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Abstract

This paper describes the University of Edinburgh (UEDIN)

systems for the IWSLT 2012 Evaluation. We participated in

the ASR (English), MT (English-French, German-English)

and SLT (English-French) tracks.

1. Introduction

We report on experiments carried out for the development

of automatic speech recognition (ASR), machine translation

(MT) and spoken language translation (SLT) systems on the

datasets of the International Workshop on Spoken Language

Translation (IWSLT) 2012. Details about the evaluation

campaign and the different evaluation tracks can be found

in [1].

For the ASR track, we focused on the use of adaptive tan-

dem features derived from deep neural networks, trained on

both in-domain data from TED talks [2], and out-of-domain

data from a corpus of meetings.

Our experiments for the MT track compare approaches

to data filtering and phrase table adaptation and focus on

adaptation by adding sparse lexicalised features. We explore

different tuning setups on in-domain and mixed-domain sys-

tems.

For the SLT track, we carried out experiments with a

punctuation insertion system as an intermediate step between

speech recognition and machine translation, focussing on

pre- and post-processing steps and comparing different tun-

ing sets.

2. Automatic Speech Recognition (ASR)

In this section we describe the 2012 UEDIN system for the

TED English transcription task. In summary, the system is

an HMM-GMM system trained on TED talks available on-

line, using tandem features derived from deep neural net-

works (DNNs). We were able to obtain benefits by including

out-of-domain neural network features trained on a corpus of

multi-party meetings. For recognition, a two-pass decoding

architecture was used.

2.1. Acoustic modelling

Our core acoustic model training set was derived from 813

TED talks dating prior to the end of 2010. The recordings

were automatically segmented, giving a total of 153 hours of

speech. Each segment was matched to a portion of the man-

ual transcriptions for the relevant talk using a lightly super-

vised technique described in [3]. For this purpose, we used

existing acoustic models trained on multiparty meetings.

Three-state left-to-right HMMs were trained on features

derived from the aligned TED data using a flat start initiali-

sation. During the training process, a further re-alignment of

the training segments and transcriptions was carried out, fol-

lowing which around 143 hours of speech remained for the

final estimation of state-clustered cross-word triphone mod-

els. The resulting models contained approximately 3,000 tied

states, with 16 Gaussians per state. Recognition was per-

formed using HTK’s HDecode. The first pass recognition

transcription was used to estimate a set of CMLLR trans-

forms [4] for each talk, using a regression class tree with 32

leaf-nodes, which were used to adapt the models for a second

decoding pass.

The acoustic features used in the baseline system were

13-dimensional PLP features with first, second and third or-

der differential coefficients, projected to 39 dimensions using

an HLDA transform. To obtain acoustic features for the fi-

nal system, we carried out experiments on the use of acoustic

features derived from neural networks in the tandem frame-

work [5]. Following our successful experience in [6], we in-

vestigated the use of features derived from networks trained

on out-of-domain data using the Multi-layer Adaptive Net-

works (MLAN) architecture. In MLAN, tandem features are

generated from in-domain data using neural network weights

trained on out-of-domain data, and concatenated with in-

domain PLP features and derivatives. A second, adaptive

neural network is trained on these features. The final MLAN

features used for HMM training and as input to the recog-

niser are obtained by concatenating posteriors from this sec-

ond network with the original PLPs, projected with an HLDA

transform. Figure 1 contrasts the MLAN process with the

more standard use of out-of-domain posterior features. The

procedure is described in more detail in [6].

In the experiments presented here, HMMs were trained

　　　　　　　　　　　　   46 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



Train DNNs on 
OOD data

Generate posterior features for in-domain data

Train in-domain 
DNNs on 

Tandem feaures

Train MLAN 
HMMs

Tandem features

MLAN features

Train Tandem 
HMMs

Tandem features

Figure 1: Multi-Level Adaptive Network (MLAN) architec-

ture

on three sets of features:

• In-domain tandem features derived from four-layer

deep neural networks (DNN) trained on the TED

PLP features using monophone targets fixed by forced

alignment with the baseline PLP models

• Out-of-domain features generated from Stacked Bot-

tleneck networks trained on 120 hours of multi-party

meetings from the AMI corpus using the setup de-

scribed in [7]. Note that in general this domain is not

well-matched to the TED domain1

• MLAN features obtained from four-layer DNNs

trained on the AMI neural network features, concate-

nated with in-domain PLP features, again using mono-

phone targets

The HMMs were trained using the tandem framework: the

various neural network features were projected to 30 dimen-

sions2 and augmented with in-domain PLP features, pro-

jected from 52 to 39 dimensions with an HLDA transform,

giving a total feature vector dimension of 69 in all three

cases.

In the initial experiments, the HMMs were trained with

maximum-likelihood training only. For the final system, we

additionally employed speaker-adaptive training (SAT) [4]

and MPE discriminative training [8]. When adaptation trans-

forms were applied to the tandem features, the neural net-

work and PLP features were adapted independently, using

block diagonal (39x39 and 30x30) transforms.

1Standard HMMs trained on the AMI corpus, adapted using CMLLR to

the test data, gave WER of 32.0% and 30.7% on the dev2010 and tst2010

sets respectively
2Except for the AMI bottleneck features, which were obtained from a

30-dimensional bottleneck with no further projection

Corpus Word count

IWSLT12.TALK.train.en (in-domain) 2.4M

Europarl v7 54M

News commentary v7 4.4M

News crawl 2007 24.4M

News crawl 2008 23.1M

News crawl 2009 23.4M

News crawl 2010 23.9M

News crawl 2011 47.3M

Total 202.9M

Table 1: LM training data sizes.

2.2. Language modelling

The language models used for the ASR evaluation were ob-

tained by interpolating individual modified Kneser-Ney dis-

counted LMs trained on the small in-domain corpus of TED

transcripts and the larger out-of-domain sources. The out-of-

domain sources were europarl (v7), news commentary (v7)

and news crawl data from 2007 to 2011. A random 1M sen-

tence subset of each of news crawl 2007-2010 was used, in-

stead of the entire available data, for quicker processing. The

size of the resulting LM training data is shown in Table 1.

The LMs were estimated using the SRILM toolkit [9]. The

interpolated LMs had a perplexity of 160 (for 3-gram) and

159 (for 4-gram) on the combined dev2010 and tst2010 data.

The optimal interpolation weights for both the 3-gram and

4-gram LMs were roughly 0.64 for the in-domain LM and

between 0.02 and 0.06 for the different out-of-domain mod-

els. The vocabulary was fixed at 60,000 words.

We also carried out experiments using a language model

built for the 2009 NIST Rich Transcription evaluation

(RT09). This model was trained on a range of data sources,

including corpora of conversational speech and meetings –

see [7] for details. The vocabulary for this model was fixed

at 50,000.

2.3. Results

We firstly carried out experiments on the dev2010 and

tst2010 development data sets, using the NIST scoring

toolkit to measure word error rate (WER). Our system mod-

els the initials in acronyms such as U.S., U.K. etc as individ-

ual words – for internal consistency, the development results

here do not apply the automatic contraction of initials, which

would result in an approximate 0.3% drop in WER below the

figures shown. (Our final evaluation system, however, does

include this correction).

Table 2 shows results of a two-pass speaker-adaptive sys-

tem using the LM built for the IWSLT evaluation. All fig-

ures use a trigram LM except for the final row in the table.

The results compare the use of different tandem features, and

confirm our earlier findings that the MLAN technique is an

effective method of domain adaptation, even when the do-

mains are not particularly well matched. The use of SAT and
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System dev2010 tst2010

PLP + HLDA 26.7 24.9

TED tandem 21.3 20.3

AMI tandem 22.8 20.7

MLAN 20.5 18.7

+ SAT + MPE 18.5 16.4

+ 4gram LM 18.3 16.3

Table 2: Development set results (WER/%).

System WER

MLAN 15.1

+ SAT + MPE 12.8

+ 4gram LM 12.4

Table 3: Results of MLAN systems on the tst2011 test set

MPE training yields further improvements on the best feature

set.

Somewhat unexpectedly, we found the RT09 LM to be

more effective than the LM including in-domain data, with

the best acoustic models achieving WER of 17.8% and

15.4% on dev2010 and tst2010 respectively. An interpola-

tion of the two language models was found to yield even bet-

ter performance, however, with WER of 17.1% and 14.7%

respectively.

Finally, Table 3 shows results of selected acoustic models

on the tst2011 test set, using our IWSLT language model. On

the 2012 test data, the final system (MLAN + SAT + MPE +

4gram) achieved a WER of 14.4%.

3. Machine Translation (MT)
In this section we describe our machine translation systems

for two language pairs of the MT track, English-French (en-

fr) and German-English (de-en). We compare approaches

to data filtering, phrase table adaptation and adaptation by

adding sparse lexicalised features tuned on in-domain data,

with different tuning setups.

3.1. Baseline SMT systems

Table 4 lists the available parallel and monolingual in-

domain and out-of-domain training data. We built baseline

systems with the Moses toolkit [10] on in-domain data (TED

talks) as shown in tables 5 and 6 (labelled IN-PB and IN-HR)

and further on in-domain data plus parallel out-of-domain

data as shown in table 7 (labelled IN+OUT-PB). Parallel out-

of-domain data consists of the Europarl, News Commentary

and MultiUN corpora3 for both language pairs and for en-fr

also the French-English 109 corpus from WMT2012. The

language models are 5-gram models with modified Kneser-

Ney smoothing. Additional experiments were run with

monolingual language model data from the Gigaword cor-

3For en-fr, this is the section from the year 2000 only, while for de-en it

comprises the sections from 2000-2009.

Figure 2: In-domain (IN) and mixed-domain (IN+OUT)
models with three tuning schemes for tuning sparse feature
weights: direct tuning, jackknife tuning and retuning.
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pus (French Gigaword Second Edition, English Gigaword

Fifth Edition) and News Crawl corpora from WMT2012, as

marked in the results tables.

For the German-English systems we applied compound

splitting [11] and syntactic pre-ordering [12] on the source

side. As optimizers we used MERT as implemented in the

current version of Moses and a modified version of the MIRA

implementation in Moses as described in [13]. The language

models were trained with the SRILM toolkit [9] and Kneser-

Ney discounting. They were trained separately for each do-

main and subdomain (e.g. news data from different years)

and linearly interpolated on the in-domain development set.

Reported BLEU scores are case-insensitive and were com-

puted using the mteval-v11b.pl script.

Hierarchical systems were only trained on in-domain

data and lagged behind phrasebased performance by 0.7

BLEU for en-fr and 0.6 BLEU for de-en. Therefore, for all

following systems we limited ourselves to phrasebased sys-

tems.

Table 4: Word counts of in-domain and out-of-domain data.

Parallel corpus en-fr de-en

TED (in-domain) 2.4M/2.5M 2.1M/2.2M

Europarl v7 50M/53M 45M/48M

News Commentary v7 3.0M/3.4M 3.5M/3.4M

MultiUN 316M/354M 5.5M/5.7M

109 corpus 576M/672M n/a

Monolingual corpus fr en

TED (in-domain) 2.5M 2.4M

Europarl v7 55M 54M

News Commentary v7 4.2M 4.5M

News Crawl 2007-2011 512M 2.3G

Gigaword 820.6M 4.1G
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3.2. Extensions

We experimented with several adaptation and tuning meth-

ods on top of our IN and IN+OUT baselines. One is the data

selection method described in [14], using bilingual cross-

entropy difference to select sentence pairs that are similar to

the in-domain data and dissimilar to the out-of-domain data.

We tried different filtering setups, selecting 10%, 20% and

50% of the parallel out-of-domain data. We also used the fil-

tered target sides of the parallel data for building language

models. Another approach is described in [15] (labelled

x+yE there and in+outE here) and modifies the IN+OUT

phrase tables by replacing all scores of phrase pairs found

in the in-domain data by the values estimated on in-domain

data only. The idea is to use the out-of-domain data only to

provide additional phrases, i.e. to ignore counts from out-

of-domain data whenever a phrase pair was seen in the in-

domain data.

Table 5: English-French in-domain (IN) systems trained with
MERT (PB=phrasebased, HR=hierarchical), length ratio in
brackets.

System test2010

IN-PB 29.58 (0.966)
IN-HR 28.94 (0.970)

Table 6: German-English in-domain (IN) systems
trained with MERT (PB=phrasebased, HR=hierarchical,
PRE=preordering), length ratio in brackets.

System test2010

IN-PB (CS) 28.26 (0.999)

IN-PB (PRE) 28.04 (0.996)

IN-PB (CS + PRE) 28.54 (0.995)
IN-HR (CS + PRE) 27.88 (0.983)

IN-PB (CS + PRE)

min=max=5 28.54 (0.995)

+ max=50 28.57 (0.999)
+ max=100 28.60 (0.990)
+ max=50, min=10 28.65 (0.991)

We tried several different approaches in order to specifi-

cally adapt the phrase pair choice to the style and vocabulary

of TED talks. First, we added sparse word pair and phrase

pair features on top of the in-domain translation systems and

tuned them discriminatively with the MIRA algorithm. Word

pair features are indicators of aligned pairs of a source and a

target word, phrase pair features are indicators of a particular

phrase pair used in a translation hypothesis and depend on

the decoder segmentation of the source sentence. The values

of these features in a translation hypothesis are counts of the

number of times a word or phrase pair occurs in the current

translation hypothesis. These sparse features are meant to

capture preferred word and phrase choices in the in-domain

data and therefore provide a bias for the translation model

towards in-domain style and vocabulary. An example of a

phrase pair feature is pp a,language∼une,langue=1.

In the standard setup, sparse features were tuned on a

small development set (dev2010), but we also used an alter-

native setup where they were tuned on the entire in-domain

data, using 10 jackknife systems each trained on 9
10 of the

data and leaving out one fold for translation (the jackknife

systems were run in parallel just like in normal parallelized

discriminative tuning). We refer to the latter setup as word
pairs (JK) and phrase pairs (JK). For the systems built

from in-domain and out-of-domain data (mixed-domain) we

trained the sparse features on the development set as before.

But since training with the jackknife setup would be rather

time-consuming with the larger data sets, we reused the fea-

tures trained on the in-domain data instead. In order to bring

them on the right scale for the larger models, we ran a retun-

ing step where jackknife-tuned features are treated as an ad-

ditional component in the log-linear translation model. Run-

ning MERT on this extended model, we tuned a global meta-

feature weight which is applied to all sparse features during

decoding. Figure 2 gives an overview of all tuning setups

involving sparse features on top of in-domain and mixed-

domain models (direct tuning refers to sparse feature tuning

on a development set). This is described in more detail in

[13].

Table 7: English-French and German-English mixed-domain
(IN + OUT) systems trained with MERT, PB=phrasebased.

System
test2010

en-fr de-en

IN-PB 29.58 28.54

IN+OUT-PB 31.67 28.39

+ only in-domain LM 30.97 28.61

+ gigaword + newscrawl 31.96 30.26

IN-PB

+ 10% OUT 32.30 29.29
+ 20% OUT 32.45 29.11

+ 50% OUT 32.32 28.68

best + gigaword + newscrawl 32.93 31.06
in+outE 32.19 29.59

+ only in-domain LM 30.89 29.36

+ gigaword + newscrawl 32.72 31.30

3.3. Results

In this section we compare results of the different data and

tuning setups. Unless stated otherwise, the systems were

tuned on the dev2010 set and evaluated on the test2010 set.

Table 5 shows the English-French systems and table 6

shows the German-English systems trained on in-domain

(IN) data only. In both cases the phrase-based model outper-

formed the hierarchical model. For German-English, the best

baseline system used both compound splitting and syntactic
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Table 8: German-English and English-French extensions of
in-domain systems with sparse word pair and phrase pair
features.

System
test2010

en-fr de-en

IN-PB, MERT 29.58 28.54

IN-PB, MIRA 30.28 28.31

+ word pairs 30.36 28.45
+ phrase pairs 30.62 28.40
+ word pairs (JK) 30.80 28.78
+ phrase pairs (JK) 30.77 28.61

pre-ordering. We tried different settings for the compound

splitter, adjusting the minimum and maximum word counts.

The min-counts avoids splitting into rare words, the max-

count avoids splitting frequent words. The results indicate

that changing the default values can yield a slight increase in

performance.

Table 7 shows the mixed-domain systems (in-domain

(IN) + out-of-domain data (OUT)) for both language pairs.

The IN+OUT-PB baselines used the parallel data and the re-

spective language model data. For en-fr, using additional

out-of-domain data for the language model is better than us-

ing the in-domain LM alone (+0.7), but adding the newscrawl

and gigaword data yields only a small further improvement

(+0.3). For de-en, the IN+OUT-PB baseline is worse than the

IN-PB baseline and improves when using only the in-domain

LM. This indicates that the parallel OUT data is very dissim-

ilar to the TED data for this language pair. However, adding

newscrawl and gigaword data yields a larger improvement of

1.9 BLEU. The next block shows results of the data filtering

approach and confirms the tendency from above. The de-en

system profits from using only 10% of the OUT data (+0.9

BLEU) and adding more language model data yields an addi-

tional +1.8 BLEU. The en-fr system also benefits from using

only part of the OUT data (+0.8 BLEU), in this case 20%,

but only improves by 0.5 BLEU with additional LM data.

The last block shows results of the in+outE approach, which

uses the IN+OUT table but with scores from the IN table for

all phrase pairs that were seen in the in-domain corpus. The

results of this approach are comparable to the data selection

method (a bit worse for en-fr and a bit better for de-en), but

the advantage is that no data is thrown away and there is no

need to tune a threshold for data selection.

Table 8 shows extensions of the in-domain systems for

both language pairs. For en-fr, using MIRA to train the base-

line system instead of MERT yields a gain of +0.7 BLEU and

adding sparse word pair and phrase pair features adds a fur-

ther 0.2 and 0.3 BLEU. We get the best performance by tun-

ing the sparse features with the jackknife method, i.e. on all

in-domain training data, yielding +1.2 over the MERT base-

line. For de-en, the MIRA baseline is slightly worse than

the MERT baseline, but adding sparse features on top of it

has a similar positive effect. One thing to note is that the

best weights during MIRA training were selected according

to the test2010 set, so the results have to be considered opti-

mistic when evaluating on test20104, while for evaluation on

test2011 and test2012 we had distinct dev, devtest and test

sets.

Table 9 shows combinations of the systems described in

tables 7 and 8 for both language pairs. In the first block,

we trained sparse features on a development set on top of

the IN+OUT systems with data selection (10% for de-en and

20% for en-fr). In the second block, we applied a retuning

step to integrate the sparse features trained on jackknife sys-

tems into the IN+OUT systems with data selection (see figure

2 for clarification). MERT results for test2010 are averaged

over three runs, and the best of these three systems was used

to translate test2011. For both language pairs we see im-

provements over the baselines with both methods of training

sparse features (direct tuning and retuning) and we selected

the best performing system on test2010 for submission (high-

lighted in grey). Evaluation on test2011 shows, however, that

some of the contrastive systems (other systems from this ta-

ble) perform better on this test set. The best performing sys-

tems on test2010 yield the following scores on test2011: for

en-fr, 39.95 BLEU w/o additional LM data and 40.44 BLEU

with additional newscrawl and gigaword data, and for de-en,

33.31 BLEU w/o additional LM data and 36.03 BLEU with

additional gigaword and newscrawl data.

The systems used for our submissions did not include

the additional monolingual data, which add an additional 0.5

BLEU for en-fr and 2.7 BLEU for de-en. As mentioned

above, our en-fr system includes only one portion of the mul-

tiUN data (from the year 2000) instead of all data from years

2000-2009.

4. Spoken Language Translation (SLT)
Our SLT system takes the output of an ASR system, applies

several transformational steps and then translates the output

to French, using one of our English→French systems from

section 3. We compare different preprocessing and tuning

setups and show results on the outputs of four different ASR

systems.

The transformations between ASR output and MT input

are a pipeline consisting of three steps.

1. preprocessing of ASR output (number conversion)

2. punctuation insertion by translation from English w/o

punctuation to English with punctuation

3. postprocessing (punctuation correction)

In the proprocessing step, we convert numbers that are

represented in a systematically different way compared to the

4Though past experiments have suggested that choosing the weights on

the development set instead does no make much difference.
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Table 9: German-English and English-French extensions of mixed-domain systems with sparse features. Grey cells mark systems
used for submissions. Results of MERT-tuned systems for test2010 are averages over three runs of which the best was chosen for
translating test2011.

System
en-fr de-en

test2010 test2011 test2010 test2011

IN-PB + 10%/20% OUT, MIRA 33.22 40.02 28.90 34.03
+ word pairs 33.59 39.95 28.93 33.88

+ phrase pairs 33.44 40.02 29.13 33.99

IN-PB + 10%/20% OUT, MERT 32.32 39.36 29.13 33.29

+ retune(word pairs JK) 32.90 40.31 29.58 33.31

+ retune(phrase pairs JK) 32.69 39.32 29.38 33.23

Submission system (grey)

+ gigaword + newscrawl 33.98 40.44 31.28 36.03

MT input data (details below). The punctuation insertion sys-

tem is a standard MT translation system and is similar to the

FullPunct-PPMT setup described in [16]. It was trained with

the Moses toolkit [10] on 141M parallel sentences from the

TED corpus, where the source side consists of transcribed

speech and the target side consists of the source side of the

parallel MT data. Source and target TED talks were first

mapped according to talkids and then sentence-aligned. All

speaker information was removed from the data.

Table 10 shows several variants of the punctuation in-

sertion system. The evaluation metric is BLEU with re-

spect to the MT source texts, because the punctuation inser-

tion systems tries to ’translate’ ASR outputs into MT inputs.

Baseline1 refers to the training data of 141M parallel sen-

tences, baseline2 used this data plus a duplicate of it where

all but the sentence-final punctuation was removed. The idea

was to avoid excessive insertion of punctuation by provid-

ing the system with both alternatives (the same phrases with

and without punctuation), but this did not yield better results

when combined with the original casing (w/o truecasing). To

avoid introducing noise during decoding, we restricted the

system to monotone decoding. Truecasing is usually use-

ful to reduce data sparseness, but for punctuation insertion it

turned out to be better to keep the original case information

in order to avoid inserting sentence-initial punctuation. We

also tried removing all quotes from the training data since

predicting opening and closing quotes is more difficult than

predicting other kinds of punctuation, but this did not yield

improvements. In a first step we only converted year num-

bers with regular expressions, for example

• nineteen thirty two → 1932

• two thousand and nine → 2009

• nineteen nineties → 1990s

Even though there is no strict convention of number rep-

resentation in MT data, we also tried converting more types

of numbers like

• one hundred seventy four → 174

• a hundred and twenty → 120

• twenty sixth → 26th

which yielded some additional improvements. Postpro-

cessing of punctuation insertions removes punctuation from

the beginning of the sentence (where it is sometimes er-

roneously inserted), inserts final periods when there is no

sentence-final punctuation and tries to make quotation marks

more consistent (by removing single quotation marks or in-

serting additional ones).

Table 10: Variants of punctuation insertion systems (evalua-
tion set: test2010).

Punctuation Insertion System BLEU(MT source)

baseline 1 83.92

+ monotone decoding 84.01

+ w/o truecasing 84.49

+ w/o quotes 84.02

+ more number conversion 84.80
baseline 2 83.99

+ monotone decoding 84.04

+ w/o truecasing 83.76

We experimented with different tuning sets for the punc-

tuation insertion system. The source side is one of de-

vtest2010 ASR transcript, a concatenation of the dev2010

and test2010 ASR transcripts and a concatenation of the

dev2010 and test2010 ASR outputs (all number-converted).

The target side is the English side of the MT dev2010 set.

Table 11 at the top shows the BLEU score with respect to

the MT source of the raw ASR 2010 transcript and with

number conversion. Next is the performance of the system

that was tuned on dev2010 ASR transcripts. The number-

converted ASR transcript improves by over 13 BLEU points

when running it through the punctuation insertion system.

As expected, there is a large gap between the quality of ASR
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Table 12: ASR outputs (English) → French. The punctuation insertion system used for test2010 was trained on ASR transcripts,
the system used for test2011/test2012 on ASR outputs.

SLT pipeline + MT System BLEU(MT source) BLEU(MT target) Oracle

test2010 ASR transcript 85.17 30.54 33.98

test2010 ASR output UEDIN 61.82 22.89 33.98

test2011 ASR output system0 67.40 27.37 40.44

test2011 ASR output system1 65.73 27.47 40.44

test2011 ASR output system2 65.82 27.48 40.44

test2011 ASR output UEDIN 63.35 26.83 40.44

test2012 ASR output system0 70.73 n/a n/a

test2012 ASR output system1 67.90 n/a n/a

test2012 ASR output system2 66.82 n/a n/a

test2012 ASR output UEDIN 63.74 n/a n/a

Table 11: Punctuation insertion + postprocessing with vary-
ing tuning and evaluation sets.

Baselines w/o punctuation insertion BLEU(MT source)

test2010 ASR transcript 70.79

+ number conversion 71.37

Punctuation Insertion System BLEU(MT source)

Tune: dev2010 ASR transcript
test2010 ASR transcript 84.80

+ postpr. 85.17

test2010 ASR output 61.65

+ postpr. 61.82

test2011 ASR output 62.04

+ postpr. 62.39

Tune: dev2010+tst2010 ASR transcripts
test2011 ASR output + postpr. 63.03
Tune: dev2010+tst2010 ASR outputs
test2011 ASR output + postpr. 63.35

transcripts vs. ASR outputs, but for all data sets the post-

processing step improves the quality. Thus, we can see that

each step in the SLT pipeline improves the quality of the final

output. The next two blocks show the quality of the test2011

system when the punctuation insertion system is tuned on

a combination of the dev2010 and test2010 sets, both ASR

transcripts and ASR outputs. Using more tuning data gains

another 0.6 BLEU points and using real ASR outputs a fur-

ther 0.3 BLEU improvement.

Table 12 shows the results of the complete SLT pipeline

for test2010 and test2011 (the MT references for test2012

were not available at the time of writing). Before the trans-

lation step there is a large gap of more than 23 BLEU points

between the ASR transcript and output, which mirrors the

recognition errors. This results in a gap of more than 7

BLEU points after translation to French. The translation of

the test2010 ASR transcript is 3.5 BLEU points below the

translation of the real MT source set which is shown as the

oracle (translation with perfect inputs). The MT sytem used

for translation of the ASR output was the highlighted en-fr

system from table 9, but here we are showing the results of

translation systems with additional newscrawl and giga data

(the difference was below 0.2 BLEU for the test2011 sets).

Translating the test2010 set to English yields a BLEU score

of 22.89. This could be improved by using ASR output of the

dev2010 for tuning the punctuation system. For the test2011

set, there is gap of 4 BLEU points between the processed

ASR outputs of the UEDIN system and the highest-ranking

system (system0), measured against the MT source file. The

BLEU score difference of the translations is only about 0.5

though, with system0 yielding a translation BLEU score of

27.37. Even though system0 yields the best BLEU score on

the MT input file (67.40), system1 and system2 yield the best

translation scores of the four systems, with 27.47 and 27.48

BLEU.

5. Conclusion
We presented our results for the ASR, MT and SLT tasks of

the IWSLT 2012 Evaluation.

Our best ASR system for the TED task achieved scores

of 12.4% on the 2011 test data set and 14.4% on the 2012

set. We found that the MLAN scheme for incorporating out-

of-domain information using neural network features was ef-

fective in reducing WER compared to our standard tandem

system.

Our largest MT systems yield BLEU scores of 40.44 for

English-French and 36.03 for German-English on test2011.

The data selection and phrase table adaptation methods

showed comparable improvements over the mixed-domain

baselines and we saw gains by adding sparse lexicalised fea-

tures tuned on in-domain data. However, the relative results

of our primary and constrastive systems varied quite a bit be-

tween the test2010 and test2011 data sets, so we cannot yet

draw a final conclusion about an optimal setup.

Our SLT system yields BLEU scores between 26.83 and

27.48 on test2011, depending on the quality of the ASR out-

puts. Pre- and postprocessing of punctuation insertion turned

out to be useful and we got slightly better results when tuning
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the system on ASR outputs rather than ASR transcripts.
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S. Stüker, “Overview of the IWSLT 2012 evaluation

campaign,” in Proc. of the International Workshop on
Spoken Language Translation, Hong Kong, HK, De-

cember 2012.

[2] M. Cettolo, C. Girardi, and M. Federico, “Wit3: Web

inventory of transcribed and translated talks,” in Pro-
ceedings of the 16th Conference of the European Asso-
ciation for Machine Translation (EAMT), Trento, Italy,

May 2012, pp. 261–268.

[3] A. Stan, P. Bell, and S. King, “A grapheme-based

method for automatic alignment of speech and text

data,” in Proc. IEEE Workshop on Spoken Language
Technology, Miama, Florida, USA, Dec. 2012.

[4] M. Gales, “Maximum likelihood linear transforms for

HMM-based speech recognition,” Computer Speech
and Language, vol. 12, no. 75-98, 1998.

[5] H. Hermanksy, D. Ellis, and S. Sharma, “Tandem con-

nectionist feature extraction for conventional HMM

systems,” in Proc. ICASSP, 2000, pp. 1635–1630.

[6] P. Bell, M. Gales, P. Lanchantin, X. Liu, Y. Long, S. Re-

nals, P. Swietojanski, and P. Woodland, “Transcrip-

tion of multi-genre media archives using out-of-domain

data,” in Proc. IEEE Workshop on Spoken Language
Technology, Miama, Florida, USA, Dec. 2012.

[7] T. Hain, L. Burget, J. Dines, P. Garner, F. Grezl, A. Han-

nani, M. Huijbregts, M. Karafiat, M. Lincoln, and

V. Wan, “Transcribing meetings with the AMIDA sys-

tems,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 20, no. 2, pp. 486–498, 2012.

[8] D. Povey and P. Woodland, “Minimum phone error and

I-smoothing for improved discriminative training,” in

Proc. ICASSP, vol. I, 2002, pp. 105–108.

[9] A. Stolcke, “SRILM – An Extensible Language Model-

ing Toolkit,” in Proc. ICSLP, vol. 2, 2002, pp. 901–904.

[10] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,

M. Federico, N. Bertoldi, B. Cowan, W. Shen,

C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,

and E. Herbst, “Moses: Open source toolkit for statisti-

cal machine translation,” in ACL 2007: proceedings of
demo and poster sessions. Prague, Czech Republic:

Association for Computational Linguistics, June 2007,

pp. 177–180.

[11] P. Koehn and K. Knight, “Empirical methods for com-

pound splitting,” in In Proceedings of EACL, 2003, pp.

187–193.

[12] M. Collins, P. Koehn, and I. Kučerová, “Clause restruc-
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