
Hybrid Parallel Sentence Mining from Comparable Corpora

Dan Ștefănescu
RACAI

Calea 13 Septembrie, 13

Bucharest, Romania

danstef@racai.ro

Radu Ion
RACAI

Calea 13 Septembrie, 13

Bucharest, Romania

radu@racai.ro

Sabine Hunsicker
DFKI

Stuhlsatzenhausweg 3, 66123

Saarbrücken, Germany

sabine.hunsicker@dfki.de


Abstract

This paper presents a fast and accurate

parallel sentence mining algorithm for

comparable corpora called LEXACC

based on the Cross-Language Infor-

mation Retrieval framework combined

with a trainable translation similarity

measure that detects pairs of parallel and

quasi-parallel sentences. LEXACC ob-

tains state-of-the-art results in compari-

son with established approaches.

1 Introduction

Mining for parallel sentences in comparable cor-

pora is much more difficult than aligning sen-

tences in parallel corpora. Sentence alignment in

parallel corpora usually exploits simple empirical

evidence (turned into assumptions) such as (i) the

length of a sentence is proportional with the

length of its translation and (ii) the discourse

flow is necessarily the same in both parts of the

bi-text (Gale and Church, 1993). Thus, the ex-

traction tools search for parallel sentences around

the same (relative) text positions, making sen-

tence alignment a much easier task when com-

pared to kind of work undertaken here.

For comparable corpora, the second assump-

tion does not hold. Parallel sentences, should

they exist at all, are scattered all around the

source and target documents, and so, any two

sentences
1
 have to be processed in order to de-

termine if they are parallel or not. Also, we aim

at finding pairs of quasi-parallel sentences that

are not entirely parallel but contain spans of con-

tiguous text that is parallel. Thus, finding parallel

sentences in comparable corpora is confronted

© 2012 European Association for Machine Translation.

1 Or a carefully selected set of sentence pairs as we will see

in the next sections.

with the vast search space one has to consider

since any positional clues indicating parallel or

partially parallel sentences are not available.

The brute force approach is to analyze every

element of the Cartesian product between the two

sets containing sentences in the source and target

languages. This approach is clearly impractical

since the resulting algorithm would be very slow

and/or memory consuming.
2

 To reduce the

search space, we turned to a framework that be-

longs to Information Retrieval: Cross-Language

Information Retrieval (CLIR). The idea is simple:

use a search engine to find sentences in the target

corpus that are the most probable translations of

a given sentence from the source corpus. The

first step is to consider the target sentences as

documents and index them. Then, for each sen-

tence in the source corpus, one selects the con-

tent words and translates them into the target

language according to a given dictionary. The

translations are used to form a Boolean query

which is then fed to the search engine. The top

hits are considered to be translation candidates.

Using the CLIR approach to select a set of

candidate target sentences (out of all target sen-

tences) for the input source sentence is one way

to dramatically reduce the search space. The re-

duced search space will serve another practical

concern: the execution time. Thus, each candi-

date target sentence can be compared with the

input sentence using a computationally much

more complex translation similarity measure that

would otherwise require an unacceptable amount

of time to finish analyzing all possible pairs.

In what follows, we present our own adapta-

tion of the hybrid CLIR/translation similarity

measure approach to parallel sentence mining

from comparable corpora called “Lucene-based

Parallel Sentence Extraction from Comparable

Corpora” (LEXACC). We describe the indexing

2 With the possible exception of the parallelizing the com-

putations but this issue is beyond the scope of this paper.

Proceedings of the 16th EAMT Conference, 28-30 May 2012, Trento, Italy

137

mailto:danstef@racai.ro
mailto:radu@racai.ro
mailto:sabine.hunsicker@dfki.de

of the target corpus in subsection 3.1, the Boole-

an query generation for the input sentence in

subsection 3.2, an additional filtering step on the

output of the Lucene search engine in subsection

3.3 and our design of the translation similarity

measure in section 4. We present a host of exper-

iments aimed at assessing the performance of

LEXACC from both the CLIR perspective (pre-

cision, recall and F1-measure) and practical SMT

experimenting with data produced by LEXACC.

2 Related Work

Parallel data mining from comparable corpora

receives its share of attention from the statistical

machine translation scientific community, one of

the major reasons being the fact that the Web can

be seen as a vast source of comparable corpora.

The CLIR approach to finding translation can-

didates for sentences (reducing the search space)

has received significant attention. While Rauf

and Schwenk (2011) index the target sentences

directly, Munteanu and Marcu (2005) index tar-

get documents for retrieving similar ones.

Another approach to cutting the search space

is to perform document alignment inside the

comparable corpus first and then to attempt ex-

tracting parallel sentences by inspecting the con-

structed document pairs only. This road has been

taken by Fung and Cheung (2004) who perform

document alignment using a simple dictionary-

based, translation similarity measure. Recently,

Ion (2011) proposes an EM algorithm that finds

document alignments in a comparable corpus.

The way a pair of sentences is deemed parallel

or not is usually specified with three different

approaches: binary classifiers (Munteanu and

Marcu, 2005; Tillman, 2009), translation similar-

ity measures (Fung and Cheung, 2004) and gen-

erative models (Quirk et al., 2007). Our approach

is somewhat similar to that of Munteanu and

Marcu (2005) who used a dictionary to translate

some of the words of the source sentence, and

then used these translations to query a database

for finding matching translation candidates. The

difference resides in the fact that they choose

candidate sentences based on word overlap and

the decision whether a sentence pair is parallel or

not is performed by a Maximum Entropy classi-

fier trained on parallel sentences. With respect to

Rauf and Schwenk (2011) who also index target

sentences, our approach benefits of some filter-

ing steps, the query is formulated using addition-

al fields and we use a much more elaborated

translation similarity measure.

3 Indexing, Searching and Filtering

3.1 Indexing target sentences

Our goal is to implement a simple yet effective

solution, easily replicable. First, we split the tar-

get corpus into sentences and transform them so

that we keep only stemmed non-functional

words.
3
 We also compute the average length in

words (µ) and the standard deviation (σ) for tar-

get sentences. We consider a sentence to be

short if () and long if

 () . We consider the medium-

sized sentences for which ()
 , to be both short and long.

Following the general description presented in

the introduction, we use the C# implementation

of Lucene
4
 to index the target sentences as Lu-

cene documents. For each such document, we

introduce three additional searchable fields, two

of them corresponding to the sentence length:

(i) a field specifying if the sentence is small;

(ii) a field specifying if the sentence is long;

(iii) a field specifying the document where

the target sentence belongs; this field is based on

the document alignment information of the com-

parable corpus being processed and it is optional

if such alignment information is not supplied.

3.2 Finding translation candidates for

source sentences

Given an input source sentence (out of the total S

source sentences), the role of the search engine is

to return a list of translation candidates that are to

be further analyzed. The number of hits h we

take into account regulates the size of the new

search space: h * S. The larger it is, the higher

the number of candidates which can potentially

increase the recall but also the computational

complexity. For each sentence in the source cor-

pus, we generate a Lucene query as follows:

(i) We employ a GIZA++ (Och and Ney,

2000) dictionary previously created from existing

parallel documents. This dictionary is expected

to be small due to the lack of necessary resources.

For each content word we keep the best 50 trans-

lation equivalents, which are also content words,

having translation probabilities above 0.1. Each

of them is stemmed and added as an disjunctive

query term (SHOULD occur);

(ii) We add two disjunctive query terms

(SHOULD occur) standing for the length of the

source sentence: short and long. Each of these

3 We keep functional words lists for all languages.
4 http://incubator.apache.org/lucene.net/download.html

138

http://incubator.apache.org/lucene.net/download.html

terms can be boosted according to the importance

one wants to give to matching source and target

lengths. In our implementation, the value of the

boosting factor is 2;

(iii) We add a compulsory query term

(MUST occur) specifying the target document

where the source sentence translation should be

searched. However, this term can be added only

if the document alignment information exists and

it has been used at index creation as well.

After the query is constructed, we use it to in-

terrogate the default Lucene search engine (no

modifications on the relevance method) in order

to get the best h hits.

3.3 Filtering

The filtering step is designed to further reduce

the new search space, selecting only the best

candidates for the final stage in which the trans-

lation similarity measure (Section 4) is applied.

Filtering must be very fast and good enough not

to filter out parallel data. We do this by compu-

ting a viability score for each candidate sentence

pair and then keeping only those above the aver-

age. For a candidate pair formed by a source sen-

tence s and a target sentence t, the formula is:

 (1)

where se represents the score returned by the

search engine and sim is a similarity score we

will come back to later. The other factors are

aiming at favoring high scores for sentences with

similar (α) and large (β) lengths. In our imple-

mentations they are computed as:

 (| | | |)

 (| | | |)
 (2)

 (| | | |)

 (3)

where abs is the absolute value, |s| is the length

in words of sentence s and λ is an integer con-

stant representing the length threshold from

which we consider a sentence to be very long

(λ=100 in our implementation, but it can be cho-

sen depending on the given corpora).

The similarity score (sim) from equation 1 is

calculated according to the formula:

| | | |

√
 (4)

where teFound is the total number of words in s

for which we found translation equivalents in t,

coh is the cohesion score computed as the aver-

age distance between the sorted positions of the

translation equivalents found in t (the lower the

better)
5
 and te is calculated as:

 () ∑

 ()

 (5)

where dicScore is the translation probability

score from the dictionary. The rationale behind

equation 5 is induced by the assumption that a

word ws is translated by only one word wt and so,

dicScore(ws,wt) ≥ dicScore(ws,wi) for any wi in t.

We should note that since we aim at gathering

parallel data which is not already in the diction-

ary with started with, we are more interested in

finding long parallel texts. It is more probable

that such texts would contain (beside already

known translations) unknown parallel data.

4 The Translation Similarity Measure

The binary classifier of Munteanu and Marcu

(2005) associate a confidence probability with its

decision but setting this confidence at 0.5 or 0.7

as they do, is equivalent to saying that sentence

pairs with a score below the confidence level are

not interesting for SMT.
6

 Our view is that

whatever sentence pairs actually improve the

output of an SMT system are important and we

found that these range from parallel, quasi-

parallel to strongly comparable.

We modeled our translation similarity measure

as a weighted sum of feature functions that indi-

cate if the source piece of text is translated by the

target. Given two sentences in the source lan-

guage and in the target language, then the trans-

lation similarity measure () is

 () ∑ ()

 (6)

such that ∑ . Each feature function

 () will return a real value between 0 (and

 are not related at all) and 1 (is a translation of

) and contributes to the overall parallelism score

with a specific fraction that is language-pair

dependent and that will be automatically deter-

mined by training a logistic regression classifier

on existing parallel data (see next subsection).

Each of the feature functions () has been

designed to return a value close to 1 on parallel
and by manually inspecting a fair amount of

parallel examples in the English-Romanian pair

of languages. By negation, we assume that the

5 We experimented with different power values for the co-

hesion score. For ½ (the square root) we had the best results.
6
 But we acknowledge the fact that the probability of a sen-

tence pair being parallel as computed by the classifier of

Munteanu and Marcu is a proper model of parallelism

139

same feature functions will return a value close

to 0 for non-parallel, not-related and but this

behavior is critically influenced by the quality

and completeness of the linguistic computational

resources that we use: bilingual translation lexi-

cons, lists of inflectional suffixes used for stem-

ming and lists of stop-words. Thus, generally, a

feature function that uses one (or more) of the

resources mentioned above can falsely return a

value close to 0 for parallel and due to the

fact that this decision was made in the absence of

the relevant entries in that resource. The proto-

typical example here is that the translation lexi-

con does not contain the relevant translations for

the words in .

4.1 Features

Before being processed, sentences and are

tokenized, functional words are identified and

content word are stemmed using language-

dependent inflectional suffixes. Given these

transformations of and , all features ()
are language-independent. We use 5 features.

 () is the “content words translation

strength” feature. Given a statistical translation

dictionary obtained by e.g. applying GIZA++ on

a parallel corpus,
7
 we find the best 1:1 alignment

 between content words in and such that the

translation probability
8

 is maximized. If

〈

 〉 is a word pair from , (〈

 〉)

is the translation probability of the word pair

from the dictionary and | | is the length (in con-

tent words) of sentence , then

 ()
∑ (〈

 〉)〈

 〉

| |
 (7)

This feature has a maximum value of 1 if all con-

tent words from are translated in with the

maximum probability of 1.

 () is the “functional words translation

strength” feature. The intuition is that functional

words around content words aligned as in

ture (), will also align for parallel and
because of the fact that, from a dependency-

syntactic point of view, functional words (prepo-

sitions, determiners, articles, particles, etc.) are

7 To obtain the dictionaries mentioned throughout this sec-

tion, we have applied GIZA++ on the JRC Acquis corpus

(http://langtech.jrc.it/JRC-Acquis.html).
8 For two source and target words, if the pair is not in the

dictionary, we use a 0 to 1 normalized version of the Le-

venshtein distance in order to assign a “translation probabil-

ity” based on string similarity alone. If the source and target

words are similar above a certain threshold (experimentally

set to 0.7), we consider them to be translations.

usually governed by or govern nearby content

words. Mathematically, if 〈

 〉 is the

highest scored pair of aligned functional words

near (in a window of ±3 words) the aligned pair

of content words 〈

 〉 from , | | is the

cardinal of the best alignment as found by

 () and (〈

 〉) is the probability of

the functional word pair from the dictionary, then

 ()
∑ (〈

 〉)〈

 〉

| |
 (8)

The maximal value of () is 1 and it is

reached when for each aligned pair of content

words from , there is a pair of functional words

that align with the maximum probability of 1.

 () is the “alignment obliqueness” fea-

ture (Tufiş et al., 2006). Here we have redefined

it to be a discounted correlation measure because

there are pairs of languages for which the natural

word order implies crossing word alignment

links. () also uses the alignment set of

content words described for feature () from

which we derive two source and target vectors
and of the same length containing the indices

 in the ascending order (1 | |) and re-

spectively (1 | |) of content words
 and

 that form an alignment pair in . Alignment

obliqueness is computed as

 () ()

| |

 (| | | |)

 (9)

where is the Pearson correlation coeffi-

cient of the and vectors and () is the

absolute value function. The second term is a

modified sigmoid function ()

 de-

signed to be a discount factor with values be-

tween 0 and 1 when takes on values between 0

and 1. The rather steep variation of () was

experimentally modeled in order to heavily dis-

count “rare” alignments for which the Pearson

correlation is high. Thus, if contains only a

few alignments relative to (| | | |) (the size

of is at most (| | | |)), then even if

is high, () should be small because a few

alignments usually do not indicate parallelism.

 () is the “strong translation sentinels”

feature. Intuitively, if sentences and are paral-

lel then, frequently (at least in our studied exam-

ples), one can find content words that align near

the beginning and end of the considered sentenc-

es. () is a binary-valued feature which is 1

if we can find “strong” translation pairs (proba-

bility greater than 0.2; set experimentally) be-

tween the first 2 content words at the beginning

140

http://langtech.jrc.it/JRC-Acquis.html

of and and between the last 2 content words

at the end of and . () is 0 otherwise.

Finally, () is the “end with the same

punctuation” feature. This is also a binary-

valued feature which is 1 if both and end with

the same type of punctuation: period, exclama-

tion mark, etc. It is also 1 if both and lack

final punctuation. () is 0 otherwise.

The observant reader has noticed by now that

all the features with the exception of () are

not symmetrical because they all depend on the

alignment computed for () which is not

symmetrical and as such, the measure from equa-

tion 6 is not symmetrical as well. In order to have

evidence from both directions, we will use the

arithmetic mean to get the final measure:

 () ()
 () ()

 (10)

4.2 Learning the optimal weights

The weights and corresponding to the fea-

tures “functional words translation strength” and

“alignment obliqueness” are language-pair de-

pendent because of the specific word ordering of

the source and target languages. At the same

time, through have to be optimized with

respect to the translation lexicon in use, since the

construction of the word alignments is based on

this dictionary. Also, since () is not sym-

metrical, we will have to learn different
weights from source to target and vice versa.

In order to derive a set of optimal weights for

each language pair and translation lexicon, we

have trained a standard logistic regression classi-

fier. Briefly, the logistic regression classifier

learns the weights that define the hyperplane

(whose equation is the same as equation 6) that

best separates the positive training examples

from the negative ones. In our case, the examples

are the multidimensional points whose coordi-

nates are given by the feature functions ().
For each language pair, the training set con-

sists of 9500 parallel sentences
9
 for the positive

examples and 9500 of non-parallel sentences

(obtained from the parallel pairs by random shuf-

fling) for the negative examples. For the training

set in question, we also have 500 additional par-

allel sentences together with 500 non-parallel

sentences (obtained by random shuffling as well)

as the test set. An example
10

 is obtained by com-

9
 Mostly from the News domain for all language pairs.

10
 When an example occurs multiple times with both labels,

we retain all the occurrences of the example with the most

frequent label and remove all the conflicting occurrences.

puting all the feature functions () for the

given positive (parallel) or negative (non-

parallel) and .
Table 1 summarizes the derived optimal

weights for 8 language-pairs, in both directions.

In every pair, one language is English (en) and

the others are: Croatian (hr), Estonian (et), Ger-

man (de), Greek (el), Lithuanian (lt), Latvian (lv),

Romanian (ro) and Slovene (sl).
Lang. F1/BL

en–ro 0.31 0.02 0.37 0.21 0.09 0.93/0.88

ro–en 0.31 0.01 0.37 0.20 0.11 0.93/0.91

en–de 0.31 0.02 0.3 0.17 0.2 0.94/0.89

de–en 0.35 0.02 0.28 0.16 0.19 0.96/0.92

en–sl 0.23 0.01 0.38 0.2 0.18 0.96/0.89

sl–en 0.2 0.03 0.38 0.19 0.2 0.94/0.89

en–el 0.61 0.08 0.21 0 0.1 0.99/0.98

el–en 0.47 0.08 0.28 0.07 0.1 0.98/0.98

en–lv 0.27 0.05 0.41 0.16 0.1 0.98/0.96

lv–en 0.49 0.03 0.41 0 0.07 0.99/0.96

en–lt 0.33 0.01 0.41 0.15 0.1 0.96/0.91

lt–en 0.28 0.01 0.41 0.15 0.15 0.94/0.90

en–et 0.28 0.08 0.36 0.17 0.11 0.98/0.96

et–en 0.27 0.07 0.38 0.18 0.1 0.96/0.93

en–hr 0.29 0.01 0.41 0.16 0.13 0.98/0.95

hr–en 0.25 0.02 0.44 0.17 0.12 0.98/0.97

Table 1: Optimal weights for the translation sim-

ilarity measure

The column named “F1/BL” (see Table 1) in-

dicates the gain in F1 measure when testing the

translation similarity measure with the optimal

weights on the test set as compared to a baseline

(BL) consisting of applying the measure using

fixed values of the weights corresponding to our

intuition of their importance: ,

 , , , . For

instance, we imagined that the content words

translation strength feature () is much more

important compared to the rest of the features but

the training procedure proved us wrong.

5 Experiments and Results

5.1 Experiment Setting

We evaluated our approach on 7 pairs of lan-

guages under the framework of the ACCURAT

project.
11

 For each pair, the source language is

English (en), while the target languages are: Es-

tonian (et), German (de), Greek (el), Lithuanian

(lt), Latvian (lv), Romanian (ro) and Slovene (sl).

In order to compute precision and recall when

mining for parallel sentences, we have devised

11 http://www.accurat-project.eu/

141

http://www.accurat-project.eu/

artificial comparable corpora for all mentioned

language pairs, with different levels of controlled

comparability. Starting from 100 news parallel

sentences for all language pairs, the corpora were

created by injecting noise (in specific proportions)

extracted from the News corpora collected in the

ACCURAT project. We experimented with 4

different amounts of noise: 2:1,
12

 5:1, 10:1, 100:1,

corresponding to different degrees of compara-

bility, from strongly comparable to weakly com-

parable. The worst case scenario is by far the one

with 100:1 noise and so, most of our experiments

were developed under this setting.

We evaluated the efficiency of LEXACC after

each of its steps: (i) the extraction of translation

pair candidates using the search engine, (ii) can-

didate pairs filtering and (iii) the usage of the

translation similarity measure. Moreover, we

evaluated the impact of the extracted data when

used for improving SMT translation models.

5.2 Search Engine Efficiency

To measure the efficiency of using the search

engine for finding translation candidates in the

worst case scenario (100:1 noise ratio), we com-

puted the recall we would obtain if we would

have kept the best 100 hits (target sentences) re-

turned by the engine for each source sentence.

Instead of brute force analyzing 10,100
2
 sentence

pairs, we can now look at only 1 million pairs.

This means a search space reduction of about

100 times. Table 2 shows that this approach is

effective for most of the language pairs, but poor

for en–el and en–ro. One of the reasons might be

the quality of the dictionaries we relied on when

generating the search engine queries.
Pair Recall

UB

Data Size (pairs / disk

size)

en–de 0.98 1,009,500 / 323 Mb

en–el 0.42 1,009,700 / 485 Mb

en–et 0.89 1,008,800 / 345 Mb

en–lt 0.93 1,008,200 / 350 Mb

en–lv 0.92 1,008,300 / 366 Mb

en–ro 0.69 1,009,800 / 294 Mb

en–sl 0.80 688,266 / 191 Mb

Table 2: Recall upper boundary (UB) and size

(sentence pairs and disk space occupied) for the

translation candidates returned by Lucene

5.3 Filtering Efficiency

As already mentioned, filtering is an intermedi-

ary step designed to further reduce the search

space used for the final analysis. The filtering

12 For each parallel sentence, 2 noise sentences were added

module receives high scores for speed and search

space reduction for all language pairs. However,

in terms of preserving the recall upper boundary,

it performs well only for en–lv and en–de and

acceptable for en–ro and en–el. It loses about

40% recall for the other 3 language pairs. Table 3

summarizes the results.
Pair Recall

UB

Recall

Loss

Size (pairs /

disk size)

Search

Space

Drop

en–de 0.83 15.30% 20,868 / 10 Mb 97.93%

en–el 0.30 28.57% 108,629/69 Mb 89.24%

en–et 0.54 39.32% 34,051 / 22 Mb 96.62%

en–lt 0.57 38.70% 35,831 / 21 Mb 96.44%

en–lv 0.83 9.78% 91,305 / 45 Mb 90.94%

en–ro 0.53 23.18% 160,968/67 Mb 84.05%

en–sl 0.44 45% 65,191 / 28 Mb 90.52%

Table 3: Recall upper boundary and size after

the filtering step

5.4 Translation Similarity Efficiency

We evaluated the efficiency of the Translation

Similarity Measure (TSM) from Section 4 by

comparing it with the MaxEnt classifier by Mun-

teanu and Marcu (2005) on English-German (en–

de) document pairs with different levels of com-

parability (2:1 noise ratio, 5:1 and 10:1; see sec-

tion 5.1). For both TSM and MaxEnt (with the

associated confidence score for the “parallel”

label), we took into account all possible thresh-

olds with a granularity of 0.01 above which the

candidate pairs are considered parallel. We report

the results corresponding to the threshold that

maximizes F1 for TSM and F1 for MaxEnt

(threshold are not the same). We explored 3 pos-

sible scenarios. The first one (Table 4) is to com-

pute TSM for all possible sentence pairs.

 2:1 5:1 10:1

ME TSM ME TSM ME TSM

P 0.800 0.791 0.789 0.760 0.523 0.724

R 0.560 0.760 0.450 0.700 0.450 0.630

F1 0.658 0.775 0.573 0.729 0.483 0.673

Table 4: en–de comparison between the MaxEnt

classifier (ME) and the TSM when applied indi-

vidually onto all possible sentence pairs

The second scenario (Table 5) is to compute

TSM only for the candidate pairs proposed by

the search engine, without filtering.
 2:1 5:1 10:1

ME LEX ME LEX ME LEX

P 0.800 0.717 0.789 0.650 0.523 0.618

R 0.560 0.710 0.450 0.650 0.450 0.600

F1 0.658 0.713 0.573 0.650 0.483 0.609

Table 5: en–de comparison between the MaxEnt

classifier and LEXACC with no filtering

142

The third scenario is similar to the second one,

only this time we use filtering.
 2:1 5:1 10:1

ME LEX ME LEX ME LEX

P 0.800 0.809 0.789 0.737 0.523 0.742

R 0.560 0.340 0.450 0.450 0.450 0.520

F1 0.658 0.478 0.573 0.559 0.483 0.611

Table 6: en–de comparison between the MaxEnt

classifier and LEXACC with filtering

For strongly comparable corpora (with less noise,

like the 2:1 corpus) the filtering step is in fact

worsening the results. This is something to be

expected because the filtering step eliminates a

large proportion of the candidate pairs returned

by the engine. Thus, filtering should be used only

for weakly comparable corpora.

In order to make things more clear, we per-

formed yet another experiment, this time for

100:1 noise ratio which corresponds to a very

weakly comparable corpus. In this setting, taking

into account all possible sentence pairs as candi-

date pairs would result in a huge running time

and so, we were able to compare only the results

obtained by LEXACC with and without filtering.
 LEXACC

NO filtering

LEXACC

WITH filtering

 Best Same T13 Best

P 0.327 0.101 0.800

R 0.370 0.710 0.640

F1 0.347 0.177 0.711

Threshold 0.59 0.41 0.41

Running Time 49.72 minutes 5.53 minutes

Table 7: En-De comparison between LEXACC

with and without filtering for 100:1 noise

We can see that for weakly comparable corpora,

at the same threshold (0.41), filtering gets rid of a

lot of noise, keeping the precision high (compare

0.8 with 0.101) at a modest decrease of the recall

(compare 0.64 with 0.71).

Table 8 shows the accuracy of LEXACC when

running on the 100:1 noise ratio comparable cor-

pora. The running times depend on the sentence

lengths and the size of the dictionaries.
Pair P R F1 Thr. Minutes

en–de 0.800 0.64 0.711 0.41 5.53

en–el 0.550 0.22 0.314 0.35 27.24

en–et 0.284 0.23 0.254 0.34 7.11

en–lt 0.398 0.41 0.403 0.39 8.24

en–lv 0.357 0.50 0.416 0.51 11.75

en–ro 0.473 0.27 0.343 0.65 37.33

en–sl 0.219 0.16 0.185 0.34 7.75

Table 8: LEXACC (with filtering) run on the

100:1 noise ratio comparable corpora

13 Same T: results obtained without filtering for the thresh-

old yielding the best results with filtering (0.41).

5.5 SMT Experiments

To test the quality of the data extracted by

LEXACC, we ran a few experiments with do-

main-adapted SMT in the automotive industry

domain. We manually created a parallel corpus

from an English-German comparable corpus of

about 3.5 million sentences per language collect-

ed from the Web. The results of the experiments

with the LEXACC extracted data were compared

to the same experiments conducted with the

manually extracted parallel data, to examine and

compare the influence of the LEXACC extracted

data. Table 9 shows the statistics on the sentence

pairs and sentence counts in the parallel and

LEXACC extracted data.
Data #pairs # unique sent. (de/en)

parallel 44,482 42,396 / 44,290

extracted 45,952 12,718 / 13,306

Table 9: Statistics on parallel and extracted data

We compared three systems in our experiments:

the “Baseline” system which was trained only on

the Europarl (EP, (Koehn, 2005)) and News

Commentary corpus (NC),
14

 “Automo-

tive.parallel” which added only the parallel data

to the baseline and the “Automotive.extracted”

which added only the LEXACC extracted data to

the baseline. All resulting corpora were aligned

using GIZA++ and the MT systems were trained

using the Moses SMT Toolkit (Koehn et al.,

2007). The languages models were trained using

SRILM (Stolcke, 2002).

The Baseline system only uses Europarl, both

for the translation and the language model but for

the two adapted systems we used an additional

language model trained on the domain-specific

texts. Tuning via MERT was performed for all

systems on a domain-specific development set;

testing also used text from the automotive do-

main. The translations were evaluated using

BLEU (Papineni et al., 2001).
System BLEU

Baseline 18.81%

Automotive.parallel 30.25%

Automotive.extracted 25.44%

Table 10: BLEU scores

As Table 10 shows, it is possible to gain about

6.5 BLEU points over the baseline system with

the extracted data. The parallel data outperforms

LEXACC, which may be due to the fact that the

parallel data includes more unique sentences (see

Table 9). But although only approx. 30% of the

available unique data was extracted, an increase

14 http://www.statmt.org/wmt11/translation-task.html

143

http://www.statmt.org/wmt11/translation-task.html

of 6.5 BLEU points is recorded -- more than half

of the increase achieved with the full parallel

data. This means that LEXACC is able to dis-

cover salient parallel data that brings significant

gains in BLUE score despite its size.

Another area of interest is how the extracted

parallel and strongly comparable data compares

to clean parallel data. In the extracted data, every

German sentence is linked to 3.5 English sen-

tences on average. To examine the effect of this

noise, we retrained “Automotive.parallel” with

increasing amounts of data. Table 11 shows that

the extracted data corresponds to more than 15k

of parallel data in terms of BLEU improvement.
System Training Data BLEU score

Baseline EP+NC 18.81%

Automotive.5k EP+NC+5k

Automotive

22.02%

Automotive.10k EP+NC+10k

Automotive

23.36%

Automotive.15k EP+NC+15k

Automotive

24.98%

Automotive.20k EP+NC+20k

Automotive

26.48%

Automotive.45k EP+NC+full

Automotive

30.25%

Table 11: Experiments with adding data

The data LEXACC extracts is of high enough

quality to be useful for SMT purposes, as the

noise is filtered out during the training phase.

6 Conclusions

Parallel sentence mining from comparable corpo-

ra is a well-studied problem with several reliable

solutions already discussed in the literature. We

present yet another original hybrid approach

(LEXACC) based on CLIR combined with a

complex, trainable translation similarity measure

but with a strong emphasis on practical issues

such as the reduction of the search space and the

behaviour of the translation similarity measure as

a function of the comparability level of the cor-

pus (an aspect that is not well studied).

LEXACC is currently used in the ACCURAT

project for parallel data mining from comparable

corpora and we have presented evidence that it is

able to extract good quality parallel sentences

that improve SMT systems.

7 Acknowledgements

This work has been supported by the ACCURAT

project (http://www.accurat-project.eu/) funded

by the European Community‘s Seventh Frame-

work Program (FP7/2007-2013) under the Grant

Agreement no. 248347.

References

Fung, Pascale and Percy Cheung. 2004. Mining very-

non-parallel corpora: parallel sentence and lexi-

con extraction via bootstrapping and EM. In: Pro-

ceedings of the EMNLP-2004, Barcelona, Spain,

pp. 57–63.

Gale, William A. and Kenneth W. Church. 1993. A

Program for Aligning Sentences in Bilingual Cor-

pora. Computational Linguistics 19 (1): 75–102.

Ion, Radu, Alexandru Ceauşu and Elena Irimia. 2011.

An Expectation Maximization Algorithm for Textu-

al Unit Alignment. In: Proceedings of BUCC-2011,

Portland, Oregon, USA, pp. 128—135.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris

Callison-Burch, Marcello Federico, Brooke Cow-

an, Wade Shen, Christine Moran, Richard Zens,

Chris Dyer, Ondrej Bojar, Alexandra Constantin

and Evan Herbst. 2007. Moses: Open Source

Toolkit for Statistical Machine Translation. In:

Proceedings of the 45
th

 Annual Meeting of the

ACL Companion Volume Proceedings of the

Demo and Poster Sessions, Prague, pp. 177–180.

Koehn, Philipp. 2005. Europarl: A Parallel Corpus

for Statistical Machine Translation. In: Proceed-

ings of MT Summit 2005.

Munteanu, Dragos and Daniel Marcu. 2005. Improv-

ing Machine Translation Performance by Exploit-

ing Comparable Corpora. Computational Linguis-

tics, 31(4): 477–504.

Och, Franz Josef and Hermann Ney. 2000. Improved

Statistical Alignment Models. In: Proceedings of

the ACL 2000, Hong Kong, China, pp. 440– 447.

Papineni, Kishore, Salim Roukos, Todd Ward and-

Wei-Jing Zhu. 2001. Bleu: a Method for Automatic

Evaluation of Machine Translation. IBM Report.

Quirk, Chris, Raghavendra Udupa U. and Arul

Menezes. 2007. Generative Models of Noisy Trans-

lations with Applications to Parallel Fragment Ex-

traction. In: Proceedings of the MT Summit XI,

European Association for Machine Translation.

Rauf, Sadaf and Holger Schwenk. 2011. Parallel sen-

tence generation from comparable corpora for im-

proved SMT. Machine Translation, 25(4): 341–375.

Stolcke, Andreas. 2002. SRILM - An Extensible Lan-

guage Modeling Toolkit. In: Proceedings of ICSLP,

Vol. 2, pp. 901–904.

Tillmann, Christoph. 2009. A Beam-Search Extraction

Algorithm for Comparable Data. Proceedings of

the ACL-IJCNLP 2009 Conference Short Papers.

Tufiş, Dan, Radu Ion, Alexandru Ceauşu and Dan

Ştefănescu. 2006. Improved Lexical Alignment by

Combining Multiple Reified Alignments. Proceed-

ings of EACL 2006, Trento, Italy, pp. 153–160.

144

