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Abstract on better infrastructure for building and deploying
large-scale multi-domain MT systems.
We present a simple and effective infrastruc- In this paper, we present a simple and effective
ture for domain adaptation for statistical ma- ~ domain adaptation infrastructure that makes a single
chine translation (MT). To build MT systems MT system that has a single translation model capa-

for different domains, it trains, tunes and de- po of hroviding adapted, close-to-upper-bound do-
ploys a single translation system that is capa-

bl : . ) main translation accuracy and preserves the generic
e of producing adapted domain translations i . o

and preserving the original generic accuracy at translation accuracy at the same time. This is ful-
the same time. The approach unifies automatic ~ filled by introducing domain awareness into the tra-
domain detection and domain model parame-  ditional single-domain decoding and tuning compo-
terization into one system. Experimentresults ~ nents with the help of an automatic domain detector,
on 20 language pairs demonstrate its viability.  to generalize an MT system to handle different do-
mains. We study this approach with two domains
(generic and patent), carry out large-scale experi-
ments for 20 language pairs, demonstrating the vi-

Research in domain adaption for machine trans|&@Pility of our approach. _
tion (MT) has been mostly focusing on one do-. The rest qfthe paper is organlzeq as follows. Sec-
main. Various methods have been proposed to makign 2_descr|bes_related work. Sectllon 3 prese_nts our
a system work best on a resource-scarce domdifmain adaptation approach. Section 4 explains our
when most of the training data is from another operf'€thod to classify an input sentence into its domain.
resource-rich domain, e.g., (Foster et al., 2010; FO§_ect|on§ 5 and 6 talk about genre-aware decoding
ter and Kuhn, 2007; Koehn and Schroeder, 2007?nd tuning. We pre_sent egperlment results in Sec-
Decent improvements have been made on domaii¢" 7 @nd conclude in Section 8.
translation accuracy, but often,.accuracy IMProves  oajated Work
ments for one domain are obtained at the expense
of accuracy losses in another (e.g., the backgrountthe work of Xu et al. (2007) and Banerjee et al.
domain. (2010) are perhaps the most relevant to our work.
With these methods, it remains unaddressed hoMu et al. (2007) adapt a shared, generic transla-
they can be generalized to work equally well withtion model for better web or broadcast conversation
more than one domains at the same time. One couldnslations and use a source-document classifier to
trivially build one system/model per domain, butclassify an input document into a domain. This work
that does not scale and will require manual domaimakes the translation model shared across differ-
detection if the incoming texts belong to heterogeent domains, but domain-specific training data is not
neous domains. So far, there has been little worlkised and thus its impact is not studied. Neither did

1 Introduction



they report the generic MT accuracy. except for the phrase provenance information we
Banerjee et al. (2010) use source-sentence clageep for each phrase. Using a single model makes

sification to combine two separate domain modelshe system scale more easily to many domains: We

each trained from small amounts of domain-specififist need to maintain one model and any future mod-

data obtained from a single corporate website. Thaling improvement can be immediately available to

work does not study nor report the impact of generidifferent domains.

data on domain translation accuracy. The domain awareness is introduced in decoding
Both works realize the automatic domain detecand tuning. In decoding, a genre classifier is used

tion with an experimental setup where the classio generalize the conventional single-domain decod-

fier works as a “switch” between two independening to distinguish genres: The genre classifier clas-

MT decoding runs, lacking a deeper integration, alssifies an input sentencg to a domaind(f), using

making it difficult to introduce genre awareness intknowledge (e.g., the phrase provenance information

other components (e.g., tuning) other than decodingie keep for each phrase) solely from the translation
Current research along this line does not seem tnodel. Contrast to the single-domain decoding that

provide enough evidence that the automatic domaifinds the best translatiahfor f with formula

classification idea is practical yet for building large- ;

scale MT systems that are optimized for different .

domains. I\Teither has it propgsed a practical, uni- €= angmax (z; Ai- hi (f, 6)> @)

fied infrastructure. In particular, this idea remains -

unexamined under the following conditions: whereh;’s are features and;’s are feature weights,
. o in our generalized decoding, once the decoder re-
e Awide range of classification error rates. trieves from the translation model a phrase that
a(f)

natchesf, we re-label its features, say, into &,
with the classified domain labél(f). Re-labeling

makes featuref(f ) a different feature fronk§ used
e Vast amounts of generic data and varyingy a different domaim, even though both re-labeled
amounts of domain data. features are originally the same feature in the trans-
lation model. A re-labeled feature now can have its
own (domain-specific) weight. In another word, the
3 Our Approach runtime feature re-labeling makes a featu_re that is
shared, domain-independent in the translation model
Our approach intends to generalize the standagkcome decoupled, domain-dependent at decoding
single-domain MT infrastructure to more than onguntime and consequently (and importantly) in the
domains, by making the necessary infrastructurg-best lists for tuning. The generalized decoding

components aware of domains (or genres). The afinds the best translation with the following formula:
proach is simple but turns out to be effective.

We use a single translation-model parameteriza- !
tion to serve di?ferent domains, rath(l,or than intro- € — Argmax (Z A (g, 6)) )
ducing multiple models, each for one domain. In =
the model, there are no domain-dependent phraseGeneralizing decoding for genre awareness in
features at all and thus any phrase and its featuregn makes tuning genre-aware. Our tuning devel-
can be used in the decoding of sentences of any dopment set consists of sentences frehdomains.
main. But during phrase extraction, we do record al\nd we do not need to know the domain for each
the domains where a phrase comes from. We tragentence beforehand. The genre-aware decoding on
the translation model on the merged generic antthe entire set automatically classifies it infbpar-
domain-specific bilingual data. Therefore, our trangtitions. The runtime feature re-labeling makes each
lation model has no major difference from the stanpartition, S;, d = 0,..., D — 1, have its own set
dard, widely-used single-domain translation modebf features that are decoupled from other domains.

e Unbalanced classification error rates across di
ferent domains.

o Different languages.



Therefore the system hd3 sets of features in to- uses either the source language model approach or
tal. We then can use Minimum Error Rate Trainthe information retrieval approach to implement the
ing (MERT) (Och, 2003) out of the box to learngenre classifier. The former requires an additional
the weights for all these features in a single MERBource language model and the latter needs source
run which maximizes the overall BLEU of the entirelexical statistics. Both approaches incur additional

genre-mixed development set: RAM and efficiency costs.
D1 Our classifier is implemented by “re-using” the
ddet D=1 1} BLEU(Us=oSa) () phrase table. The features in the classifier are de-

. _ o signed to indicate the domain provenance of the
In this formula, there is no explicit treatment onsource sentence by considering the relative portion
genre, but there is a subtlety: Features are decogrdomain phrases with respect to all the phrases re-

pled in n-best lists across domains and this givegieved for the source sentence. We use the Percep-

without much constraints from any other domain. In
other words, MERT is made implicitly genre-aware4.1 Features

Actually, we can further tailor the MERT tuning Generally, if most source sentence words originate
objectives to be explicitly aware of genre. We exfrom a domain, it is likely that the sentence belongs
plain alternative genre-aware tuning objectives thap that domain. Or, in the set of phrases we re-
the classical MERT can be altered to adopt in a lat@fieve for the source sentence, if a certain number of
section and compare their effects experimentally. phrases are from the domain training data, the source

Daume 11l (2007) does domain adaptation by ausentence may come from that domain. The classifier

gumenting features. Chiang et al. (2011) improvéeatures are defined in these two perspectives:
lexical smoothing also by augmenting features re- _ _

fined by genres. In our approach, théest lists for DOomain word coverage The ratio between the
tuning can be viewed as containing augmented feQumbper of words that are covered by any domain
tures as well. But we augment features in order tBhrase and the source sentence length. The more

decouple them across domains, rather than proviflords that are covered by phrases from a domain,
ing refined domain/genre bias in the model. the more likely the sentence belongs to that domain.

The language model feature deserves further ekomain word coverage by phrase length The ra-
planation. Even though we do not have domain spgp between the number of words that are covered
cific features in the translation mOdeI, we have d%y a max_|engt|fi_ domain phrase and the source
main specific language models. In our approackentence length. The insight of having these finer-
the generic language model is used by different d@yrained features in addition to the above coarse ver-
mains, but a domain language model is turned o&ion is that a word being covered by a longer do-
Only if the input sentence is classified as the Corrgnain phrase could be a Stronger indication of do-
sponding domain. main provenance than being covered by a shorter

. one.
4 Genre Classifier

. . .. Aver hr length The aver max-domain-
A genre classifier detects domains by classifying a erage phrase lengt e average max-doma

L . rase-length (per word). It is computed by sum-
source sentence into its genre (or domain), so thgp. gth (p ) puted by sum
ming up the length of the longest-covering domain

the M.T system can be configured to use the ProPShrase for each word and then divide it by the sen-
domain feature weights and turn on the appropna@%nce length. If a sentence tends to be covered by
domain language model. '

e o e longer domain phrases, rather than short (and fre-
Text classification is a well-studied field, largely g P (

in the purview of Information Retrieval but with quent) ones, the sentence is more likely to belong to

. that domain.
lots of crossovers to Natural Language Processing as

well. The previous work that is directly related to usDbomain phrase ratio The ratio between domain
is (Xu etal., 2007; Banerjee et al., 2010). Their worlphrases to the total number of phrases retrieved for



the source sentence. The bigger the ratio, the mot@ chang€l’ to raise the classification accuracy on
likely the sentence is from that domain. generic texts, usually by sacrificing some domain
classification accuracy.

Multi-class classification can be realized by using

between the domain phrases .Of lengto the total multiple binary classifiers, each classifying between
number of phrases of lengtinetrieved for the source . o
domainsc andd. The class that has the majority

sentence. The insight is that domain phrase ratio 8tas wins
a longer phrase length could be more discriminative '

than at a shorter length. Making the domain phras¢ Genre-Aware Decoding

ratio features finer-grained at phrase length enables

the training to treat them differently. The genre classifier is integrated into the decoder to

Except for the average phrase length feature, waetect the domain of an input sentence. Then the
convert the above ratios to the logarithm spacéecoder chooses the proper decoding configuration
before using a learning algorithm to learn theitto decode the sentence. A decoding configuration
weights. In experiments, we observed classificatioicludes the feature weights for the detected domain
accuracy improvement with this conversion. Whend the additional domain specific language model
there are multiple domains, the above features afeature. For a domaiadecoding, the decoder turns
computed for each respective domain, and thenan the domain: language model and turns off that
multi-class classifier is used to make the final deof domaind. The generic language mode is used by
cision. all domains.

In principle, we could also use language model The genre-aware decoder records the genre infor-
based features that capturegram coverage. But in mation in the feature names when it emitsest
practice, we use only phrase-based features as dists. As aresult, once the decoding on the entire de-
scribed above. This is an efficiency optimizationvelopment set is finished, the set is partitioned into
We do not want to query the domain language modifferent portions, each corresponding to a domain
els for generic sentences, but we need to query tlaad each having its own feature set. Features are not
phrase table regardless. In terms of accuracy, as wBared across domainssirbest lists.
will show later, we can achieve a decent classifica- _ o
tion accuracy by using only phrase-based features® Genre-Aware Tuning Objectives

Domain phrase ratio by phrase length The ratio

The conventional single-domain tuning induces the

optimal feature weight$\;,7 = 1...I} that max-

The classifier we use is an averaged perceptrof,.-as the BLEU of the entire development &t
which has a weightw; for each featuref;, i =

1...1,and uses alinear combination of the features.

: L max BLEU(S) 4
If we have only two domains, the classification de- {Aii=1...T}
cisiony is made by:

4.2 Classification algorithm

In our genre-aware tuning, the tuning development
set consists of sentences frdthdomains. A genre-
domainA if YL fixw, <T ~ aware decoding classifiesinto D partitions, each
y(fimra) = { domainB otherwise partition S, having its own set of feature\?, i =
1...1;}. So the system hab sets of features in to-
T is a threshold whose value we can adjust ttal. Then MERT induces the weights for all these
achieve a desired tradeoff between the classificatidaatures by maximizing an objective. There are
accuracies of the two domains. Raising the accuraegore than one ways to reflect genre in the tuning
for a domain can decrease that of another. Whesbjectives.
high classification accuracy is not possible for both As we explained in Section 3, we can use the opti-
domains, finding a proper tradeoff could be impormization objective that maximizes BLEU at the en-
tant for meeting user's MT accuracy requirementtire genre-mixed development corpus level. We call
— if we desire a lossless generic BLEU, we need maxjoint BLEU as it learns all the feature weights



jointly: be different from the true set. This affects the trans-
b lation quality in two ways. In tuning, the feature
, . max BLEU(S = Ugz=154) (5) weights of domainl are actually tuned on a polluted
{24, d=1...D,i=1...15} ) » )
‘ domaind development set by false positives. A high

Similar to the above single-domain optimizationfalse positive_ rate will make the feature Weig_hts of
problem, this objective does not explicitly take genrélomaind deviate from the optimal feature weights,
into account. However, the weights of different dofesulting in less accurate translations. In decoding,
mains, {)\f,d = 1...D,i = 1...1;}, are de- the false positives that belong to other domains are
coupled (by the runtime feature name re-labelingecoded using the domaitweights, leading to less
(Section 3)) in then-best lists, rather than beingaccurate translations as well. We study the impact
shared, thus the weight optimization for one do©f classification error rates on the domain translation
main can concentrate on the domain itself, withaccuracy in Section 7.

out being constrained too much by any other do- .

main. Since BLEU is not decomposable at the ser?— Experiments

tence Ie\_/el_, this objective generally can not_guaraw_l Setup

tee maximized BLEUs on respective domain parti-

tions, but rather an optimal overall BLEU (ChiangCU! €xPeriments are carried out for 20 language
etal., 2008). pairs, in both directions, between English and 10

y European languages: lItalian, Spanish, French, Por-
tuguese, German, Swedish, Finnish, Turkish, Dan-
ish, and Dutch. We have two domains: generic and
patent. The generic parallel data size is around 250

) million words for each language pair. The patent
(6)

Another optimization objective is th@ax BLE
sum that maximizes the sum of BLEUs of the indi-
vidual genre partitions:

parallel data is from the European Patent Office
(ww. epo. org). The parallel data we have for
each language pair ranges from 0.8 million words

D
max <Z BLEU(S,)

{\¢,d=1..D,i=1...14} =

When none of the features is shared in théest 10 mill q
lists across different domains (which is our case)(,O mifiion words.

this objective is equivalent to the summation of the The MERT tuning set constitutes a generic de-
individually maximized BLEUS: velopment subset (3400 sentences) and a patent do-

main development set (2000 sentences). For test-

D ing, each generic test set contains 5000 sentences
( max BLEU(Sd)> (7) and each patent domain test set contains 2000 sen-

a=1 \i=Lda) tences. Sentence overlapping between training, de-

There could be other genre-aware tuning Ol:)J.(_)e/_elopment and test sets are removed from the train-

tives that mix (or “nest”) the above twoBut in our Ing data.

L . : For each language pair, we train a 4-gram generic
paper, we are mainly interested in the experlment%llr ot LM. We also train a 4-aram patent LM from
comparison between the max joint BLEU and th 9 ' 9 P

max BLEU sum objectives, due to concemns aboupe target side of the patent parallel data. LM data

the potential length-penalty effects on genre-awaroeverlap with the development set and the test set is

. . . . _removed.
t /decod tivated by Table 3 of (Ch
elir;rgzoeocg)lng (motivated by Table 3 of (Chiang We use a phrase-based system (Koehn et al., ),

which has a source tree pre-ordering module (Xu

Due to classification errors, the classified devel- L 2009). MERT oofimi BLEU latti
opment set or the classified test set of a domain c?elji al, )- optimizes on fattices

Macherey et al., 2008).
For example, for some domains, we can separately opti-
mize their weights, respectively; for some other domains, wg.2 Genre classification accuracy

can jointly optimize the BLEU of their merged development L.
set. These two types of optimization can then be combined int/€ Use the MT development sets as the training data
one single objective. of the genre classifier and the MT test sets as the



Classifier Generic (%)  Patent (%) so we adjust the classification threshold (on our dev

Features dev test dev test . . . e .
word coverage (5) 977 970 531 529 sgt) to obtain a high generic classification preci-
phrase ratio (5) 96.8 97.1 433 403  Sion. On an average over the 20 language pairs,
avg. phrase length (1) 97.3 97.0 24.2 23.7 the genre classifier classifies generic sentences at
all (11) 97.0 972 876 855 a 97.2% (test) precision and patent sentences at

a 85.5% (test) precision. For individual language
. . pairs, the patent classification precision is as low as
language pair generic (%) _patent (%) 67.2% (English/Swedish test), or as high as 96.5%

all features, per language pair:

English/Danish 97.1 96.1 878 857 . ..
English/Dutch 978 979 911 926 (English/German test). The dev and test precisions
English/Finnish 96.3 958 851 824 seem to be very consistent.

English/French 99.8 996 982 96.1 Table 1 also shows the performance of different
English/German 995 99.2 956 965 types of classifier features. Just using one type does
English/ltalian 975 969 913 89.2

English/Portuguese 955 955 854 865 not suffice and th_(=T co_mblnatlon of all brings us the
English/Spanish 96.8 96.6 90.4 90.6 best patent classification accuracy.
English/Swedish 96.2 989 734 672

English/Turkish 96.3 96.6 853 80.1 7.3 BLEU

Danish/English 97.3 96.0 86.1 823 Wi t . N . tst ine h
Dutch/English 973 974 882 883 e carry out a series of experiments to examine how
Finnish/English 928 938 774 767 patent resources like parallel data, dev set and lan-
French/English 99.7 99.6 97.8 946 guage model are helpful and to examine how effec-
German/English ~ 99.3  99.0 96.1 959 tive our presented domain adaptation approach is.
Italian/English 96.3 96.0 88.1 8338 Th . ¢ d ibed in Table 2. wh
Portuguese/English  96.0 96.9 86.3 86.2 € experiments are described in lable 2, where
Spanish/English 973 967 884 86.6 the difference of experiments lies in the parallel
Swedish/English 953 97.7 78.0 70.1 training data, dev data, language model used and if
Turkish/English 953 970 831 783 an experiment uses the genre classifier. To examine

how the patent domain bilingual data is helpful, we

Table 1:Genre classification precisions measured on a generic g systems from the following data and tune them
test set and a patent test set. In the first table, each accuracy is an

average over 20 language pairs; and numbers in round brack@8lY on _the generic development sets. Here T stands
are the number of features used. for training data.

e T1: generic bilingual data.
classifier test sets. The gold-standard label for each

source sentence is automatically known based on itse T2: generic + patent training data.
file origin. Since the MT dev and test sets lack short
sentences, for each language pair, we collect the 10

most frequent words from its generic developmen{,o examine the effect of different choices of dev sets

set as additional generic training data for the genre .

. . . on translation accuracy, we tune systems on (where
classifier of that language pair. This encourages t )
stands for dev set):

classifier to learn to classify short sentences to the

generic domain. e D4: T2 + combined dev set
Even though the classifier takes a monolingual _

(source) sentence as input, it needs to know the lan-® D5: T2 + just patent dev set

guage pairs of the MT system as well, because the _ he off ¢ using d in |
classifier features are computed using the translatiJr? examine the effect of using domain language

phrases in the phrase table. We train the averaggbOdels’ we run (where L stands for language
perceptron for 200 iterations. model):
Table 1 shows the dev and test precisions of clas- o | 6: D4 + patent LM
sifying between the two domains. In our case, we
are targeting a lossless generic translation accuracy,e L7: D5 + patent LM

o® T3:just patent training data.



Experiment| Train Data DevData LM Classifier | Generic BLEU  Patent BLEU
tuning testing| dev test dev test
T1 G G G none none | 30.41 30.14 3266 33.21
T2 G+P G G none none | 30.43 30.17 35.27 35.56
T3 P G G none none | 13.25 13.04 33.76 33.88
D4 G+P G+P G none none | 29.63 29.58 37.40 37.18
D5 G+P P G none none | 2852 28.71 37.79 37.19
L6 G+P G+P G+P  none none| 28.79 28.75 39.40 38.95
L7 G+P P G+P  none none| 21.63 21.71 41.20 40.17
C8.1 G+P G+P G+P yes yes | 30.17 29.98 40.77 39.82
Oracle G+P G+P G+P oracle oracle 30.42 30.16 41.20 40.17
tune-Oracle| G+P G+P G+P oracle yes | 30.25 30.00 40.72 39.78

Table 2:Generic BLEUs and patent domain BLEUs. G=generic, P=patent, yestagenre classifier, oracle=a perfect/cheating
genre classifier. Significant tests were performed between C8.Japguoach) and T1 (baseline) for the dev and test sets of all
20 language pairs, respectively: pt< 0.005, none of the system significantly differs in generic BLEU and all patereBL
improvements are significant. In column one, T/D/L/C indicates what is lmingpared. l.e., T means training data, D means dev
data, L means language model and C means classifier.

Please note that, in L6 and L7, the patent language ~ Experiment ~ Generic TER  Patent TER

. . . dev test dev test

model is useq by'both the generic decoding and the 1 1905 4675 5071 4935
patent decoding, just as the generic language model. g4 48.93 48.81 4465 4516
L6 and L7 (as well as T1-D5) do not use the genre Oracle 49.05 48.75 44.35 44.84

classifier but just treat the dev and test as belong- _ ) )

ing to the same genre. The purpose of T1-L7 is t%lr?g’ecz'f?gjr”;pgffascﬁ)n gnp;tg:w;gg'mam TERs for T1 (base-

show the effects of different patent resources (of 20

language pairs) without resorting to genre classifi-

cation. In-domain parallel data and in-domain lanperiment, tune-Oracle, in a latter section.

guage model have been previously shown helpful The BLEU results are shown in Table 2. Each

for domain adaptation, for example, by Koehn angumper is an average over 20 language pairs. We

Schroeder (2007). also compute the TER scores (in Table 3) for T1
To verify that our presented approach really proghaseline), C8.1 (our approach) and the Oracle, re-

duces optimized translation accuracy for differengpectively. The TER scores confirm the BLEU gains

domains, we run experiments C8.1 (where C stan@gnieved by our approach.

for classifier) that uses the genre classifier in both 11 5. T2 shows that simply merging the patent

tuning and decoding, and that uses the max BLEWjjingual data into the vast amounts of generic data
sum tuning objective in Eq. (7): improves the patent test BLEU by 2.35 points with-
e C8.1° L6 + classifier + max BLEU sum out any negative effect on ggneric BLEU. T2 vs. T3
shows that the use of generic data for training leads
In C8.1, the patent language model is used onli accuracy improvement for patent translation and
when the genre classifier classifies an input sentenatso preserves the generic translation accuracy.
as patent, but the generic language model is used byD4 vs. T2 shows that adding domain sentences in
both domains. the dev set effectively improves patent test BLEU by
We also run an oracle experiment (Oracle in Taanother 1.62 points, but drops the generic test BLEU
ble 2) to establish the upper bounds of both domairsy 0.6 points at the same time. D5 vs. D4 shows that

for C8.1. This system uses a perfect genre C|&SI identical to the generic BLEUs of T2 and the Oracle patent

fier that has a 100% classification precision. It iggus are expected to be identical to L7: A system with a
re-tuned, and the perfect classifier is used in bottpDo%-precision classifier, tuned with objective in Eq. (7) be-

tuning and testinﬁ.We’II explain another oracle ex- haves like two independent systems: T2 for generic and L7 for
patent. We still run the actual Oracle experiment here for clarity
2In principle, the Oracle generic BLEUs are expected to b@urpose.



putting only domain sentences in the dev set hurgomain language model); In tuning, wrongly clas-
generic BLEU even more. sified sentences of domaitmay “pollute” the dev

L7 vs. D5 (or L6 vs. D4) shows that a domainset (thus the tuning quality) of domai®when these
LM improves the patent test BLEU by 3 points (orsentences are mis-classified to domBinWe use a
1.77 points), but drastically lowers down the generi¢eal classifier in our approach rather than a perfect
BLEU?® when the tuning set has a significant portiorone in tuning for the purpose of simplicity, so that
of the domain-specific sentences and when we dtgcoders in tuning and testing behave the same.
not classify/distinguish genres. We first examine how the combined errors (of tun-

Oracle establishes the generic and patent BLEWDG and testing) affect BLEU. An averaged corre-
upper bounds for C8.1. These two upper bounds agpondence between BLEU loss and genre classifica-
not closely approached at once in any system buiiion error rate can be directly computed from Table 1
by experiments T1-L7. Our approach, however, ig@nd Table 2 and is shown in Table 4. BLEU loss
able to produce a system (C8.1) whose translatidrere equals the difference between the C8.1 BLEUs
accuracies are very close to the respective BLEU ugnd the Oracle BLEUs. In Table 4, each number
per bounds: We are 0.25 dev (or 0.18 test) BLEUS an average over 20 language pairs. The 3.0%
points away from the generic upper bound, and 0.4dev (or 2.8% test) error rate in generic classification
dev (or 0.35 test) BLEU points away from the patenteads to 0.25 dev (or 0.18 test) generic BLEU loss,
domain upper bound. so 1% generic classification error incurs a loss of

Compared to the baseline T1, our approach buildéess than) 0.1 generic BLEU points. In comparison,
a single system that improves patent translation Bjie 12.4% dev (or 14.5% test) error rate in patent
6.6 test BLEU points (or 4.2 test TER points accordclassification leads to 0.43 dev (or 0.35 test) patent
ing to Table 3) with a slight BLEU drop in generic BLEU loss, so 1% patent classification error results
translation. We perform significance test betweef & loss of (less than) 0.04 patent BLEU points. In
T1 and C8.1 for both dev and test of all 20 languagether words, the patent BLEU loss is less sensitive
pairs, respectively, using the paired bootstrap resari® genre classification errors than the generic BLEU
pling (Koehn, 2004): ap < 0.0005, none of the loss. This unbalanced behavior proves the impor-
generic-BLEU drop is significant, all patent-BLEU tance of using generic data for domain adaptation —

improvements are significant. The vast amounts of generic training data can ensure
a decent fallback translation accuracy for wrongly
7.4 Classification error rate vs. BLEU loss classified patent texts, but not the other way round.

A per-language-pair correspondence between

As explained in Section 6, genre classification er- e
P ' 9 atent BLEU loss and patent classification error rate

rors incur BLEU loss compared to its oracle uppe or each of the 20 language pairs is shown in Fig-

bound. We are therefore interested in investigatingre 1. The plot again shows that patent BLEU

how BLEU loss varies with respect to the classifi- : .
loss does not drop as quickly as the error rate in-

cation error. Moreover, knowing a quantitative cor- S )
. . creases. As an approximation, we compute a linear

respondence between them would make it possible . ) .

o . regression (the dotted line) from the observed loss in
to predict if the accuracy of a genre classifier und . e

. LEU as a function of the classification error rate,

development (e.g., for a new language pair) mee S ttin
our requirement on BLEU without running the ac—g 9
tual decodings.

In our approach, genre classification errors lead

to potential BLEU loss in two ways. In decoding,\ye gid not draw the figure for the generic case be-
wrongly classified sentences will be decoded using,,se e control (on dev) the generic classification

non-perfect decoding feature weights (and wrongy,; rate to be mostly undats (Table 1), which we

®Recall that, in experiments L6 and L7, the patent LM isthlnk is important for achieving domain adaptation

used for both generic and patent, which are treated as the saSi4CC€SS (€.9., closely approaching Oracle bounds of
genre. both domains).

BLEU loss= —0.048 x error rate+ 0.351 (8)



Domain Classification Error Rate (%) BLEU (%) Loss Generic BLEU Patent BLEU

dev test dev test dev test dev test
generic 3.0 2.8 -0.25 -0.18 C8.1 30.17 29.98 40.77 39.82
patent 12.4 14.5 -0.43 -0.35 C8.2 299305 298105 40.720-1 39.842

Table 4:Genre classification error rates vs. (C8.1) BLEU lossTable 5:The impact of different genre-aware tuning objectives
on average (over 20 language pairs). BLEU loss = C8.1 BLEUsn generic BLEU and patent BLEU, respectively. Each BLEU
Oracle BLEU. Numbers are computed from Tables 1 and 2s an average over BLEUs of 20 language pairs. BLEU ,,:

m is the number of language pairs for which C8.2 is statistically
significant better than C8.1; is the number that is worse; The
rest20 — m — n language pairs are those in which C8.1 and

0.5

L '+ ' " y=-0.048x+0.351 C8.2 do not significantly differ.
i
of T .
2 R . e C8.2: L6 + classifier + max joint BLEU
) 05 [
':_j Ty C8.1 produces generic/patent feature weights by
£ 1f 1 maximizing the (separate) BLEU of the (classified)
s . generic/patent dev portion in a single MERT run.
-15 1 C8.2 jointly obtains feature weights for both do-
i mains by optimizing the BLEU of the entire devel-
-2 : ‘ : : : : opment set. In either experiment, the weights that

0 5 10 15 20 25 30 35

Patent Classification Effor Rate MERT produces have two subsets, each for a do-

main, while any T1-L7 experiment produces just one
Figure 1:Patent classification error rates vs. patent BLEU losS§ubset of features that are shared by both domains.
(or distance to upper bound) for 20 language pairs, respectively. |n Table 5, C8.1 vs. C8.2 shows that tuning to
Patent BLEU loss = C8.1 BLEU - upper bound. maximize the BLEU of each domain development
set (via the max BLEU sum objective) has a similar

We then examine how using a real classifier i@verage effect to maximizing the overall BLEU of
tuning (rather than a perfect/cheating one) affect§ie entire combined development set (via the max
the tuning quality, we run experiment tune-Oracldoint BLEU objective), with the former having a
(results in Table 2) that uses a perfect classifier ilightly better generic translation accuracy. We per-
tuning and a real classifier in testing. The comform significance test using the paired bootstrap re-
parison among C8.1, tune-Oracle and Oracle indf@mpling: For 5 language pairs, on both dev and
cates that, empirically, using a real classifier in tuntest, C8.1 performs bettep (< 0.005) than C8.2

ing (C8.1) yields as good tuning quality as using 40r generic translation; and for the rest 15 language
perfect one (tune-Oracle). pairs, there is no significant difference; For patent

translation, C8.1 and C8.2 seem to differ only for
7.5 Tuning objectives vs. BLEU one or two language pairs. This further confirms
D b h il | h Ithe overall similarity between the two tuning objec-
ue to concerns about t e_potentla .engt “pena Wes and hints their slight difference. This similar-
effects on genre-aware tuning/decoding (motlvateﬁg/ could be attributed to the fact that, in our ap-
by Table 3 in (Chiang et al., 2008)), we perform e)\;}aroach, features are made decoupled across differ-

penr_nent €8.2 a_md compare it with C8'_1 to kn_o ent domains in tuning, so that the C8.2 tuning is still
the impact of different genre-aware tuning objecy, .. of genre even if it is maximizing the BLEU of
tives (Section 6) on the generic BLEU and the patenf, . antire development corpus.
BLEU. C8.1 uses the max BLEU sum objective in
Eq. (7) and C8.2 uses the max joint BLEU objectives  conclusions
in Eq. (B).
Most work in domain adaptation for statistical ma-
e C8.1: L6 + classifier + max BLEU sum chine translation are focused on only one domain.



In this paper, we introduce a domain adaptation irBavid Chiang, Steve DeNeefe, Yee Seng Chan, and
frastructure to makes a single MT system capable Hwee Tou Ng. 2008. Decomposability of transla-
translation accuracy and preserves the generic trans/thms.  InProceedings of EMNLP 2008, pages 610-

lation accuracy at the same time. Our approach USE3vid Chiang, Steve DeNeefe, and Michael Pust. 2011.

a ;ingle Franslation model ar_1d generali;es the tra- 1, o easy improvements to lexical weighting. Fro-
ditional single-domain decoding and tuning to deal ceedings of the 49th Annual Meeting of the Associa-
with different domains in a single system. We use a tjon for Computational Linguistics: Human Language
large number of experiments to demonstrate the vi- Technologies, pages 455-460, Portland, Oregon, USA,
ability of our approach. June. Association for Computational Linguistics.

We use this approach to adapt large-scale geneh‘@' Daume lll. 2007. Frustratingly easy domain adapta-
MT systems for 20 language pairs for patent trans- ton- In Proceedings of ACL 2007, pages 256-263.
lation. Our results show that we achieve improve&seOrge ngter and Roland Kuhn. .2007' Mixture-model
patent translation accuracy that is 0.35 BLEU points adaptation for SMT. IrProceedings of the Second

X o~ Workshop on Statistical Machine Trandation, pages
away from its upper bound, by sacrificing only 0.18 155 135

BLEU points for generic translation. George Foster, Cyril Goutte, and Roland Kuhn. 2010.
We explore simple but effective ways of using do- Discriminative instance weighting for domain adapta-

main resources, showing domain accuracy improve- tion in statistical machine translation. Rroceedings

ments made by the use of bilingual training data, do- of EMNLP 2010, pages 451-459.

main development data and domain language mo@Rhilipp Koehn and Josh Schroeder. 2007. Experiments in

els. We show the importance of using large amounts domain adaptation for statistical machine translation.
) . . . . In Proceedings of the Second Workshop on Satistical
of generic training data, particularly in the case

h he d in d . for diff Machine Trandation, pages 224-227.
where the domain detection error rates for di erI'Dhilipp Koehn, Franz Josef Och, and Daniel Marcu. Sta-

ent domains are unbalanced. We also investigate theyistical phrase-based translation. Rmoceedings of

correlation between genre classification errors and HLT-NAACL 2003, pages 127-133.

BLEU loss, and the impacts of different genre-awarehilipp Koehn. 2004. Statistical significance tests for

tuning objectives on BLEUS. machine translation evaluation. IRroceedings of
The topic on effectively building multi-domain ~ EMNLP 2004, pages 388—395.

MT systems have been remained understudied folfgang Macherey, Franz Och, Ignacio Thayer, and

previous work. We present an improved approach Jakob Uszkoreit. 2008. Lattice-based minimum er-

to this broblem. study it in a varietv of dimension ror rate training for statistical machine translation. In
O thiS proble . _S udy . ava e_yo ensions Proceedings of EMNLP 2008, pages 725-734.
and show that it is practically working.

Franz Och. 2003. Minimum error rate training for ma-
chine translation. IfProceedings of ACL 2003.
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