaches that 
attempt to detect errors made by these components, and the 
interactive resolution of these errors with the goal of 
improving translation / concept transfer accuracy. 
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Our previous work presented a novel methodology for 
assessing the severity of various types of errors in our 
English/Iraqi S2S system [9]. These error types can be 
broadly categorized into: (1) out-of-vocabulary concepts; (2) 
sense ambiguities due to homographs, and (3) ASR errors 
caused by mispronunciations, homophones, etc. Several 
approaches, including implicit confirmation of ASR output 
with barge-in and back-translation [10], have been explored 
for preventing such errors from causing communication 
failures or stalling the conversation. However, these 
approaches put the entire burden of error detection, 
localization, and recovery on the user. In fact, the user is 
required to infer the potential cause of the error and determine 
an alternate way to convey the same concept – clearly 
impractical for the broad population of users. 

To address the critical limitation of S2S systems 
described above, we present novel techniques for: (1) 
automatically detecting potential error types, (2) localizing the 
error span(s) in spoken input, and (3) interactively resolving 
errors by engaging in a clarification dialog with the user. Our 
system is capable of detecting a variety of error types that 
impact S2S systems, including out-of-vocabulary (OOV) 
named entities and terms, word sense ambiguities, 
homophones, mispronunciations, incomplete input, and 
idioms.  

Another contribution of this paper is the novel strategies 
for overcoming these errors. For example, we describe an 
innovative approach for cross-lingual transfer of OOV named 
entities (NE) by splicing corresponding audio segments from 
the input utterance into the translation output. For handling 
word sense ambiguities, we propose a novel constrained MT 
decoding technique that accounts for the user’s intended sense 
based on the outcome of the clarification dialog.  

A key consideration for making the system an active 
participant is deciding how much the system should talk, i.e. 
the number of clarification turns allowed to resolve potential 
errors. With that consideration, we present an effective 
strategy for prioritizing the different error types for resolution 
and also describe a flexible architecture for storing, 
prioritizing, and resolving these error types.  

2. Error Types Impacting S2S Translation 
We focus on seven types of errors that are known to impact 
S2S translation. Table 1 shows an example of each of these 
error types. Out-of-vocabulary names (OOV-Name) and Out-
of-vocabulary non-name words (OOV-Word) are some of the 
errors introduced by the ASR in S2S systems. OOV words are 
recognized as phonetically similar words that do not convey 
the intended concept. Word sense ambiguities in the input 
language can cause errors in translation if a target 
word/phrase does not correspond to the user’s intended sense. 
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Homophone ambiguities and mispronunciations are two other 
common sources of ASR error that impact translation. 
Incomplete utterances are typically produced if the speaker 
abruptly stops speaking or due to a false-release of the push-
to-talk microphone button. Finally, unseen idioms often 
produce erroneous literal translations due of the lack of 
appropriate transfer rules in the MT parallel training data. 

Table 1: Examples of Types of Errors 

Error Type Example 
OOV-Name My name is Sergeant Gonzales. 

ASR: my name is sergeant guns all us 
OOV-Word The utility prices are extortionate. 

ASR: the utility prices are extort unit 
Word Sense Does the town have enough tanks. 

Ambiguity: armored vehicle | storage unit 
Homophone Many souls are in need of repair. 

Valid Homophones: soles, souls 
Mispron. How many people have been harmed by 

the water when they wash. 
ASR: how many people have been harmed 
by the water when they worse 

Incomplete  Can you tell me what these 
Idiom We will go the whole nine yards to help. 

Idiom: the whole nine yards 

3. Approach for Active Error Detection and 
Resolution 

Figure 1 shows the architecture of our two-way English to 
Iraqi-Arabic S2S translation system. In the English to Iraqi 
direction, the initial English ASR hypothesis and its 
corresponding translation are analyzed by a suite of error 
detection modules discussed in detail in Section 3.3. An 
Inference Bridge data structure supports storage of these 
analyses in an interconnected and retraceable manner. The 
potential classes of errors and their associated spans in the 
input are identified and ranked in an order of severity using 
this data structure. A resolution strategy, discussed in detail in 
Section 3.4, is executed based on the top ranked error.  

The strategies use a combination of automated and user-
mediated interventions to attempt recovery of the concepts 
associated with the error span. At the end of a strategy, the 
Arabic speaker may be presented with a translation of the 
user’s input utterance with appropriate corrections; or the 
English speaker may be informed of the system’s inability to 
translate the sentence along with an explanation of the cause 
of this failure. With this information, the English speaker can 
choose to rephrase the input utterance so as to avoid the 
potential failure. At all times, the English speaker has the 
option to force the system to proceed with its current 
translation by issuing the “Go Ahead” command. Our system 
may be regarded as high-precision due to its ability to prevent 
the transfer of erroneously translated concepts to Arabic 
speakers. This increased precision comes at the cost of 
increased effort by the English speaker in terms of performing 
clarifications and rephrasals. The metrics and results 
presented in Section 4 study this compromise. 

The Arabic to English direction of the system implements 
a traditional loosely coupled pipeline architecture comprising 
of the Arabic ASR, Arabic-English MT, and English TTS. 

3.1. Baseline ASR System 

Speech recognition was based on the BBN Byblos ASR 
system. The system uses a multi-pass decoding strategy in 
which models of increasing complexity are used in successive 
passes in order to refine the recognition hypotheses [11]. In 
addition to the 1-best and N-best hypotheses, our ASR engine 
generates word lattices and confusion networks with word 
posterior probabilities. The latter are used as confidence 
scores for a variety of error detection components. 

The acoustic model was trained on approximately 150 
hours of transcribed English speech from the DARPA 
TRANSTAC corpus. The language model (LM) was trained 
on 5.8M English sentences (60M words), drawn from both in-
domain and out-of-domain sources. LM and decoding 
parameters were tuned on a held-out development set of 3,534 
utterances (45k words). With a dictionary of 38k words, we 
obtained 11% WER on a held-out test set of 3k utterances.

3.2. Baseline MT System 

Our statistical machine translation (SMT) system was trained 
using a corpus derived from the DARPA TRANSTAC 
English-Iraqi parallel two-way spoken dialogue collection. 
The parallel data (773k sentence pairs, 7.3M words) span a 
variety of scenarios including force protection, medical 
diagnosis and aid, maintenance and infrastructure, etc.  

Table 2: SMT performance for different configurations 

System BLEU 100-TER 
Baseline 16.1 35.8 
Boosted 16.0 36.3 
PAC 16.1 36.0 

 
Phrase translation rules were extracted from bidirectional 

IBM Model 4 word alignment [12] based on the heuristic 
approach of [13]. The target LM was trained on Iraqi 
transcriptions from the parallel corpus and the log-linear 
model tuned with MERT [14] on a held-out development set 
(~44.7k words). Table 2 summarizes translation performance 
on a held-out test set (~38.5k words) of the baseline English 

 
 

Figure 1: BBN English/Iraqi-Arabic S2S System with Error 
Recovery in English to Iraqi-Arabic direction 
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to Iraqi SMT system for vanilla phrase-based, boosted 
alignment [15], and phrase alignment confidence (PAC) [16] 
systems. We used the PAC SMT models in our system. 

3.3. Input Analysis & Error Detection 

3.3.1. Automatic Identification of Translation Errors 

In order to automatically detect mistranslated segments of the 
input, we built a confidence estimation system for SMT 
(similar to [17]) that learns to predict the probability of error 
for each hypothesized target word. In conjunction with SMT 
phrase derivations, these confidence scores can be used to 
identify input segments that may need to be clarified. The 
confidence estimator relies on a variety of feature classes: 

� SMT-derived features include forward and backward 
phrase translation probability, lexical smoothing 
probability, target language model probability, etc. 

� Bilingual indicator features capture word co-occurrences 
in the generating source phrase and the current target 
word and are obtained from SMT phrase derivations. 

� Source perplexity is positively correlated with translation 
error. We used the average source phrase perplexity as a 
feature in predicting probability of translation error. 

� Word posterior probability was computed for each target 
word in the 1-best hypothesis based on weighted majority 
voting over SMT-generated N-best lists. 

Reference labels for target words (correct vs. incorrect) 
were obtained through automated TER alignment on held-out 
partitions of the training set (10-fold jack-knifing). The 
mapping between above features and reference labels was 
learned with a maximum-entropy (MaxEnt) model. We also 
exploited the “bursty” nature of SMT errors by using a joint 
lexicalized label (n-gram) LM to rescore confusion networks 
generated by the pointwise MaxEnt predictor. Table 3 
summarizes the prediction accuracy of correct and incorrect 
hypothesized Iraqi words on the MT test set (~38.5k words). 

Table 3: Incorrect target word classification performance  

Method Dev set Test set 
Majority (baseline) 51.6% 52.6% 
MaxEnt + Lexicalized LM 70.6% 71.1% 

3.3.2. OOV Named Entity Detection 

Detecting OOV names is difficult because of the unreliable 
features resulting from tokens misrecognized by ASR in the 
context of an OOV word.  We use a MaxEnt model to identify 
OOV named-entities (NE) in user input [18]. Our model uses 
lexical and syntactic features to compute the probability of 
each input word being a name. We trained this model on 
Gigaword, Wall Street Journal (WSJ), and TRANSTAC 
corpora consisting of approximately 250K utterances (4.8M 
words). This includes 450K occurrences of 35K unique 
named-entity tokens.  On a held-out clean (i.e. no ASR error) 
test set consisting of only OOV named-entities, this model 
detects 75.4% named-entities with 2% false alarms. 

While the above detector is trained on clean text, our real 
test cases are noisy due to ASR errors in the region of the 
OOV name. To address this mismatch, we use word 
posteriors from ASR in two ways. First, an early fusion 
technique weighs each feature with the word posterior 

associated with the word from which the feature is derived. 
This attenuates unreliable features at runtime. Second, we use 
a heuristically-determined linear combination of ASR word 
posteriors and the MaxEnt named-entity posterior to compute 
a score for each word. This technique helps in further 
differentiating OOV named-entity words since the ASR word 
posterior term serves as a strong OOV indicator. 

Contiguous words with NE posteriors greater than a 
specified threshold are considered as candidate OOV names. 
These spans are filtered through a list of known NEs. If a 
sizeable span (>0.33 seconds) contains at least one non-
stopword unknown name token, it is considered for OOV 
name resolution. 

We evaluated our OOV NE detector on an offline set 
comprising of 2,800 utterances similar in content to the 
evaluation scenarios described in Section 4.1. We are able to 
detect 40.5% OOV NEs with 39.1% precision. Furthermore, 
an additional 19.9% OOV NEs were identified as error spans 
using the detector described in the next section. 

3.3.3. Error Span Detection 

We use a heuristically derived linear combination of ASR and 
MT confidence for each input word in the source language to 
identify source words that are likely to result in poor 
translations. We use this error detector to identify a variety of 
errors including unknown/unseen translation phrases, OOV 
Word (non-names), user mispronunciations and ASR errors. 
All consecutive words (ignoring stop words) identified by this 
detector are concatenated into a single span. 

3.3.4. Improving Translation of Multiple Word Senses 

Phrase-based SMT is susceptible to word sense translation 
errors because it constructs hypotheses based on translation 
rules with relatively limited context. We address this issue 
through a combination of  (a) constrained SMT decoding 
driven by sense-specific phrase pair partitions obtained using 
a novel semi-supervised clustering mechanism, and (b) a 
supervised classifier-based word sense predictor. 

3.3.4.1 Semi-supervised phrase pair clustering 
The use of constraints for clustering phrase pairs associated 
with a given ambiguity class into their senses significantly 
reduces clustering noise and “bleed” across senses due to lack 
of sufficient context in the phrase pairs. Constraints are 
obtained in three different ways. 

1. Key-phrase constraints: Manually annotated key-phrases 
are used to establish an initial set of constraints between 
each pair of translation rules corresponding to a given 
ambiguity class. Two phrase pairs are related by a must-
link constraint if their source phrases both contain key-
phrases associated with the same sense label; or by a 
cannot-link constraint if they contain key-phrases 
corresponding to different sense labels.  

2. Instance-based constraints: The word alignment of a 
sentence pair often allows extraction of multiple phrase 
pairs spanning the same ambiguous source word. All of 
these phrase pairs refer to the same sense of the 
ambiguous word and must be placed in the same 
partition. We enforce this by establishing must-link 
constraints between them. 

3. Transitive closure: The process of transitive closure 
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ensures that the initial set of constraints is propagated 
across all two-tuples of phrase pairs. This leads to a set 
of constraints that is far larger than the initial set, leading 
to well-formed, noise-free clusters. We implemented 
transitive closure as a modified version of the Floyd-
Warshall algorithm. We used the transitive closure over 
key-phrase and instance-based constraints to partition 
phrase pairs for a given ambiguity class into their 
respective senses using constrained k-means [19].  

3.3.4.2 Constrained SMT decoding 
Constrained decoding is a form of dynamic pruning of the 
hypothesis search space where the source phrase spans an 
ambiguous word. The decoder must then choose a translation 
from the partition corresponding to the intended sense. We 
used the partitioned inventories to tag each phrase pair in the 
SMT phrase table with its ambiguity class and sense identity. 

At run time, the constrained SMT decoder expects each 
input word in the test sentence to be tagged with its ambiguity 
class and intended sense identity. Unambiguous words are 
tagged with a generic class and sense identity. When 
constructing the search graph over spans with ambiguous 
words tagged, we ensure that phrase pairs covering such spans 
match the input sense identity. Thus, the search space is 
constrained only in the regions of non-generic ambiguity 
classes, and unconstrained elsewhere. By naturally integrating 
word sense information within the translation model, we 
preserve the intended sense and generate fluent translations. 

Table 4: Concept transfer for ambiguous words  

Method Yes No unk 
Unconstrained 95 68 1 
Constrained 108 22 34 
Improvement 13.7% 66.2% n/a 

 
We evaluated the constrained decoder on a balanced 

offline test set of 164 English sentences covering all in-
vocabulary senses of 73 ambiguity classes that appeared in 
multiple senses in our training data. Each test sentence 
contains exactly one ambiguous word. We presented each 
input sentence and its translation to a bilingual judge, with the 
ambiguous source word and the target word(s) due to it both 
highlighted. The judge passes a binary judgment; yes, 
implying that the sense of the source word is preserved, or no, 
indicating an incorrect sense substitution. Non-dominant 
senses of an ambiguity class may not be translatable if the 
corresponding partition does not possess sufficient contextual 
coverage. We count the number of untranslatable ambiguous 
source concepts separately from correct or incorrect sense 
transfer. Table 4 summarizes these results.  

3.3.4.3 Supervised word sense disambiguation 
Complementary to the above framework is a supervised word 
sense disambiguation system that uses MaxEnt classification 
to predict the sense of an ambiguous word. Sense predictions 
by this component are integrated with user input in our 
mixed-initiative interactive system to identify the appropriate 
phrase pair partitions for constrained decoding. 

We selected up to 250 representative sentences for each 
ambiguity class from the training corpus and had human 
annotators (a) assign an identity and description for up to five 

different senses, and (b) label each instance with the 
appropriate sense identity. Based on these annotations, we 
trained separate maximum entropy classifiers for each 
ambiguity class, with sense identities as target labels. 
Classifiers were trained for 110 ambiguity classes using 
contextual (window-based), dependency (parent/child of 
ambiguous word), and corresponding part-of-speech features. 

We performed an offline evaluation of the sense 
classifiers by using them to predict the sense of the ambiguity 
classes in held out test sentences. The most frequent sense of 
an ambiguity class in the training data served as a baseline 
(chance level) for that class. The baseline word sense 
predication accuracy rate over 110 ambiguity classes covering 
2,324 sentences containing ambiguous words was 73.7%. 
This improved to 88.1% using the MaxEnt sense classifiers. 

3.3.5. Homophone Detection and Correction 

A common problem with ASR is the substitution of a 
different word that sounds identical to the spoken word (e.g. 
“role” vs. “roll”). To alleviate this problem, we developed a 
state-of-the-art automatic homophone detection and correction 
module based on MaxEnt classification. We induced a set of 
homophone classes from the ASR lexicon such that the words 
in each class had identical phonetic pronunciation. For each 
homophone class, we identified training examples containing 
the constituent words. A separate classifier was trained for 
each homophone class with the correct variants as the target 
labels. This component essentially functions as a strong, local, 
discriminative language model. The features used for the 
homophone corrector are identical to those used for 
supervised word sense disambiguation (Section 3.3.4.3). 

We evaluated this component by simulating, on a held-out 
test set for each homophone class, 100% ASR error by 
randomly substituting a different variant for each homophone 
constituent in these sentences. We then used the classifier to 
predict the word variant for any slot corresponding to a 
homophone class constituent. The overall correction rate over 
223 homophone classes covering 174.6k test sentences 
containing homophone classes was 95.8%. Similarly, the false 
correction rate (simulated by retaining the correct homophone 
variant in the test set) was determined to be 1.3%. 

3.3.6. Idiom Detection 

Idioms unseen in SMT training usually generate 
incomprehensible literal translations. To detect and pre-empt 
translation errors originated from idioms, we harvested a large 
list of English idioms from public domain sources to use in a 
simple string matching front-end. However, the harvested 
idioms are usually in a single canonical form, e.g. “give him a 
piece of my mind”. Thus, simple string match would not catch 
the idiom “give her a piece of my mind”. We used two 
approaches to expand coverage of the idiom detector. 

1. Rule-based idiom expansion: We created rules for 
pronoun expansion (e.g. “his” � “her”, “their”, etc.) and 
verb expansion (e.g. “give her a piece of my mind” � 
“gave her a piece of my mind”), being conservative to 
avoid explosion and creation of nonsense variants. 

2. Statistical idiom detector: We trained a binary MaxEnt 
classifier that predicts whether any input n-gram is an 
idiom. We used 3.2k gold standard canonical idioms as 
positive samples and all 15M non-idiom n-grams in our 
data as negative samples. On a balanced set containing 
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unseen idiom variants and non-idioms, this classifier gave 
us a detection rate of 33.2% at 1.8% false alarm. 

3.3.7. Incomplete Utterance Detection 

In order to detect user errors such as intentional aborts after 
mis-speaking, or unintentional pushing or releasing of the 
“record” button, we built an incomplete utterance detector 
(based on a MaxEnt classifier) that identifies fragments with 
ungrammatical structure in recognized transcriptions. 
Training data for incomplete utterances were automatically 
generated using an error simulator that randomly removed 
words from the beginning and/or end of a clean, fully-formed 
sentence. A number of lexical and syntactic features were 
used to train and evaluate the incomplete utterance classifier. 

We trained a binary classifier on approximately 771k fully 
formed sentences and varied the number of automatically 
generated incomplete utterances. We evaluated the classifier 
on a balanced test set of 1,000 sentences with 516 auto-
generated sentences that were verified by hand to be positive 
examples of incomplete sentences. At a false alarm rate of 
5%, the incomplete utterance detector demonstrated a 
detection rate of 41%. Syntactic and part-of-speech features 

were particularly powerful at identifying this error type. 

3.4. Error Resolution Strategies 

Our implementation of error resolution strategies follows a 
multi-expert architecture along the lines of Jaspis [20] and 
Rime [21]. Each strategy has been manually designed to 
resolve one or more types of errors discussed in Section 2. 

Figure 2 illustrates 9 interaction strategies used by our 
system. Each strategy is comprised of a sequence of steps 
which include actions such as TTS output, user input 
processing, translation (unconstrained or constrained) and 
other error type specific operations. 

The OOV Name and ASR Error strategies are designed to 
interactively resolve errors associated with OOV entities 
(names and non-names), ASR errors and MT errors. When a 
span of words is identified as an OOV named-entity, the user 
is asked to confirm whether the audio segment spanning those 
words actually corresponds to a name (Excerpt A), following 
which the segment is spliced in place of the target phrases 
corresponding to that span. In the case where a (non-name) 
error span is detected by the detector described in Section 
3.3.3, the user is asked to rephrase the utterance. This strategy 

Figure 2. Interaction Strategies for Error Resolution 

　　　　　　　　　　　　   154 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



is suitable for handling multiple error types including OOVs, 
mispronunciations, and ASR/MT errors. Additionally, the 
ASR Errors strategy has been designed to capture a large 
fraction of the OOV name false negatives (i.e. missed 
detections) by allowing the user to indicate if the error span is 
a name (Excerpt B). Because of the similar nature of the 
errors handled by these two strategies, we have found it 

beneficial to maintain reciprocity between them to resolve all 
the errors handled by these strategies. 

The four Word Sense (WS) disambiguation strategies 
resolve sense ambiguity errors. The underlying principle 
behind the strategies is that the sense of an ambiguous word 
must be confirmed by at least two of four possible 
independent sources. These four sources include (a) the 
translation system (sense lookup corresponding to phrase pair 
associated with the ambiguous word), (b) sense-inventory that 
lists source phrase keywords, (c) sense predicted by 
supervised model for sense-class and (d) sense specified by 
the user. Some of these sources may not be available for 
certain words. Case 2: Filtered strategy corresponds to the 
case where (a) and (b) agree. In this case, the user is shown a 
message using the GUI and the system proceeds to present the 
translation to the Arabic speaker. Similarly, Case 1: No 
Mismatch strategy correspond to the case where (a) and (c) 
agree. If these three sources are unable to resolve the sense of 
the word, the user is asked to confirm the sense identified by 
source (a) following the Case 3: Mismatch strategy. If the 
user rejects that sense, a list of senses is presented to the user 
(Case 4: Backoff strategy). The user-specified sense drives 
constrained decoding to obtain an accurate translation which 
is then presented to the Arabic speaker. An example of this 
case is shown in Excerpt C of Table 5. 

Albeit simpler, the two homophone (HP) resolution 
strategies mimic the WS strategies in principle and design. 
The observed homophone variant produced by the ASR must 
be confirmed either by the MaxEnt model (Case 1: No 
Mistmatch) of the corresponding homophone class or by the 
user (Case 2: Mismatch) as shown in Excerpt D. The input 
utterance is modified (if needed) by substituting the resolved 
homophone variant in the ASR output which is then translated 
and presented to the Arabic speaker. 

Strategies for resolving errors associated with idioms and 
incomplete utterances (Excerpts E and F) primarily rely on 
informing the user about the detection of these errors. The 
user is expected to rephrase the utterance to avoid these 
errors. For idioms, the user is also given the choice to force a 
literal translation when appropriate. 

At all times, the user has the ability to rephrase the initial 
utterance as well as to force the system to proceed with the 
current translation. This allows the user to override system 
false alarms whenever suitable. The interface also allows the 
user to repeat the last system message which is helpful for 
comprehension of long prompts presented by the system. 

4. Experimental Results 
In this section, we present results from a preliminary 
evaluation for measuring the benefit of active error detection 
and resolution capability in S2S systems. Note that this 
evaluation does not contrast the various design choices 
involved in our implementation. Instead, we focus on a 
holistic evaluation of the system. 

4.1. Evaluation Approach and Metrics 

Multiple English speaking human subjects interacted with the 
system to communicate 20 scenarios to an Arabic speaker. 
Each scenario consists of 5 “starting” utterances. The subject 
speaks one English starting utterance at a time and is allowed 
to freely respond to any interactive recovery dialog initiated 
by the system. Interaction corresponding to each starting 
utterance comes to an end when the system presents an Arabic 

Table 5: Examples of Error Recovery Strategies 
 
A. Out of Vocabulary Name   
User Utt.: My name is Sergeant Gonzalez 
ASR:  my name is sergeant guns all us 
Sys.:  I heard “my name is sergeant guns all us”. Is 

(audio:Sergeant Gonzalez) a name? Say Yes or 
Rephrase your sentence, or Go Ahead. 

ASR:  yes 
Sys.:  Translating “my name is  (audio: Sergeant 

Gonzalez)”. 
B. OOVs and other ASR/MT error 
User Utt.: Are your wages enough to subsist on? 
ASR:  are your wages enough to sub system 
Sys.:  I heard “are your wages enough to sub system”. I 

am not sure about (audio: subsist). Please rephrase 
the sentence, say that’s a name, or say Go Ahead. 

User:  do you make enough money 
Sys.:  Translating “do you make enough money” 
C. Word Sense  
User Utt.: I am looking for the man in charge. 
ASR:  i am looking for the man in charge 
Sys.:  I heard “i am looking for the man in charge”. 

Charge is ambiguous. Say Option One for in 
command of, Option Two for payment, Option 
Three for accusation, or Rephrase your sentence. 

User:  option one 
Sys.:  Translating “i am looking for the man in charge” 

using charge as in command of. 
D. Homophone 
User Utt.: How much do you pay for the fare? 
ASR:  how much do you pay for the fair 
Sys.:  I heard “how much do you pay for the fair”. I am 

unclear about fair. Say Option One for price of 
transportation, Option Two for free from bias, Or 
Rephrase your sentence 

ASR:  option one 
Sys.:  Translating “how much do you pay for the fare” 
E. Improper Input/Fragment  
User Utt.: I am going for the- 
ASR:  i am going for the 
Sys.:  I heard “i am going for the”. This does not seem 

like a complete sentence. Say Go Ahead to 
translate or Rephrase your sentence. 

ASR:  i am going to the village 
Sys.:  Translating “i am going to the village” 
F. Idiom 
User Utt.: What can we do about this dead space here? 
ASR:  what can we do about this dead space here 
Sys.:  I heard “what can we do about this dead space 

here”. Idioms like dead space may not be 
translated accurately. Say Go Ahead for literal 
translation, or Rephrase your sentence. 

ASR:  go ahead 
Sys.:  Translating “what can we do about this dead 

space here” 
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translation. Each starting utterance has been designed to pose 
exactly one of the seven error types discussed in Section 2. 
This is often compounded by unexpected ASR errors. 

Prior to the start of the experiment, each speaker was 
trained using five scenarios (25 starting utterances) to allow 
the speakers to familiarize themselves with the system 
prompts. In all, we were able to collect interactions 
corresponding to 103 starting utterance for this evaluation. 
The primary measure of success of a S2S system is its ability 
to accurately communicate concepts across the language pair. 
High Level Concept Transfer (HLCT) [22] has been used in 
the past for multi-site S2S system evaluations under the 
DARPA TRANSTAC program. 

In this paper, we adapt HLCT to focus on the concept 
associated with the erroneous span (word/phrase) in each 
starting utterance. We consider only the span associated with 
the intended error. Each erroneous concept is considered as 
transferred if it is conveyed accurately in the translation. The 
benefit of using active error detection and recovery is 
measured as the improvement in HLCT between the initial 
translation (i.e. before recovery) and final translation (i.e. 
after recovery). This is demonstrated in Table 6. In addition to 
improvement in concept transfer, we also present error 
detection accuracy metrics as well as analysis of number of 
clarification turns. 

Table 6: Example of HLCT for Erroneous Concept 

User Utt: i have heard that the utility prices are extortionate 
Before Clarification 

ASR: i have heard that the utility prices are extort unit 
MT:  آنيسمعتإنهالخدماتالأسعاروحدة  
Gloss: I heard that services all prices are same 
Concept Transferred? No �� 

After Clarification 
ASR: the price for utilities seems very high 
MT:  السعرالخدماتمبينكلشعالية  
Gloss: the price of services seem to be very high 
Concept Transferred? Yes �� 

4.2. Results 

Table 7: HLCT for Erroneous Spans 
(#: count of utterances transferred, %: percentage transferred) 

Intended Error Count Initial 
Transfer 

Final 
Transfer Change 

  # % # % % 
OOV-Name 12 1 8.33 5 41.67 33.33 
OOV-Word 46 3 6.52 20 43.48 36.96 
Word Sense 18 4 22.22 10 55.56 33.33 
Homophone 15 4 26.67 5 33.33 6.67 
Mispronunciation 5 1 20.00 2 40.00 20.00 
Idiom 2 0 0.00 1 50.00 50.00 
Incomplete 5 0 0.00 5 100.00 100.00 
All 103 13 12.62 48 46.60 33.98 

 
ASR WER for the utterances used in this evaluation was 23%. 
Table 7 shows the initial, final and change (improvement) in 
HLCT for the erroneous span for each of the error types. 

Overall, our S2S system equipped with active error detection 
and recovery is able to improve the transfer of erroneous 
concepts by 33.98%. This improvement is more prominent in 
the case of certain types of errors such as OOVs. 

Table 8 shows the detection accuracy within our 
evaluation set for each type of error. Two different detection 
accuracy metrics are shown. First, %correct is the fraction of 
errors that were identified as the intended error. Second, 
%recoverable is the fraction of errors that were identified as 
an error whose strategy supports recovery from the intended 
error. For example, an OOV-Name incorrectly identified as an 
error span is still recoverable because the strategy allows the 
user to inform the system that the span is a name. Note that 
%recoverable is always greater than or equal to %correct 
because correctly identified errors is considered recoverable 
in this analysis. Overall, 33% of errors are identified correctly 
and 59.2% are identified as a potentially recoverable error. Of 
these, as shown in Table 7, 46.6% errors are actually 
recovered by our recovery strategies. On average, the 
recovery strategies require 1.4 clarification turns. 

Table 8: Error Detection Accuracy  
(*Intended and Actual Errors may differ) 

Intended Error %Correct %Recoverable 
OOV-Name 41.7 75.0 
OOV-Word 37.8 75.6 
Word Sense* 16.7 16.7 
Homophone* 31.3 50.0 
Mispronunciation 60.0 60.0 
Idiom 0.0 0.0 
Incomplete 20.0 80.0 
All 33.0 59.2 

5. Discussion and Future Work 
Error recovery strategies have been shown to be effective at 
improving task success in several applications [23][24]. 
However, their application to S2S systems has been limited 
[10][25]. In [25], the authors developed a wide range of repair 
strategies for narrow domain S2S. However, this 
implementation did not have any active error detection. 
Instead, it was delegated to the user who was asked to 
highlight erroneous words resulting from ASR errors.   

The active error detection and interactive recovery 
strategies described in this paper go well beyond user 
confirmation [10] and repair strategies of [25]. As seen in the 
results presented in Section 4, well-designed error-specific 
recovery strategies can significantly improve (34%) the 
communication of erroneous concepts despite moderate error 
detection capabilities (33%). We also note that this state-of-
the-art implementation is able to recover only about 46.6% 
erroneous concepts. This suggests a significant scope for 
improvement of S2S systems in this line of investigation. 

While our current system has demonstrated an effective 
approach for enhancing eyes-free S2S systems with active 
error detection and recovery, this system implements these 
capabilities in only one direction (English to Arabic). 
Developing similar capabilities in both directions of S2S 
presents exciting challenges. In particular, the participation of 
the foreign language speaker in the error recovery activity 
offers both opportunities for developing novel interaction 
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strategies as well as challenges such as addressee detection, 
speaker diarization and prompt targeting in addition to 
addressing increased computational needs for bi-directional 
error detection. 

In addition to extending our system to a 2-way 
implementation, further scientific inquiry to evaluate the 
effectiveness of error recovery in S2S systems is necessary. 
Specifically, evaluation presented in this paper has two 
shortcomings. First, each utterance in the evaluation scenarios 
is designed to have one of the 7 expected errors. This was 
necessary in these preliminary evaluations to gather a 
representative sample of each of types of error within a 
reasonable number of utterances collectable with a small 
number of human subjects. However, in practice, many 
utterances may have none or multiple expected errors. While 
our current system is capable of dealing with these situations, 
the evaluation presented here does not measure system 
performance under such conditions. 

Second, in a practical S2S system, often the two speakers 
are able to perform limited amount of error recovery. While 
this form of error recovery is often expensive in terms of user 
time and effort, a thorough evaluation should compare this 
form of recovery to automated error recovery. 
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