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Abstract

We propose straightforward implementations
of translation memory (TM) functionality for
research purposes, using machine translation
evaluation metrics as similarity functions. Ex-
periments under various conditions demon-
strate the effectiveness of the approach, but
also highlight problems in evaluating the re-
sults using an MT evaluation methodology.

1 Introduction

A translation memory (TM) is a computer appli-
cation for assisting translators, which manages a
database of translations, i.e. a collection of pairs of
corresponding segments in the source and target lan-
guages. Given a new segment of text to translate, the
system looks up the database for exact or approxi-
mate (“fuzzy”) matches; if the search is successful,
the system returns the target-language version of the
best match (or matches), which the user is then free
to keep, modify or discard, as fit.

Although TM systems have been commercially
available since the 1980’s, they have not been the
object of much attention from the research commu-
nities. In practice, many researchers in the field
of machine translation (MT) tend to view the TM
as a low-tech expedient, doomed to be replaced by
MT systems sooner or later. Yet, as a computer-
assisted translation (CAT) tool, the TM has a number
of advantages over MT. For one, under normal cir-
cumstances, the output of a TM is always a fluent,
human-quality translation. It may not be the transla-
tion of the right sentence, but it is generally a valid

translation of something (which is more than most
MT can claim). To determine to what extent the
TM proposal is appropriate, the translator can ex-
amine the source sentence of which it is the transla-
tion and evaluate how it differs from the current sen-
tence (some tools actively assist the user in this task
by highlighting differences and similarities). Fur-
thermore, meta-information is typically attached to
translations in the database, allowing the user to de-
termine where it comes from, who produced it, and
from there establish whether or not it is reliable. In
other words, the TM technology is one that users
can understand and trust. As a result, TMs have suc-
ceeded where most of MT has failed so far: in es-
tablishing themselves as a must-have item in trans-
lators’ toolboxes.

Recently, however, this situation appears to be
changing, as we see a surge of interest for MT
among the translation community. This renewed en-
thusiasm is fueled in part by the increased quality
of the output of MT systems, but also by the avail-
ability of reliable free software, most notably the
Moses system (Koehn et al., 2007). Yet, because
of the inherent qualities of TM outlined above, and
their solid entrenchment in the translation commu-
nity, it is unlikely that MT will completely replace
TM, at least not in the near future. Instead, we will
probably see them co-exist for some time. This phe-
nomenon is already visible, as many work environ-
ments for translators now incorporate both TM and
MT technology. See, for example, the products of
SDL Trados1, Multicorpora2 or the Google Transla-

1http://www.trados.com
2http://www.multicorpora.com



tor Toolkit3.
As researchers tackle the question of properly in-

tegrating the two technologies, TMs themselves be-
come objects of scientific inquiry. One of the obsta-
cles to this however is that, because TM technology
was essentially developed by industrial actors, no-
body really knows how they work. In particular, the
details of the similarity function at the heart of TMs
are well-kept commercial secrets.

One possibility when experimenting with TM
functionalities is to rely on one of the commercial
implementations, and treat the TM as a “black box”
component. But this is unwieldy because in most
commercial systems, the TM functionality is only
accessible through a complex GUI; furthermore, this
raises issues with regard to reproducibility of experi-
ments. The alternative is to build a TM system from
scratch. Based on hints about the inner workings
of TMs (Baldwin, 2001; Somers, 2003), some re-
searchers have developed their own in-house imple-
mentations (Simard and Isabelle, 2009; Koehn and
Senellart, 2010a; He et al., 2010).

In what follows, we propose a straightforward
approach to building and evaluating baseline re-
search TM systems, based on well-known methods
and widely available tools. In particular, our pro-
posal hinges on MT evaluation metrics and software,
which we use not only to assess the effectiveness of
our TM systems, but also as active components in
the implementation: our plan is to use MT evalua-
tion metrics as TM similarity functions.4

It should be pointed out that we do not aim at
building a full-blown, operational TM environment.
In particular, at this stage, we are not concerned with
time or space requirements. Our goal is merely to
provide researchers with the necessary machinery to
experiment with TM technology. We therefore fo-
cus exclusively on the basic TM functionality: find-
ing the best matching segments from a database of
existing translations.

We begin by formalizing the notion of transla-
tion memory in Section 2, present the MT evaluation
metrics we use in Section 3 and how we use them in
Section 4; we then present experimental results un-
der different conditions in Section 5.

3http://translate.google.com/toolkit
4Interestingly, MT evaluation metrics have also recently

been used for paraphrase identification (Madnani et al., 2012).

2 Translation Memories

Conceptually, a translation memory consists of:

• a database D, containing pairs 〈s, t〉, where s
is source-language segment of text (typically a
sentence) and t is its translation in the target
language;

• a similarity function f ; and

• a filtering threshold α

Given a new sentence to translate q (the query), the
system searches D for best match, i.e. the pair 〈ŝ, t̂〉
whose similarity x = f(q, ŝ) is maximal; if x ≥ α,
then the system outputs the target-language counter-
part t̂ of ŝ, otherwise nothing.5

Function f measures the similarity between two
source-language strings. Typically, it produces a
value between 0 and 1, where 0 means “completely
different” and 1 means “identical”; α can then be in
the range [0, 1].

While we do not know exactly how f is imple-
mented in commercial systems, it is generally ac-
knowledged that most systems are based on variants
of the Levenshtein distance (minimum number of
edit operations required to transform one string into
the other), normalized over the length of the query
(Baldwin, 2001; Somers, 2003); for example:

fLevenshtein(q, s) = 1−min

[
1,

count edits(q, s)
|q|

]
The count edits() function and the length of q can be
computed over characters or words; Equal weights
are normally assigned to all edit operations (inser-
tions, deletions and substitutions), but these can be
changed. Variants also exist that take into account
local inversions of single items (character or word
“swaps”).

3 MT Evaluation Metrics

Since the advent of the BLEU MT evaluation met-
ric, countless proposals have been made for auto-
matically evaluating the quality of MT output. Most

5In practice, many different source segments si can be
equally similar to q, and each si can be paired with multiple
translations tij in D. For simplicity, we assume that when this
happens, one of these pairs is selected at random.



(if not all) existing metrics rely on some measure
of similarity between MT output t and one or more
reference translations r (for simplicity, in what fol-
lows, we consider single-reference evaluation only).
The more the MT output resembles the references,
the better the score. In this study, we focus on four
well-known MT evaluation metrics: WER, BLEU,
NIST and Meteor. We briefly review these here:

WER (Word Error Rate): This metric has been
used extensively in speech recognition. It is com-
puted as the word-based Levenshtein distance be-
tween t and r, divided by the number of words in the
reference: |r|. Several variants exist, most notably
TER (Translation Edit – or Error – Rate), in which
local swaps of sequences of words are allowed. TER
itself has two variants: HTER, in which the refer-
ence translation is manually produced by minimally
post-editing the MT output under evaluation (Snover
et al., 2006); and TERp, which also relies on a ta-
ble of paraphrases to detect semantically equivalent
matches (Snover et al., 2009).

BLEU: (Papineni et al., 2002) The mother of all
MT evaluation metrics: BLEU measures n-gram
precision, i.e. the proportion of word n-grams of t
that are also found in r. These n-gram precisions
pn are calculated separately for values of n rang-
ing from 1 to N (typically N = 4), and then com-
bined using a geometric mean. The score is scaled
by a brevity penalty if the candidate translations are

shorter than the references, BP = min(1, e
1− |r||t| ).

BLEUN = BP · exp

[
1

N

N∑
n=1

log pn

]
(1)

NIST: (Doddington, 2002) A variant of BLEU,
in which n-gram precisions are averaged with har-
monic rather than geometric mean; it also uses a
slightly different brevity penalty

BP = exp

[
β logmin(

|t|
|r|
, 1)

]
(2)

and, more importantly, weights n-gram matches by
how informative they are; the informativeness of an
n-gram w1...wn is estimated as log count(w1...wn−1)

count(w1...wn)
where counts are typically obtained from the refer-
ence translations.

Meteor: (Denkowski and Lavie, 2011) Based on
a one-to-one alignment between words of t and r,
giving preference to alignments with less crossing
alignments, Meteor computes unigram precision P
and recallR, which are then combined in a weighted
harmonic mean, Fα = PR/(αP + (1 − α)R), and
scaled by a reordering penalty, which counts the
number of chunks t and r would need to be broken
into to allow them to be rearranged with no crossing
alignments, Pβ,γ = 1− γ(chunks/matches)β .

Meteorα,β,γ = Fα × Pβ,γ

Word-alignments are not restricted to surface-
similar forms, as Meteor can rely on a lemmatiser
and other linguistic resources (Wordnet and para-
phrase tables) to account for semantic equivalence.
In this study, we experiment with this metric used in
two different modes6:

• without any linguistic resources; we refer to
this as Vanilla-Meteor (or VMeteor). In this
mode, the metric behaves more like its earlier
versions (Banerjee and Lavie, 2005).

• with all linguistic resources; we refer to this
simply as Meteor.

4 MT Evaluation Metrics as TM
Similarity Functions

Since automatic MT evaluation methods are based
on text-similarity metrics, it seems natural to use
them in TMs as well. The idea is to replace the
reference r and the system output t in the evalua-
tion metrics (Section 3) with the TM’s query q and
source-language segment s (Section 2), respectively.

The four evaluation metrics described above are
well-known to the MT community, and represent
different perspectives on textual similarity. Given
the large number of existing metrics, we clearly
could have tested many others. Ours nevertheless
seemed like a natural choice.

First, the motivation for using a Levenshtein-
based MT evaluation metric such as WER as TM
similarity function is quite straightforward: as far
as anyone knows, this is essentially what is already

6In all our experiments, Meteor is used with parameter val-
ues recommended for “ranking” tasks.



used in commercial TMs. Therefore, WER serves as
a sort of baseline for our work.7

Then, n-gram-based metrics such as BLEU are
interesting in their own right, because they take a
different view to text similarity. According to Pa-
pineni et al. (2002), lower-order n-grams account
for adequacy in MT evaluation, while higher-order
n-grams account for fluency. Adequacy and flu-
ency are classical measures of MT quality (White et
al., 1993); such an approach intuitively also makes
sense in a TM application. Also, the brevity penalty
(BP) guarantees that the proposed translations will
be of length comparable to that of the query.

WER and BLEU measure similarity in a “flat”
way: all edit operations in WER have the same
weight; all n-grams in BLEU are counted as equal.
The NIST metric introduces n-gram weighting,
which is intended to reflect how informative each n-
gram is. In principle, it allows placing more empha-
sis on content (or adequacy) than on form (fluency).
From the point of view of TM, this is a departure
from pure surface similarity, and closer to the idea
of relevance, as defined for information retrieval.

Vanilla-Meteor balances precision against re-
call, thus eliminating the need for a brevity
penalty; furthermore, its non-Vanilla form is more
“linguistically-informed” than other metrics dis-
cussed here, taking us even further away from sur-
face resemblance, and in the direction of semantic
similarity, through the use of stemming, WordNet
and paraphrases.

Our implementation of the TM functionality is
based on a straightforward, exhaustive search strat-
egy: we compare each query q against the source
segment of all pairs 〈s, t〉 in the database D, and
output the one with the highest similarity. Much
more efficient implementations are of course possi-
ble, based on a two-pass strategy, where an efficient
search method – for example (Koehn and Senel-
lart, 2010b) – produces a reduced set of candidates,
which are then reranked using one of the similarity
functions proposed here.

7TER would arguably have been a better choice, being a
well-established metric in the MT community. In practice, how-
ever, when attempting to use existing TER implementations for
our purposes, we ran into a number of technical difficulties; fur-
thermore, WER and TER are known to behave very similarly
(Cer et al., 2010).

Open-source implementations exist in the pub-
lic domain for all our MT evaluation metrics. Us-
ing these directly within an exhaustive TM search
is certainly not optimal, but it is usually feasible.
For instance, the publicly available Meteor software
has options -nBest and -oracle, which allow
to compare the reference (in our case, the query)
to multiple system translations (in our case: candi-
date TM source-language matches) and output the
one that produces the highest score. We used that
implementation of Meteor for our experiments, but
produced our own implementations of BLEU, NIST
and WER. For reference, finding the best match for
a sentence in the ECB corpus (see Section 5.1 for
details) takes approximately 0.5 second using our
BLEU-based TM implementation, 1.2 seconds for
NIST and 1.5 for WER. The same operation takes
43 seconds using Vanilla-Meteor, and almost 5 times
longer with Meteor (210 seconds); this difference
can be explained by the time required to load lin-
guistic data (paraphrase table, etc.).

In practice, we found that better results were
obtained by measuring similarity over lower-cased
texts. The differences with true-cased texts are min-
imal, however; in the end, it’s probably a matter
of user-preference. In all that follows, we assume
lower-cased source-language texts8.

Both BLEU and NIST are designed to evaluate
document-level MT quality, and are not well adapted
to finer-grained evaluation; for example, if t and r
do not have at least one 4-gram in common, then
the product in Equation (1) goes to zero, and there-
fore the whole BLEU score. To compensate for this
problem, it is common to use a “smoothed” version
of the score, in which 1 is added to all n-gram counts
(Lin and Och, 2004).

BLEU and Meteor naturally produce scores com-
prised between 0 and 1, and can be used directly as
similarity functions in a TM. NIST and WER are not
as well-behaved: WER can produce scores larger
than 1, when the number of edits required to con-
vert t into r (or s into q) is larger than the number of
words in r. In a TM setting, where such matches are
unlikely to be useful, this problem is easily reme-
died by capping the value at 1. Also, because WER

8Note, however, that all target-language evaluations were
performed on true-cased texts.



is a distance metric rather than a similarity metric,
we take 1 minus that value.

fWER(q, s) = 1−min(1,WER(s, q))

NIST also produces values that are unbounded in
the positive. The solution we propose is to divide
the outcome by the largest possible obtainable value
for the current query, i.e. the value that would be
produced by an exact match:

fNIST(q, s) =
NIST(s, q)

NIST(q, q)

5 Experiments

5.1 Data
We performed experiments to assess the perfor-
mance of each MT evaluation metric as TM similar-
ity function. Experiments were done under different
conditions, corresponding to different corpora and
language pairs. While most of the metrics we use
are language-agnostic, Meteor relies on language-
specific resources which are not available in all lan-
guages. For this reason, we restricted our experi-
ments to English, French, German and Spanish.

Our four datasets are drawn from the Europarl v.6
(Koehn, 2005), OPUS corpus (Tiedemann, 2009)
(corpora ECB, featuring content from the Euro-
pean Central Bank and EMEA, from the European
Medicines Agency) and the JRC-Acquis v.2.2 (Stein-
berger et al., 2006). All bilingual corpora are avail-
able aligned at the sentence level. From each corpus,
we randomly sampled 1000 pairs of segments, to be
used as test data; the rest was used to build trans-
lation memories. All experiments were performed
“in-domain”, i.e. for any given experiment, test and
TM data always come from the same corpus. Table
1 provides additional details.

5.2 Evaluation Methodology
Little attention has so far been devoted to the eval-
uation of TM systems. Gow (2003) proposes a
general methodology, but which is very much user-
centered, and that focuses on complete CAT envi-
ronments rather than specifically on the TM func-
tionality; Baldwin and Tanaka (2000) and Whyman
and Somers (1999) both propose methods that are
based on recall and precision, but these have not
been widely used or evaluated.

Corpus Lang. TM (“Train”) Test
segments words words

Europarl en-fr 1.8M 50.4M 28 817
en-es 1.8M 49.2M 28 365
en-de 1.7M 48.0M 26 715

ECB en-fr 194k 5.7M 30 471
en-es 114k 3.1M 28 054
en-de 111k 3.0M 27 426

EMEA en-fr 753k 9.1M 16 514
JRC-Acquis en-fr 329k 6.9M 19 260

Table 1: Experimental Data

Instead, because our work primarily focuses on
integration with MT systems, we opt for the ap-
proach proposed in Simard and Isabelle (2009), in
which TM systems are evaluated as if they were MT
systems: test sentences are submitted to the TM,
with the filtering threshold α set to zero (Section 2),
thus effectively inhibiting output filtering; the tar-
get segments of the best matches are then compared
to the reference translations, using any standard MT
evaluation metric. In practice, in this study, we use
the metrics described in Section 3, i.e. the same met-
rics used as similarity functions.

5.3 Results

We tested each TM similarity function on each
dataset, and measured performance using each MT
evaluation metric. Table 2 summarizes the results
of these experiments: for each evaluation metric
and dataset, it reports the best performing similar-
ity function. (For lack of space, we do not report
the detailed outcome of each individual experiment,
but results of all English-French experimental con-
ditions can be seen in Table 4.)

The most striking aspect of these results is the
direct link between the evaluation metric and the
best similarity function for BLEU and WER: in gen-
eral, if BLEU is used to measure performance, then
BLEU comes out as the best similarity function, and
likewise for WER. Vanilla-Meteor and Meteor be-
have somewhat similarly, always preferring one of
the Meteor family. Interestingly, these two metrics
always agree with one another, usually preferring
Vanilla-Meteor when English is the source language
and Meteor when English is target. The preferences
of NIST are not as clear – we discuss this further in
Section 5.4.



Corpus Language Evaluation Metric
WER BLEU NIST VMeteor Meteor

Europarl en-de WER BLEU BLEU Meteor Meteor
en-es WER BLEU NIST VMeteor VMeteor
en-fr WER BLEU NIST VMeteor VMeteor
de-en WER BLEU NIST Meteor Meteor
es-en WER VMeteor Meteor Meteor Meteor
fr-en WER BLEU NIST Meteor Meteor

ECB en-de WER BLEU BLEU VMeteor VMeteor
en-es WER BLEU BLEU VMeteor VMeteor
en-fr WER BLEU BLEU VMeteor VMeteor
de-en WER BLEU BLEU Meteor Meteor
es-en WER VMeteor VMeteor Meteor Meteor
fr-en WER BLEU BLEU Meteor Meteor

EMEA en-fr WER BLEU BLEU VMeteor VMeteor
JRC-Acquis en-fr WER BLEU BLEU VMeteor VMeteor

Table 2: Best performing TM similarity function f(q, s) according to each evaluation metric, under all tested
conditions.

To those with a background in statistical ma-
chine translation, who are familiar with the general
approach of Minimum Error-Rate Training (Och,
2003), this may seem like a very natural outcome
at first sight. After all, using any given metric as a
similarity function is somewhat like optimizing the
behavior of the system for that evaluation metric.
The subtle difference here is that in a TM, similarity
is measured in the source language. If we take the
example of BLEU, this means that maximizing n-
gram precision relative to the source-language query
somehow results in the n-gram precision being max-
imized in the target-language as well.

One possible explanation lies in the way each
metric accounts for length differences in the se-
quences under comparison. Figure 1 plots the length
of individual queries against that of the source-
language segment of the corresponding TM best
match; it can be seen that BLEU and NIST (blue
and green dots, respectively) tend to produce TM
best matches whose source segment length is very
close to that of the query (average length ratios are
given in Table 3). This contrasts with WER (red
dots), which naturally favors segments that are much
shorter than the query, and with the Meteor metrics
(purple and black), which tend to produce source
segments that are much longer than the query. On
the target side, shorter TM matches such as those
produced by the WER similarity function will be pe-
nalized at evaluation time by the BLEU and NIST
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Figure 1: Length (in words) of TM best match source
segment ŝ, as a function of length of query q (all English-
French conditions), for each tested TM similarity func-
tions: BLEU similarity function is reported in blue, NIST
is in green, WER is in red, Vanilla-Meteor is in purple and
Meteor is in black.

brevity penalties (BP – see eq. 1). Meteor’s longer
matches will naturally be penalized by precision-
based evaluation metrics.

The Meteor metrics highlight another aspect of
the relationship between similarity functions and
evaluation metrics: using WordNet and paraphrase
tables as additional resources to measure source-
language similarity may allow retrieving better
source-language matches from the TM; however,
this will likely not come out in the evaluation, un-
less the evaluation metric also accounts for seman-
tic relatedness in the target-language. As a similar-
ity function, English-Meteor arguably exploits the



Similarity Function Source Ratio Target Ratio
WER 0.85 ± 0.18 0.88 ± 0.58
BLEU 1.01 ± 0.60 1.04 ± 0.91
NIST 1.03 ± 0.15 1.06 ± 0.63
Vanilla-Meteor 1.31 ± 0.85 1.43 ± 2.01
Meteor 1.36 ± 0.85 1.48 ± 2.07

Table 3: Macro average of length ratio of TM best match
〈ŝ, t̂〉 relative to query q and reference r in all English-
French experiments, for each tested TM similarity func-
tion. Source ratio is |ŝ|/|q|; Target ratio is |t̂|/|r|.

richest set of linguistic resources to find semantic
equivalents to the query. Intuitively, we expect the
corresponding target-language segments output by
the TM to share the same kind of relationship with
the reference translations. However, if such equiv-
alences are not realized into surface-similar tokens,
they are unlikely to be picked up by the evaluation
metric. This appears to be true even for French,
Spanish and, to a lesser extent, German versions of
Meteor, possibly because they rely on poorer lin-
guistic resources, or because these resources are not
“aligned” with those used for English.

The choice of a similarity function has a major
effect on the overall performance of the translation
memory, as measured using a machine translation
evaluation methodology. For example, on the JRC-
Acquis corpus, there is a difference of almost 10
BLEU points between the best and the worst per-
forming functions (see Table 4). However, it is rele-
vant to ask where and why these differences occur.

To better understand what is going on, we re-
introduce the α filtering threshold (Section 2) and
examine how TM performance varies as we filter
out the segments for which good matches cannot be
found in the TM. As α is set higher, less queries
find matches in the TM and source coverage goes
down; at the same time, performance on the fil-
tered material improves. This can be seen in Fig-
ure 2, where we plot WER against source coverage
for each TM similarity function, on English-French
conditions. A striking feature of this graph is that
performance differs the most at high-coverage lev-
els, i.e. when TM outputs are proposed even for low-
similarity matches. In a real-life TM application,
weakly matching segments are seldom useful: they
are queries for which the system manages to find a
segment in the TM that has a few words in common

f(q, s) Evaluation Metric
WER BLEU NIST VMeteor Meteor

Europarl Corpus (en-fr)
WER 84.21 6.85 1.857 13.71 15.28
BLEU 89.45 9.85 3.004 17.26 19.04
NIST 92.54 9.34 3.088 18.16 20.11

VMeteor 117.74 8.22 2.731 20.69 22.93
Meteor 130.20 6.88 2.425 19.84 22.45

ECB Corpus (en-fr)
WER 61.92 38.93 7.026 45.43 45.63
BLEU 66.29 42.05 7.426 48.50 48.66
NIST 68.63 40.62 7.189 48.43 48.68

VMeteor 78.58 37.51 6.659 49.73 49.88
Meteor 80.11 36.42 6.480 49.49 49.77

EMEA Corpus (en-fr)
WER 75.28 13.55 3.388 23.95 25.46
BLEU 81.60 15.35 3.999 25.69 27.39
NIST 84.59 14.63 3.934 26.19 28.02

VMeteor 95.28 14.63 3.867 28.68 30.44
Meteor 98.05 13.84 3.688 28.42 30.32

JRC-Acquis Corpus (en-fr)
WER 53.50 39.70 6.137 48.80 48.93
BLEU 58.57 42.47 6.731 51.65 51.88
NIST 60.99 41.35 6.436 51.63 51.88

VMeteor 83.11 33.95 5.457 52.46 52.70
Meteor 84.79 33.02 5.326 52.03 52.45

Table 4: TM performance on English-French conditions,
under each tested similarity function (rows) and evalua-
tion metric (columns).

with the query (most often function words), while
being approximately the same size as the query.
This is the kind of material that the translator typ-
ically does not want to see. By contrast, in the low-
coverage areas, where only the best matching seg-
ments from the TM are retained, all metrics display
very comparable performances.

5.4 Discussion: Metric Tuning

As mentioned earlier, one notable exception to the
direct relationship between the choice of a TM sim-
ilarity function and the outcome in evaluation is
NIST. In most test conditions, using NIST for simi-
larity does not maximize output quality, as measured
by the NIST metric (see Tables 2 and 4).

To better understand what is going on here, it is
instructive to also examine source-language perfor-
mance, i.e. measure the global similarity between
the source language test set (the queries q) and the
source segments ŝ from the TM’s best matches. This
is shown in Table 5 for English-French conditions.
Here, we expect the relationship between similar-
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Figure 2: WER of filtered TM proposals (all English-
French conditions), for each tested TM similarity func-
tions: BLEU similarity function is reported in blue, NIST
is in green, WER is in red, Vanilla-Meteor is in purple and
Meteor is in black.

ity function and evaluation metric to hold strictly;
in practice, it does for all metrics, except NIST. The
explanation lies in the fact that TM performance is
measured globally, while the TM seeks to maximize
similarity locally, at the segment level. Both NIST
and BLEU behave non-compositionally, i.e. global
scores can not be computed by combining local
scores. Therefore, for these metrics, collecting lo-
cally maximal solutions does not guarantee a global
optimum. In our experiments, BLEU does not ap-
pear to be globally affected by local optimization,
but NIST is, possibly due to differences between ge-
ometric and harmonic means of n-gram precision,
but also to its brevity penalty harshly penalizing the
shorter matches.

NIST has a parameter β which can be adjusted to
weight the relative importance of the brevity penalty
in the score. By default, β is set so that BP = .5
when |t|/|r| = 2/3 (see eq. (2)). This setting may
be optimal for maximizing correlation with human
judgment of MT output, but it is not necessarily ap-
propriate for the current task or datasets.

More generally, this suggests that it could make
sense to “tune” MT metrics to fit the particular re-
quirements of the TM task, or the final evaluation
scheme. Most metrics have parameters that affect
their behavior and can be changed: for example, for
BLEU and NIST, it is possible to change the maxi-
mum n-gram sizeN over which precisions are com-
puted; in WER, the cost of individual edit operations
can be changed; Meteor has numerical parameters

f(q, s) Evaluation Metric
WER BLEU NIST VMeteor Meteor

Europarl Corpus (en-fr)
WER 65.80 14.10 3.065 13.53 14.60
BLEU 78.84 21.75 4.534 16.07 17.27
NIST 83.69 16.31 4.495 17.61 18.84

VMeteor 112.63 12.82 3.649 19.57 20.84
Meteor 127.49 9.58 2.941 17.07 22.37

ECB Corpus (en-fr)
WER 41.06 52.66 8.884 34.84 35.04
BLEU 48.48 57.85 9.388 37.33 37.49
NIST 50.13 54.41 9.057 36.91 37.21

VMeteor 63.34 49.82 8.259 38.30 38.47
Meteor 68.19 47.01 7.813 37.56 38.52

EMEA Corpus (en-fr)
WER 56.56 22.89 4.514 19.60 20.33
BLEU 66.85 28.80 5.465 21.60 22.25
NIST 71.73 23.96 5.282 21.96 22.71

VMeteor 82.60 23.77 5.081 24.04 24.58
Meteor 87.47 21.41 4.665 22.79 25.24

JRC-Acquis Corpus (en-fr)
WER 41.84 47.08 6.816 32.18 32.66
BLEU 49.53 51.96 7.474 34.28 34.75
NIST 52.51 48.86 7.156 33.76 34.39

VMeteor 68.13 43.12 6.372 35.07 35.50
Meteor 70.76 41.18 6.114 34.10 35.86

Table 5: Source-language TM performance on English-
French conditions, under each tested similarity function
(rows) and evaluation metric (columns).

which are tuned for different applications.
All metrics under consideration here can be co-

erced into producing K-best lists of matches, which
means that a general optimization scheme such as
Minimum-Error Rate Training (MERT) could be ap-
plied in a relatively straightforward manner to opti-
mize numerical parameters with regard to a given
evaluation metric9.

Meteor also relies on a paraphrase table to dis-
cover semantic similarities. One possible way of op-
timizing the performance of that metric as a TM sim-
ilarity function is to provide it with domain-specific
paraphrases. In a preliminary experiment along this
line, we created domain-specific paraphrase tables
from each TM using the technique described in (Fu-
jita et al., 2012), and used these with Meteor instead
of the provided table. In practice, in-domain para-
phrases do not lead to measurable gains or losses

9Here, we overlook the integral nature of some parameters,
such as N for BLEU and NIST, which raises problems for stan-
dard optimization techniques. Then again, using MERT to op-
timize N for BLEU is clearly overkill.



Example 1
Query This is the process we are commencing.
Meteor I suggest that we perhaps continue the

work we have started.
CMeteor This is the point at which we must start.
WER This is the stage we are at.
BLEU This is the stage we are at.
NIST This is the stage we are at.
VMeteor We are in the process of revising this reg-

ulation.

Example 2
Query A lysodren patient card is included at the

end of this leaflet.
Meteor At the end of this leaflet.
CMeteor Detailed instructions for subcutaneous

injection are provided at the end of this
leaflet.

WER Listed at the end of this leaflet.
BLEU Ingredients are listed at the end of this

leaflet.
NIST Listed at the end of this leaflet (see sec-

tion 6).
VMeteor At the end of this leaflet.

Figure 3: Examples of source segments from TM
matches found using each tested similarity function.
“Meteor” refers to Meteor using the standard paraphrase
table (matching words in italics), while “CMeteor” is
with in-domain paraphrases (matching words in bold).

in performance. It should be pointed out that mea-
suring this sort of improvement is problematic: the
in-domain paraphrases theoretically allow finding
more useful matches in the TM, but the translation
of these are often also realized as target-language
domain-specific paraphrases, which are not properly
acknowledged by the evaluation metrics. Neverthe-
less, the approach seems promising, and Figure 3
gives examples of queries for which the in-domain
version (labeled CMeteor) provides matches that are
potentially more useful for the translator than those
found with other similarity functions.

6 Conclusion

We have shown how machine translation evaluation
metrics can effectively be used as translation mem-
ory similarity functions. Each metric has its own
characteristics and potential benefits.

In terms of efficiency, metrics based on n-gram
precision such as BLEU and NIST are less compu-
tationally expensive than classic edit-distance-based

metrics such as WER, or metrics that rely on linguis-
tic resources, such as Meteor. In practice, they are
easy to implement and produce results comparable
to WER (on which existing commercial systems are
believed to be based), especially in high-similarity
situations, where it counts for real-life TM usage.

Most metrics can be tuned, to optimize perfor-
mance of TM systems for specific text domains.
Optimization methods commonly used in statistical
machine translation could easily be adapted to this
task. One related aspect that we have not yet exam-
ined is the combination of different metrics into a
single similarity function (Liu and Gildea, 2007). In
a similar vein, preliminary experiments suggest that
customizing linguistic resources such as paraphrase
tables could help in better leveraging the contents of
the TM when appropriate metrics are used, such as
Meteor or TERp. Extracting domain-specific para-
phrases is one possible avenue, but in a TM per-
spective, it would be interesting to extend similarity
to other semantic relations besides synonymy, e.g.
antonymy, hyponymy, etc. These are areas we hope
to explore further in the near future.

When evaluating the performance of TM systems
using MT evaluation metrics, in general, we find that
whichever metric is used as TM similarity function
will likely obtain the best score under that evalua-
tion metric. This suggests that existing MT evalu-
ation metrics are not appropriate for evaluating TM
performance. In fact, it is unclear whether it is actu-
ally possible to measure TM performance in an un-
biased way using fully automatic methods. Human-
based evaluation may well be the only credible al-
ternative, and is what we plan to resort to in future
experiments.
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