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Abstract

The IBM schemes use weighted cooccurrence
counts to iteratively improve translation and
alignment probability estimates. We argue
that: 1) these cooccurrence counts should be
combined differently to capture word corre-
lation; 2) alignment probabilities adopt pre-
dictable distributions; and 3) consequently, no

t generates a source-language werdnd the prob-
abilities Ps) (J | I) that a target sentence of length
I generates a source sentence of length

This model also uses intra-sentence alignment
probabilities, relating the word order in the target
and source sentenceB(i — j | o)—often written
P(a; =i | o)—indicates the probability that the tar-
get word in positiont (irrespective of what this word

iteration is needed. This applies equally well
to word-based and phrase-based approaches.
The resulting scheme, dubbed HAL, outper-
forms the IBM scheme in experiments.

might be) generates the source word in positjon
(irrespective of what that word might be), given the
contexte. Here,; may be zero, indicating that the
target word in position has no realization in the
source sentence. We let the the conkebei, I, J,
resulting in IBM model 2 (Brown et al., 1993).
Statistical machine translation views a source- IBM models use weighted cooccurrence counts
language text as a corrupted version of an unknowto improve bilexical and alignment probability es-
target-language text. The translation task is thusmates iteratively, as described in Section 2. In Sec-
one of reverse decoding: it consists in finding théion 3 we argue that the resulting weighted cooc-
most likely target-language text from which a givercurrence counts should be combined differently to
source-language text was generated. capture word correlation. In Sections 4 and 5 we
argue and show empirically that alignment proba-
bilities adopt predictable distributions, and, in Sec-

1 Introduction

argmax P(Target| Sourcg =

Target
— argmax P(Source| Targe - P(Target tion 6, that the iterative procedure can be eliminated.
N Tgrget The experiments of Section 7 support our claims.

) ) These results reach far beyond the word-based
The fundamental translation units are sentences argM model 2 used in the experiments. They reveal
words: sentencgs are wewed as f'n_'te strings (Now correlation-weighted translation probabili-
words. In statistical machine translation, the temﬂies capture word correlation, and howaramet-
phrases refers to substrings of words. ric distributions can replace latent alignment prob-

The translation model relies on the bilexital yities created by the IBM scheme. This allows
probabilities P(t ~+ s) that a target-language word eliminating iteration. We urge readers, for whom

*our analysis works equally well for biphrasal probabilitie phrase-based translation is paramount, to mentally

P(r ~0) = P(ti...tm ~ s1...5,) and alignment prob- - perform the substitutions of Section 9:
abilities P({i1,in} — {ji,7n} | ®), see Section 9. In fact,
continuous distributions simplify calculating the latter t - 717 3 s — o 3 i — {i,iy}



2 The IBM Scheme
In which we recapitulate the IBM update cycle.

In this article, we letP(e) denote the actual prob-
ability of an evente, let p(e) denote a parameter
estimate, and lgi(e) denote an empirical probabil-
ity (normally a relative frequency, but here the laten

distributions generated by the IBM scheme: we re-

servep(e) for other types of estimates). It is a fun-
damental assumption of statistics that actual proba-

bilities exist as limits of relative frequencies for suf-

ficiently large numbers of observations. (Bayesiar

statisticians envision also other types of actual prolﬁéI

abilities.)

In the IBM model 2 update cycle (Brown et al.,
1993), pp. 273-274, one improves the estimates
p(t ~ s)andp(i — j | 4,1, J) of the bilexical and
alignment probabilities, respectively, by iteration.

For each position paifi, j) € I x J of each
sentence paift} ...t} ;s ...s" ), one weights the
cooccurrence counts with the product of the previ©
ous estimates of these probabilities.

pe(i,g) = BEF~ s) pli e g | i, I, Jy)
p 7 = ~— /.,
k(i ]9) Sk 7)

The weighted cooccurrence counts are

AG 5,1, 0) = > pe(i [ 4) 011, - 610,
k
A(i,I,) ZAij,IJ
B(t78) Zzpk |j ttk' s,
B(t) ZB t,s)
5 N 1 fX=Y
Xy = 0 otherwise

wheredx y is the Kronecker delta, which does the
actual counting.
The improved probability estimates are then

~ . Sy A(Z7]7[7J)
pli—jli1,J) TAGL L)
B s) « Do)

B(t)

We take issue with these estimates in Section 3.

Since the unknown bilexical and the alignment
probabilities occur both in the left-hand and right-
hand sides, the reasoning goes, one must resort to
iteration. We challenge this premise in Sections 4
and 5, and its conclusion in Section 6. One starts
with some initial sets of probabilities, e.g., uniform
distributions, and iterates to a self-consistent pa-
rameter setting. This is an instance of the EM al-
gorithm, which is very well described in (Bishop,
2006) pp. 424-455.

The IBM scheme can be viewed as an optimizer.
leen a set of translation and alignment probabil-
es, it produces a better set of such probabilities.
etter here means increasing the likelihood of the
training data under the model in question. It is cru-
'cial to understand that there is no guarantee that this
wII result in a better model as measured by other
criteria, such as improved translation quality.

IBM model 2 is typically not deployed in itself.

It often provides a set of bilexical probabilities that
are used to seed more elaborate IBM models, or to
extract biphrasal probabilities or lexical features for
generative and non-generative translation models.

3  Word Correlation

In which we argue that bilexical probability esti-
/\) Cw(tvs)

Cu(t)
Consider a general weighiy (i, j) when counting
word cooccurrences.

- ST

mates be proportional t6D' (¢, s) —

Cu( -0

ttk 5,85

Using the weighty (i | j) of Section 2 yields the
weighted countsC),(t, s) B(t,s) of the IBM
scheme. If all weights equal one, thél,(t, s)
C'(t, s) is the number of timesands cooccurred in
the data.

A very intuitive measure of word correlation is the
Dice coefficient (Dice, 1945),

C(t,s)
C(t)-C(s)

D(t,s)

2\We have omitted a factor two from the expression.



which is closely related to the mutual informationlf D’'(¢,s) < 1, thenln D'(t, s) < 0, and¢ ands are

statistics between two random variabEsandY". negatively correlated, anet ~» s) should be zero.
/ ~
I(X,)Y) = E [111 <M>] Note that forD'(t, s) ~ 1, we have
P(X)-P(Y) WmD(ts) = W(1+D(ts)—1) ~ D(ts)—1

Many statistical machine translation approaches, _ _
e.g., (Smadja et al., 1996), are based on the Dice ASSUme that our estimate 6f(t ~ s) is a func-
coefficient. Although not the original intention, wetion of Ci(,s), Cu(t), Cuw(s), andCy() and let

use the (modified) Dice coefficied’ (¢, s) as our
3.1 Dimensional Analysis single dimensionless variable: all possible estimates

We apply dimensional analysis (Hornung, 2006) t®f dimensionS are then of the form
probabilitiesP,, (e) and frequency countS, (e).

Cu(t,s)
p(t~s) oc g(D'(t,s)) -
dim[Cy,(e)] = dim[w] - dim [e] ( ) (D(t: ) Cu(t)
dim[P,(e)] = dim {Cw(')} = dim[e]  for some functiory(D’ (¢, s)).
Cu() The most obvious choice i§ D' (¢, s)) = 1. This
dim[P,(X |Y)] = dim P ( ) = dim[X] Is the one used In Section 2.
’ ) (t,5) Colt, 5)
Cy() is the total (weighted) count and it has dimen- plt~s) = B(1) = 1 Co(D)
sionW. b
For the bilexical counts we obtain This formula has the correct dimension, but it does
) ) ) not measure word correlation, being independent of
dim[Cy(t)] = dimlw]-dm[t] = W-T & () noris it zero forD/(t, s) = 1.
dim[Py(s|t)] = dim[s] = S We instead use(D’(t,s)) = D'(t,s) — A, arriv-
ing at
We thus want an estimate &f(t ~ s) with dimen- 9
sionS. Under IBM models, the bilexical probability . Cuw(t,s)
estimates have dimensidh as they should. p(t~s) o< (D'(t,s) = A)- Co (1)
S . . B(t,s) . _ <Cw(t73) ) Cw() _ >\> . Cw(t,s)
dim [p(t ~> S)] = dim |: B(t) :| = S Cw(t) . Cw(s) Cw(t)

where \ is a real parameter. This is the simplest
function of C\,(t, s), Cy(t), Cw(s), andCy, () with
the correct dimension, that measures word correla-

, - : 1
The Dice coefficienD,,(t, s) has dlmensm%.

dim[Dy(t,5)] = tion and is, withA = 1, zero forD’(t,s) = 1. We
- dim [Cu (2, 5)] 1 setp(t ~ s) = 0for D'(t,s) < 1.
dim [C,(¢)] - dim [Cyy (s)] w In the following, we will use\ = 0, rather than

We render the Dice coefficient dimensionless byt = 1, {0 geta more inclusive bilexon.

multiplying it with the total countC,,(), which has 3.2 Null Words

dimensioniV.
, Cult,s) - Cu() Pult, s) Unlike the IBM scheme, we do not collect weighted
D'(t,s) = o e = 5 B counts for a hypothetical null word Had we done
w(t) Cu(s) w(t) - Puls) so, with a fixed null word alignment probabilify,
This means that the mutual information is their Dice coefficients would be about one.

I(X,Y) = E[lnD'(X,Y)] D'(t,e) ~ D'(e;s) ~ 1



since, theoretically,
Cw(tve) = C(t)'po ; Cw(t) = C(t)
Cu(e) = CO-po ;5 Cu() = O

Instead, we set the deletion and insertion prob:
bilities p(t ~ €) andp(e ~ s), respectively, to

pt~e€) o po 5 ple~s) oc C(s)
before renormalizing and symmetrizing.

4 Parametric Distributions: Theory

In which we argue that latent alignment probabili-

ties can be replaced with reflectedlistributions.

] ] ] _Figure 1: The pdf of Students distribution withr =
It is often claimed that systematic language dify ' 5
ferences, such as pre- vs post-modifiers, auxiliary
verbs, verb movement, etc., willinfluence alignment .. he cauchy distribution), neither the first
probabilities. We maintain that for as simple ones as ¢ second moment (expectationsaofind z2) ex-
P(i = jli, I, J), averaging over a large number Ofists,u indicates the position of the single mode and

sentences, with sequences of a variety of such p%t'is a scaling parameter. For— 2, the first mo-

terns in various positions, will crisscross these pat- . .
. ment exists and the expectationzoéqualsy, buto
terns until most traces of them are lost.

. L is still a scaling parameter. For> 2, the variance
We will use reflected Student’s distributions. gp -

52
However, both the reflection scheme of Section 4.5 r—27
and the parameter estimates of Section 4.3 apply t

%Figure 1 shows the pdfs af distributions (in
. _ 4 .
any continuous distributiofi(z; s, &) on (oo, 00). shades of purpleyith » = 1...5,* and a Gaussian

distribution, all with the same parameters= 0 and
4.1 Student'st Distribution o = 1. Thet distributions have slimmer shoulders
and fatter tails than the Gaussian, the economic ram-

A random variable obeying a Student'distribution . i ¢ which h v b ifesti
with r degrees of freedom has a probability densitg:gi;ﬂgs(_?alg),'2007‘?/6 recently been maniesting

function—a pdf—f (x) as follows.
4.2 Reflection

. o\ — 2L We need to restrict the continuous distribution on
rs) (.1 (m - u) (—o00,00) to {1,...7}. We first fold itinto an interval
T a [L, H] by summing the contributions from distribu-
tions reflected i and H, and their mirror images,
ad infimum:

f(zsp,o,m)

Vrro?l (%)
It has three parameters; o, andr. The special case

of r = 1 is known as the Cauchy distribution. The

limiting distribution whenr — oo is the Gaussian: f(ac) _ Z Flz+2kT) + F2L — z + 2kJ)

' B 1 1 /(x—p k=—oco
f@mo) = Varo? P\ T2 ( o ) HereJ — H — L. Note tha2 [, + 2.J — 2H.
Figure 2 shows a reflected Cauchy distribution,
along with itsmirror distributions (in brown) This
> owiling) = > wk(i,j) = 1 physics-inspired scheme assigns higher probabilities
J towards the interval ends, than does simply renor-

which is only approximately true with pruning and/or withrou malizing by the interval probability mass.
choice ofw(i, j), see the following section. Symmetrizing

w(i, ) is theoretical work in progress. 4The Cauchy distribution(= 1) is in brown

3i.e., if, for all k (we then include = 0 and;j = 0)



We then set the language-independent parameters to

J

<1—;>-J _u-h,

Hirg =

~1 =~

2
girg

The modes of the beginning, middle, and end are—
quite reasonably— the beginning, middle, and end.

porg = 0 pipg =5 prrg = J

|9

These estimate are based on a Binomial distribution

Bin(J, }) with J trials and probability;. The Bi-

nomial distribution itself is however too close to a

) o Gaussian. One could argue that the variance instead
We use this to apply paramet.n(.: distributions to e proportional toJ2. We use as an analogy the

sour_ce-lang_ua_ge ser_ltencelof finite Iengtt}ny ré-  difference between a deliberate and a random walk.

flecting (ad infimum) il = 5 andH = J+ 3. The o tormer will land us a distance from the start-

-1 — 1 . . . . .
sgntence ]s;artzzﬂ aﬁ[?nd ?_T?SAaH h_ J+ 3 ing point proportional to the walking time; the latter
sinceJ = H — L and =5 = =5=. Another way to proportional to its square root.

think about this is that the intervél, J] has length
J — 1, whereas the sentence length/isso we need 5 parametric Distributions: Experiments
to pad it with3 in both ends, arriving &%, J + 3].

We use the value of the pdf in integer points asn which we show empirically that the language-
probabilities. Theoretically, the numeric normalizaindependent parameters work just as well as both
tion factor differs for a sum and an integral, and a pdthe fitted parameters and the extracted latent align-
may exceed one, but we may safely ignore this. Iment probabilities themselves.

phrase-based approaches, itis practical to be ablefo, . - iically fitted distributions with 1, 2, 3

use rational points or to integrate over subintervals. .
P g 4, and 5 degrees of freedamo the latent alignment

4.3 Parameters probabilities generated by the IBM scheme of Sec-
tion 2. The first distributiony = 1, is the Cauchy

Section 5, we test = 1,2.....5 and estimate the distribution; the last one;, = 5, is fairly close to the

parameters:;;; and o,y for each target sentenceGauss'an around the mode, see Figure 1.

position, and target and source sentence length FOF €ach target sentence positioand target and
and J, from the latent alignment probabilities gen-Source sentence lengtand J, the parameters; s

erated by the IBM scheme of Section 2 and 0,7y of the chosen distribution reflected only
: o1 1 - -

Of course, first running the IBM scheme defeat®"C® 'n? a.ndJ.+~§ yverg f|tFed automatically to_ f[he
the purpose of eliminating it, so we instead devisé@tent distributions(i — j | 7,1, 7). Null probabili-
language-independent (L-1) parametesich turn ties were omitted and the rest were renormalized.
out to work just as well as both the fitted parameters

Figure 2: A reflected Cauchy distribution

We need to estimate the parametgrsr, andr. In

and the extracted latent alignment probabilities. plivrjla . J) = f(ipirs, o) +
To simplify the expressions, we introduce +  f(=gspirg, oirg,r) + f(2J+1=); pirg, i1, 7)
1 = i-— % ] = J- % 5.1 Alignment Experiment 1

. ) _ A . We calculated, for each target sentence position
1= gl I,J) = 4+ + 2kJ; wir g, o3, T
pl Jl ) zk: S par 1, 0it1,7) and target and source sentence lengtnd J, the



Kullback-Leibler (KL) divergence between the la-
tent and fitted alignment distributions:

0.7!

Drr(pirg || pirg) =
~7 . . . ﬁ(l >j|27[7']) o
%— pli—j i1, J) ng(l. i)

The following table shows the average KL diver-
gence to the latent distribution, weighted by the fre
quency count ofI,.J), forr = 1,...,5. If this
count was less than 100, its contribution was omitte
to avoid data sparseness problems. We measure
KL divergence for both the fitted (Fit) and language-
independent (L-1) parameters. In the last column
(Uni), the average KL divergence to the latent dis-
tribution from a uniform distributiorp = % is given

Figure 3: Finnishl = J = 17 andi = 2, 10, 16.

as a reference point. o7
Kullback-Leibler Divergence
Lang Para Degrees of freedom (r) Uni
1 2 3 4 5

Fin Fit | 0.088 0.064 0.077 0.092 0.1050.77
L-I | 0.116 0.105 0.129 0.154 0.175—

Fra Fit | 0.107 0.085 0.101 0.120 0.1381.12
L-1 | 0.140 0.123 0.146 0.170 0.193 —

Ger  Fit | 0.106 0.095 0.117 0.138 0.1560.86
L-1 | 0.164 0.166 0.197 0.225 0.249 —

Swe  Fit | 0.094 0.081 0.104 0.128 0.1491.15
L-I | 0.150 0.136 0.161 0.187 0.211 —

Two degrees of freedom seems to be optimal. The

KL divergences are less than 0.1, and less than a Figure 4: FrencH = J = 17 andi = 2, 10, 16.
tenth (except, just barely, for German) of that of a

uniform distribution. This is a very good fit indeed. ] _ _

The KL divergences are low across the boardshoW fitted andanguage-independent (in broviey
especially compared to that of a uniform distribu lectedt distributions, respectively, with = 2. The
tion. This shows that both the fitted and languagd@Lter curves are mirror images for= 2 and: = 16.
independent distributions model the latent alignment Figure 3 shows Finnish alignment probabilities.
probabilities found by the IBM scheme very well. This is a great triumph for the language-independent

This in turn shows that the latent alignment probaParameters postulated a priori. We conclude that
bilities contain less information than often assumed;innish—a non-Indo-European language—is so dif-
confirming our intuition at the opening of Section 4ferent from English, that the latent alignment proba-
that averaging over a |arge number of Sentenc@”ties contain very little information. There is con-
would crisscross |anguage-pair-speciﬁc Word_ordéiderable correlation between words in the middle

patterns until most traces of them were lost. of Finnish sentences and words toward the end of
English sentences, and vice versa. The situation is

5.2 Alignment Experiment 2 similar to that with German.

We visually inspected the language-independent, fit- Figure 4 shows French alignment probabilities.

ted, and latent alignment distributions fbr= J = The fit is extremely good and the variances are

17: i = 2,7 = 10, andi¢ = 16. The solid curves small. French-English was one of the first transla-



Figure 5: Germard = J = 17 and: = 2,10, 16.

0.7!

Figure 6: Swedisii = J = 17 and: = 2, 10, 16.

The language-independent distributions are con-
sistently too conservative—except for Finnish—
indicating that our choice of language-independent
variance is too high, erring on the side of caution.

5.3 Alignment Experiment 3

We extracted translation probabilities using the IBM
scheme of Section 2 both with the latent distribu-
tions (the original method) and the parametric dis-
tributions using the fitted and language-independent
parameters. We then compared the runtime perfor-
mance using the experimental set-up of Section 7.

Average BLEU Scores
Lang| Lat Fit L-1| HAL Koehn
Fin | 115 114 119 136 21.8
Fra | 225 223 226 239 30.0
Ger | 18.0 179 180 184 25.3
Swe | 20.5 20.3 20.7 21.9 30.2

* BLEU scores, see Section 7 and (Papineni et al., 2002).

The latent (Lat) and fitted parametric (Fit) dis-
tributions perform on par, as do the language-
independent parameters (L-I). This insensitivity of
translation quality to the exact form of the align-
ment probabilities supports the observations made
in (Fraser and Marcu, 2007).

Column HAL quotes the results from Section 7,
which uses the language-independent parameters
and correlation-weighted translation probabilities,
compare Section 3ut no iteration Column Koehn
qguotes the (Koehn, 2005) results, which uses a
phrase-based model and a stack decoder.

tion pairs to be attempted by statistical means, argl The HAL Scheme

one for which machine translation works the best.

Figure 5 shows German alignment probabilities!n Which we jettison the entire iterative procedure,
Note the probability increase towards the end for theffer an alternative scheme, and name it HAL.

data set = 10, making this latent distribution mul- Assembling everything, we arrive at a new scheme,
timodal, albeit just barely. For the data set 16, which we call—for lack of a better name—HAL.
the language-independent mode is an entire point C(t,s)
off, and the latent variance is much larger than fop(t ~5) o< (D(t,8) = A)- 30)
the data sef = 2. Contrast this yvith the situa‘Fion plt~€) x po ; ple~s) o O(s)
for Swedish and French. We believe the stacking of . o
verbs at the end of German clauses for these effectd” (t:5) = Z Zp(l SEANSEEORUN S 58782?
responsible to be. kg

Figure 6 shows Swedish alignment probabilities. D(t,s) = M ) = Z()(t’s)
The fit is extremely good and the variances are C(t)-Cfs) t,s

small. Swedish is one of the languages for which
machine translation into English works the best.

C(t)

= Y C(ts); Cls) = > Clt.s)



with (i1 =17 — % andj =j — % It employs a powerful, interpolated word hexagram

language model extracted from the training set.

pli—jli,I,J) =

i One cannot expect the translation system to re-
= Z f(£] + 2kJ; pir g, 0317) produce the reference translation exactly. We gauge

fi=—00 translation quality by word n-gram BLEU scores

1 1 /(z—p 2\ "2 (Papineni et al., 2002) fon = 1...4, and, as is

flzip, o) = /2 : (1 + BY < pn ) ) customary, the average BLEU score is the geomet-

A 7 . . ric mean of the n-gram scores with a multiplicative

iy = % T oY, = % A - ' ;7  brevity penalty.

Here \ is a real parameter. Good values include 0 N @ Bernoulli trial with probabilityp repeatedV
and 1. Alternatively, one can use some other fundimes,o? is W- As erf(1.386) = 0.95, a differ-
tion of the modified Dice coefficier(¢, s) in place  €nce of1.3860 is 5% significant using a Gaussian
of the factorD(t, s) — \, for examplein D(t, s). approximation. Fop = 0.25 and N = 1000, the
Note the absence of iteration: all right-hand-sidéhreshold is 1.90 BLEU score points. According to
quantities are known. This is a single-pass schemdKoehn, 2004b), this is too conservative.
The alignment probability estimates are without
doubt needlessly complicated, and would benefit
from simplification—we only need some smoothed
window of roughly that shape. One candidate would
be a binomial distribution Bi(1] -1, }) shifted one 7.1 Translation Quality and Processing Speed
position, were it not so close to a Gaussian.

7 Translation Experiments We translated the last 1 000 sentences of each lan-

In which we compare the IBM and HAL schemes. guage data set into English. In addition to the IBM
and HAL schemes, we tested initializing the IBM

We compared the IBM and HAL schemes on th?nodel with the output from the HAL model (rows

Eu_roParI 6.0_pa_ra||e| corpora (Koehn, 2005), trar_mgﬂ). We also report the results from (Koehn, 2005)
lating from Finnish, French, German, and Swedis s a comparison.

into English. All words were down-cased; unknown
words were translated verbatim. The entire data sets
were used to train the models, save a few thousand BLEU Scores

sentences at the very end, which were reserved fob@n9__Model| Uni  Bi Tri Tet | Ave
runtime testing IBM 459 19.8 9.0 4.2 11.5

Fin HAL | 458 20.7 9.6 4.8 136

Bilexical probabilities were extracted using the He+1 481 215 100 48 13.1
IBM scheme of Section 2 (half a dozen iterations Koehn!| — — _—_ _|218
and the HAL scheme of Section 6 (a single pass), in IBM 493 289 171 105 225
both cases of model 2. The probabilities were sym-Fra  HAL | 51.0 30.7 18.7 11.8 23.9
metrized by taking the geometric mean with theif H+ 510 304 184 114238
converse probabilities and renormalizing Koen| — — — —1]300

IBM 476 24.7 13.0 7.2 18.0
/ Ger HAL 47.1 245 131 7.5 184
Pltnrs) o Vpltos) pls~ 1) H+| | 486 255 137 7. 187

L Koehn — — — — | 25.3
which is a standard procedure. BM 555 281 159 08 205

The word-based Viterbi decoder, s_lmllar_ 10 Swe HAL | 501 289 168 10.3 21.9
Pharaoh (Koehn, 2004a), allows word insertions, H+l 514 295 17.0 10.4 21.6
deletions, and inversions with heuristic penalties. Koehn| — — —  — 1302




Language Size | Model | Time (hh:mm) tent (L) alignment probabilities on a subset of the

Training Testing Swedish/English data.
IBM 9:37 0:29
Finnish 1.74M| HAL 3:31 0:39 Swedish-to-English; 100 000 sentence training set
H+l 6:46" 0:23 Model BLEU Scores
IBM 9:55 0:46 I A D Uni Bi Tri  Tet | Ave
Erench 1.82M| HAL 2:39 0:58 Y L 0 |4840 2454 1271 6.9018.0
H+l 7:19t 0:30 Y F 04923 2511 1286 6.9318.2
IBM 956 0:48 Y L 1 |4464 1915 875 4.24133
German 1.73M HAL 2:52 0:48 Y F 1 |4850 2328 1148 59216.6
H+l 7:05" 0:30 N F 0 |4538 2250 11.60 6.3916.6
IBM 823 0:26 N F 14932 26.00 1393 7.9419.4

Swedish 1.67M] HAL 2:36 0:34
H+l 6:09' 0:23
* Size of training corpus in (mega) sentence pairs.
fTotal time, actually.

| = Y/N with/without iteration.

A = L/F latent/parametric align. probs.
D = 1/0 with/without the Dice factor.
IBM is I=Y, A=E, D=0 (top entry).
Most importantly,the HAL scheme outperforms the ~ HAL is I=N, A=F, D=1 (bottom entry).
IBM scheme and it is much faster to traWhile the The rest are transitional species.

improvement is not quite statistically significantly_l_he parametric distribution always improves trans-
for all language pairs, it most certainly is collec-

. . .~ -7 lation quality. The Dice coefficient factor helps only
tively. Applying the IBM scheme to the HAL bilexi- ., yhe barametric distribution, without iteration: it

cal probabilities as a post-processor (H+1) speeds UR: e poorly with the IBM weights (i | ). It is
translation by one third, but more than doubles trainﬁowever essential when omitting iteration

ing times. Still, these two operations are faster than
training the IBM model initialized with uniform dis-
tributions. Unfortunately, it degrades performance.
A similar speed-up can however be obtained simpljsM schemes estimate bilexical probabilities by
by using) = 1instead ofA = 0; this is just an effect combining weighted coocurrence counts. These
of bilexicon size. have the correct dimension, but do not measure word
The HAL scheme is better at controlling the num-orrelation. Using dimensional analysis, we found
ber of tag-along words, which make word insertion&nother combination—with an additional Dice coef-
more effective. An example would be translatindficient factor—of the right dimension that does mea-
Europaparlamentetas the European parliamert sure word correlation. It applies equally well to
the Swedish suffixetindicates definiteness—which phrase counts as to word counts.
is possible with the bilexicon entri¢se~- Europa- Our experiments indicate that alignment probabil-
parlamentet European~» Europaparlamentetand ities adopt Student’s distributions with predictable
parliament~» EuropaparlamentetA larger value of parameters, folded into discrete intervals. There is
A (see Section 3) yields fewer tag-along words.  thus no need to determine alignment probabilities
Instead using\ = 1 or g(D’(t,s)) = InD’(t,s) empirically. Continuous distributions are practical
yielded similar but often slightly lower BLEU for phrase alignment probabilities.
scores, yet still (almost) significantly higher than the Combining these observations, we removed the
IBM models. The functio(D’(t,s)) = InD'(t,s) entire iterative procedure. The resulting scheme,
scored the best in other experiments on translitergamed HAL, is applicable to all IBM models and
tion, where a tighter bilexicon was preferable. to word-based and phrase-based approaches alike.
In our experiments, a word-based IBM model 2
was pitted against its HAL analog. The latter out-
We tested both schemes with and without the Dicperformed the former, and was much faster to train.
coefficient factor in the bilexical estimates, and/Me also found that, while the parametric distribution
the IBM scheme with fitted parametric (F) and la-constitutes an improvement in general, the added

Summary and Conclusions

7.2 Transitional Species



Dice coefficient factor in the bilexical probability es-Kishore Papineni, Salim Roukos, Todd Ward, and Wei

timates is needed to replace iteration, and at oddsjing Zhu. 2002. Bleu: a method for automatic eval-

with the IBM iterative procedure. uation of machine translation. IRrocs. ACL pages
The HAL scheme is widely applicable. Compareq: 311-318.

to the IBM sch it | ¢ lati | Smadja, K. R. McKeown, and V. Hatzivassiloglou.
0 the scheme, 1t improves transiation qual- 4 ggg. Translating collocations for bilingual lexicons:

ity and eliminates iteration, thus radically reducing A statistical approach. Computational Linguistics
training times. The\ parameter allows controlling  22:1-38.

bilexicon size. This is convenient when using HAL ,Nassim Nicholas Taleb. 2007The Black Swan : The
instead of IBM model 2, to provide a set of bilexical Impact of the Highly ImprobableRandom House.
probabilities for seeding more elaborate models,

for extracting biphrasal probabilities or lexical feafts The Phrase-HAL Scheme

tures for other translation models. In which we extend the HAL scheme to phrases.

Leto = s1...s; be astring of words, and let_, ;
refer to the substring consisting of tith to jth word
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work of excellence (1IST-249119), funded by the DG We now generalize the HAL scheme as follows.
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