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Abstract
This paper describes the KIT-NAIST (Contrastive) English

speech recognition system for the IWSLT 2012 Evaluation

Campaign. In particular, we participated in the ASR track of

the IWSLT TED task. The system was developed by Karl-

sruhe Institute of Technology (KIT) and Nara Institute of Sci-

ence and Technology (NAIST) teams in collaboration within

the interACT project. We employ single system decoding

with fully continuous and semi-continuous models, as well as

a three-stage, multipass system combination framework built

with the Janus Recognition Toolkit. On the IWSLT 2010

test set our single system introduced in this work achieves a

WER of 17.6%, and our final combination achieves a WER

of 14.4%.

1. Introduction
Similar to the IWSLT 2011 Evaluation Campaign [1],

IWSLT 2012 featured an Automatic Speech Recognition

(ASR) track whose task it was to recognize the recordings

made available by TED on their website1[2]. The TED

talks collection is a web repository of recordings of public

speeches/talks of about 5-25 minutes by people from vari-

ous fields of expertise covering repetitive topics related to

technology, entertainment and design (TED). This paper de-

scribes the ASR (contrastive) system developed for this cam-

paign by the KIT-NAIST team in collaboration under the in-

terACT project. Detail descriptions of the KIT-NAIST pri-

mary submission which was a system combination between

the KIT primary submission and this contrastive submission

can be found in [3].

The main challenge of this ASR track is to develop a sys-

tem that is capable of recognizing spontaneous and open-

domain speeches. Here, we employ: (1) acoustic models

trained on European Parliament Plenary Sessions (EPPS)

recordings [4] and additional publicly available transcribed

TED audio data crawled from the web; (2) 4-gram language

models that were trained by interpolating TED data with

other provided corpora, as well as a topic adaptated LM us-

1http://www.ted.com/talks

ing latent Dirichlet allocation (LDA); (3) a pronunciation

dictionary in which the pronunciations of unknown words

were constructed using several grapheme-to-phoneme meth-

ods; (4) single system decoding with fully continuous and

semi-continuous models, as well as a three-stage, multipass

system combination framework.

The rest of this paper is structured as follows. Section 2

summarizes data resources used for the experiments, and

Section 3 provides a description of acoustic front-ends used

in our system. An overview of the techniques and data used

to build our acoustic models is given in Section 4. We de-

scribe the language model used for this evaluation in Sec-

tion 5 and pronunciation lexicon in Section 6. Our decoding

strategy and experimental results are explained in Section 7.

Finally, the conclusion is drawn in Section 8.

2. Data Resources
2.1. Training Corpora

For acoustic model training, the following speech corpora

were used:

• 80 hours of manually transcribed English European

Parliament Plenary Session (EPPS) speeches, provided

by RWTH Aachen within the TC-STAR project [4].

• 157 hours of TED talks released before the cut-off

date of 31 December 2010, downloaded from the TED

websites with the corresponding subtitles.

For language model training, the following text corpora pro-

vided by the IWSLT organizer were used:

• 2M words of TED transcripts.

• The English portion of the English-French training

data from the Sixth Workshop on Statistical Machine

Translation (WMT 2011), including News Commen-

tary (NC), EuroParl (EPPS), NEWS, and GIGA data.

2.2. Test Corpora

Table 1 describes both test sets (“tst2011” and “tst2012”)

used for this year’s evaluation campaign, as well as our de-
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velopment set for system development and parameter opti-

mization (“tst2010”). “tst2010” is a data set which was also

used as development set for last year’s ASR task. “tst2011”

comprises of TED talks newer than December 2010, is the

test set for the IWSLT 2011 ASR task and serves as progress

test set to measure the improvement in systems from 2011

to 2012. “tst2012” is a collection of some of the most re-

cent recordings made available by TED. All sets were used

with the original pre-segmentation provided by the IWSLT

organizers.

Set #talks #utt dur dur/utt

tst2010 11 1664 2.5h 5.4s

tst2011 8 818 1.1h 4.9s

tst2012 11 1124 1.7h 5.6s

Table 1: Statistics of the development set (“tst2010”) and the

test sets (“tst2011” and “tst2012”), including the total num-

ber of talks (#talks), the total number of utterances (#utt), the

overall speech duration (dur), and average speech duration

per utterance (dur/utt).

3. Front-end
We trained the system with a front-end based on the widely

used mel-frequency cepstral coefficients (MFCC). The front-

end provides features every 10ms. During decoding this was

changed to 8ms after the first stage, so that in ROVER hy-

potheses from first and second pass can be combined. This

is done because it may be beneficial for various sounds to

have a higher frame rate, while for some other that may not

be the case. Therefore a hypotheses combination from dif-

ferent frame rates may lead to better results. During train-

ing and decoding, the features were obtained by a discrete

Fourier transform followed by a Mel-filterbank. Vocal tract

length normalization (VTLN) is done in the linear domain

[5]. The MFCC front-end uses 13 cepstral coefficients. Mean

and variance are normalized on a per-utterance basis. Finally,

to incorporate the temporal structures and dependencies, 15

adjacent (center, 7 left, and 7 right) frames are stacked into

one single feature vector leading to 195 dimensional super

vector (15x13 dimensions). It then reduced to an optimum

42 dimensions by applying a linear discriminant analysis.

4. Acoustic Modeling
4.1. Data Preprocessing

Segmenting the TED data into sentence-like chunks used for

building a training set was performed with the help of a de-

coding pass on the input data in order to discriminate speech

and non-speech regions and doing a forced alignment given

the subtitles. Beforehand, the relevant speech part of each

downloaded video soundtrack was cut with the time stamps

given by the subtitle files. The segmentation was done by

splitting at non-speech regions of notable length. In order

to compensate for occasional inaccuracies of the computed

time stamps, we merged successive segments by the simple

heuristic, “As long as the transcription of the subsequent seg-

ment does not start with an uppercase letter, add it to the cur-

rent segment.” This resulted in a sentence-like segmentation

of the TED data. While the manually transcribed EPPS data

has predefined speaker labels and therefore does not need to

be clustered, we made the simple assumption for the TED

data, that each talk is spoken by exactly one speaker. Table 2

lists the details of the resulting utterances.

Data #talks #utt dur dur/utt

EPPS 1,894 52,464 80h 5.5s

TED 711 105,692 157h 5.3s

Table 2: Statistics of speech data for acoustic model training,

including the total number of talks (#talks), the total number

of utterances (#utt), the overall speech duration (dur), and

average speech duration per utterance (dur/utt).

4.2. AM Training

All models are context-dependent quinphones with a stan-

dard three-state left-to-right HMM topology without skip

states. The models use 24,000 distributions over 8,000 code-

books. First, a fully continuous system using 2,000 distribu-

tions and codebooks was trained by using incremental split-

ting of Gaussians training (MAS) [6], followed by optimal

feature space training (OFS) which is a variant of semi-tied

covariance (STC) [7] training using one global transforma-

tion matrix. After generating new labels for the training data,

a system using 8,000 distributions and codebooks was trained

in the same way, and further refined by 2 iterations of Viterbi

training. The semi-continuous system was trained after clus-

tering the models resulting in 24,000 distributions over 8,000

codebooks with 2 iterations of Viterbi training.

5. Vocabulary and Language Model
5.1. Data Preprocessing

We normalized the training data sources of TED, NEWS,

NC, EPPS, and GIGA, in a case-insensitive fashion. Noisy

parts were omitted from the GIGA corpus, using rules to

detect, e.g., HTML tags and very short sentences. Table 3

shows the resulting text corpora along with their total size

(word count) and vocabulary size.

Data Size Vocabulary

TED 2.4m 43k

EPPS 52m 79k

NC 4.5m 50k

NEWS 2,300m 986k

GIGA 576m 501k

Table 3: Total size (word count) and vocabulary size of the

individual text corpora.

5.2. Vocabulary

For the vocabulary selection, we followed an approach pro-

posed by Venkataraman et al. [8]. We built unigram lan-

　　　　　　　　　　　　   92 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



guage models using Witten-Bell smoothing [9] from all text

sources except GIGA, and determined unigram probabilities

that maximized the likelihood of a held-out TED data set. We

then defined the 150k most probable words as the vocabulary.

5.3. LM Training

Using the SRILM toolkit [10], we built 4-gram language

models with modified Kneser-Ney smoothing [11] from each

of the text corpora. These were then combined using linear

interpolation as follows:

P (w|h) = λ1P1(w|h)+λ2P2(w|h)+· · ·+λkPk(w|h). (1)

The interpolation weights λ1, . . . , λk were chosen to maxi-

mize the likelihood of a held-out TED data set. The resulting

language model contains 43 million bigrams, 190 million tri-

grams, and 382 million 4-grams. The effect of the different

training corpora on the language model perplexity is summa-

rized in Table 4.

Data Perplexity

TED only 184.03

+ EPPS, NC 167.84

+ NEWS 133.51

+ GIGA 133.16

Table 4: Language model perplexities on tst2010 for differ-

ent amounts of training data.

5.4. Topic Adaptation

During development, we further applied topic adaptation us-

ing LDA (see [12]). Using the given document structure of

the TED corpus, we inferred 50 topics, using a vocabulary of

10k words. We estimated a separate 4-gram language model

for each topic by using all sentences in the TED training data

that had at least one word assigned to this topic. This strat-

egy allows assigning a sentence to several topics, as opposed

to much of the previous work that enforces a hard assign-

ment decision for each training unit (e.g. see [13]). For the

actual decoding of a specific talk, all words from the first-

pass hypothesis that have a confidence value higher than a

certain threshold are used to estimate the current topic distri-

bution. The top 10 topics (a limitation imposed by SRILM)

are linearly interpolated with weights according to that dis-

tribution. Finally, this adapted language model is interpo-

lated with the background language model described above.

The confidence threshold and the weight for the interpolation

of adapted and background language models were chosen to

optimize perplexity on a development data set. Topic model

adaptation reduced the perplexity on the talks in the devel-

opment set (“tst2010”) by 0.9% on average. The effect in

overall system performance is discussed in Section 7.1.

6. Pronunciation Lexicon
6.1. Phoneme Set

We employ the same phoneme set used by KIT with 45

phonemes, and utilize the existing pronunciation dictionary:

(1) the CMU Pronouncing Dictionary [14]; a machine-

readable pronunciation dictionary for North American En-

glish that contains over 125,000 words and their transcrip-

tions based on 39 phonemes; (2) the EPPS dictionary with

KIT phoneme set. Since both pronunciation dictionaries use

different phoneme sets, our first step is to convert the 39-

phonemes of the CMU dictionary into the KIT phoneme set.

This is done using the Sequitur grapheme-to-phoneme (G2P)

tool based on joint n-gram models [15]. All words that were

covered by both the CMU dictionary and the EPPS dictio-

nary were used as phoneme-to-phoneme training data. Then,

by utilizing the trained phoneme-to-phoneme model, the pro-

nunciation of words included in CMU dictionary but not in-

cluded in EPPS dictionary were converted into new pronun-

ciations based on the KIT phoneme set. Finally, we obtained

135k words of the CMU dictionary with the KIT phoneme

set (45 phonemes) as baseline dictionary.

6.2. G2P Conversion

Next, we explored various G2P conversion techniques for

handling pronunciations of words that have not been covered

by the baseline CMU dictionary (135k words, 45 phonemes).

These include: (1) Sequitur G2P based on joint n-gram mod-

els (denoted as Sequitur); (2) DirecTL+ based on online dis-

criminative training [16, 17] (denoted as DirecTL+); and (3)

merging 1-best of Sequitur and DirecTL+ results (denoted as

Merge(1)+(2)).

To find the optimum G2P technique, we employed the

baseline CMU dictionary (135k words, 45 phonemes) with a

10% test set, a 5% development set, and the remaining data

as training set. Table 5 summarizes the results in terms of

Recall, Precision, F-value.

Recall Precision F-measure

(1) Sequitur 55.19 55.16 55.17

(2) DirecTL+ 55.61 55.61 55.61

Merge(1)+(2) 63.23 49.80 55.71

Table 5: Recall, Precision and F-measure for various G2P

conversion techniques on the baseline CMU dictionary (135k

words, 45 phonemes).

Note that, the Merge(1)+(2) G2P may result in one or

two pronunciations per word, while other techniques only re-

sult in one pronunciation per word. In our experiments the

DirecTL+ obtains 55.61% in terms of F-value and Sequitur

is 55.17%. These results are lower than those of previous

research [15, 16, 17] because we employ a more complex

phoneme set than the CMU phoneme set and did not delete

heteronyms, which are words that share the same written

form but have different pronunciations and meanings. Fi-

nally, the optimum DirecTL+ G2P conversion is selected for

dictionary construction.
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6.3. Dictionary Construction

Last, we constructed a dictionary that would be used for open

domain TED talks. Here, we retrain the selected DirecTL+
G2P conversion using the baseline CMU dictionary (135k

words, 45 phonemes) with a 5% development set, and the

remaining data as training set. Then, for all words that are

included in the LM, but have not been covered by the base-

line CMU dictionary (except the capitalized words), the pro-

nunciations were constructed based on DirecTL+ G2P con-

version. For capitalized words, the pronunciations were con-

verted based on rule in which each alphabet included in the

word is converted to the alphabetical sound. The number of

the converted words was 65k words in the defined 150k vo-

cabulary (see Section 5.2).

7. Decoding Strategy and Results
During development, we evaluated our system using the

IWSLT 2010 test set for the lecture task, which was explicitly

declared held out data during model training due to the fact

that both the IWSLT 2010 development set and test set were

initially included in the downloaded raw TED talks intended

for training. For comparison we also evaluated the perfor-

mance on the test2011 set released by the IWSLT organizers.

All speech recognition experiments, i.e. the decoding—

as well as acoustic model training—were performed with the

Janus Recognition Toolkit (JRTk) that includes the IBIS sin-

gle pass decoder, developed at Karlsruhe Institute of Tech-

nology and Carnegie Mellon University [18]. During devel-

opment, we evaluated our system mainly using the IWSLT

2010 test set for the lecture task, which was explicitly de-

clared held out data during model training due to the fact that

both the IWSLT 2010 development set and test set were ini-

tially included in the downloaded raw TED talks intended for

training. We observed the recognition accuracy in terms of

word error rate (WER) after first pass decoding.

7.1. Single System

Table 6 shows the results given various configurations of the

fully continuous system after MAS, OFS and Viterbi train-

ing, and the performance of the semi-continuously trained

system after two iterations of Viterbi training. For com-

parison we also evaluated the performance on the test set

(“tst2011”).

The “tst2010” set was further used for tuning the system

and determining the best language model size and dictionary

size for decoding data that is very close to the target domain.

The IBIS decoder used by JRTk scores the hypothesis related

to an input utterance [18] as follows:

score(W |X) = logP (X|W ) + logP (W ) · lz + lp · |W | (2)

The lz parameter defines the language model weight, i.e. de-

termines the impact of the language model on the decoding

process relative to the acoustic model. The parameter lp is

a word transition penalty, helping to normalize the sequence

lengths of words W . Note that applying topic model adapta-

tion LM on our development systems improved the WER by

up to 2.2% relative. However, results using the final system

were mixed, and the adaptation scheme was not included in

the final submission.

Data System tst2010 tst2011

EPPS FCHMMs MAS 36.5% 31.6%

+TED

FCHMMs

MAS 18.8% 16.5%

OFS 18.8% 16.0%

VIT1 18.1% 15.9%

VIT2 18.2% 16.1%

SCHMMs
VIT1 17.7% 15.6%

VIT2 17.6% 15.5%

Table 6: Performance of the single system on the develop-

ment set (“tst2010”) and test set (“tst2011”) in WER. The

fully continuous system uses 8000 codebooks and distribu-

tions, the semi-continuous system 24000 distributions.

7.2. System Combination

The decoding strategy for the final submission is based on

the principle of system combination and cross-system adap-

tation. The underlying assumption of system combination

is that different systems commit different errors which may

cancel each other out. Cross-system-adaptation profits from

the fact that the unsupervised acoustic model adaptation

methods work better when applied on hypotheses generated

by multiple systems that perform about equally well [19].

Our framework for system combination consists of three

stages. In the first stage multiple systems, including our sys-

tem described in this paper, are run. The additional systems

differ in the applied front-ends and acoustic models (see [3])

in a way that achieves a high system diversity among the

full set of applied systems. The same combination of dic-

tionary and language model is used for all decoding runs.

The system outputs of the first stage are combined via confu-

sion network combination (CNC) [20]. The acoustic models

of all systems for the second pass are then adapted on this

output using VTLN, maximum likelihood linear regression

(MLLR) [21] and feature space constrained MLLR (fMLLR)

[22]. After the first stage, the frame shift was changed to 8

ms. In the second stage a second CNC is performed. The

third and final stage of our system combination framework

is a ROVER combination of seven second pass outputs and

both CNC outputs [23]: A majority vote among all CNC re-

sults and second stage system outputs gave the best results.

The segmentation of the test data was used as is. For sim-

plicity reasons no extra speaker clustering was performed,

assuming one speaker per test recording. Table 7 shows the

performance of the system combination on the development

set (“tst2010”) in WER, and Table 8 shows the summary of

the final system combination results on various development

and test sets in WER. The results shown on test set (“tst2011”

and “tst2012”) are based on IWSLT 2012 evaluation feed-

back.
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System WER

Single 1st pass 17.6%

CNC 1st pass (CNC1) 17.1%

Single 2nd pass 16.1%

CNC 2nd pass (CNC2) 14.5%

ROVER (CNC1 + CNC2 + 7 ∗ 2nd pass) 14.4%

Table 7: Comparison of the single system performance

and the system combination results on the development set

(“tst2010”) in WER.

Test set WER

test2010 14.4%

test2011 12.3%

test2012 12.6%

Table 8: Summary of final system performance performed

with ROVER (CNC1 + CNC2 + 7 ∗ 2nd pass). The results

shown on test set (“tst2011” and “tst2012”) are based on

IWSLT 2012 evaluation feedback.

8. Conclusion
In this paper we described our English speech-to-text sys-

tem with which we participated in the IWSLT 2012 TED

task evaluation on the ASR track. Besides utilizing already

existing systems by adjusting them to the new domain, we

trained a completely new system by including annotated au-

dio data extracted from TED talks into acoustic model train-

ing. Furthermore, we built a dictionary and trained a lan-

guage model specific to the TED task of this year’s evaluation

campaign. Our final system utilizes a three-stage, multipass

system combination framework. On the IWSLT 2010 test set

our single system introduced in this work achieves a WER of

17.6%, and our final combination achieves a 14.4% WER.
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