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Abstract

The IBM schemes use weighted cooccurrence
counts to iteratively improve translation and
alignment probability estimates. We argue
that: 1) these cooccurrence counts should be
combined differently to capture word corre-
lation; 2) alignment probabilities adopt pre-
dictable distributions; and 3) consequently, no
iteration is needed. This applies equally well
to word-based and phrase-based approaches.
The resulting scheme, dubbed HAL, outper-
forms the IBM scheme in experiments.

1 Introduction

Statistical machine translation views a source-
language text as a corrupted version of an unknown
target-language text. The translation task is thus
one of reverse decoding: it consists in finding the
most likely target-language text from which a given
source-language text was generated.

argmax
Target

P (Target| Source) =

= argmax
Target

P (Source| Target) · P (Target)

The fundamental translation units are sentences and
words: sentences are viewed as finite strings of
words. In statistical machine translation, the term
phrases refers to substrings of words.

The translation model relies on the bilexical1

probabilitiesP (t ❀ s) that a target-language word
1Our analysis works equally well for biphrasal probabilities

P (τ ❀ σ) = P (t1 . . . tm ❀ s1 . . . sn) and alignment prob-
abilitiesP ({il, ih} 7→ {jl, jh} | •), see Section 9. In fact,
continuous distributions simplify calculating the latter.

t generates a source-language words, and the prob-
abilitiesPSL(J | I) that a target sentence of length
I generates a source sentence of lengthJ .

This model also uses intra-sentence alignment
probabilities, relating the word order in the target
and source sentences.P (i 7→ j | •)—often written
P (aj = i | •)—indicates the probability that the tar-
get word in positioni (irrespective of what this word
might be) generates the source word in positionj

(irrespective of what that word might be), given the
context•. Here,j may be zero, indicating that the
target word in positioni has no realization in the
source sentence. We let the the context• be i, I, J ,
resulting in IBM model 2 (Brown et al., 1993).

IBM models use weighted cooccurrence counts
to improve bilexical and alignment probability es-
timates iteratively, as described in Section 2. In Sec-
tion 3 we argue that the resulting weighted cooc-
currence counts should be combined differently to
capture word correlation. In Sections 4 and 5 we
argue and show empirically that alignment proba-
bilities adopt predictable distributions, and, in Sec-
tion 6, that the iterative procedure can be eliminated.
The experiments of Section 7 support our claims.

These results reach far beyond the word-based
IBM model 2 used in the experiments. They reveal
how correlation-weighted translation probabili-
ties capture word correlation, and howparamet-
ric distributions can replace latent alignment prob-
abilities created by the IBM scheme. This allows
eliminating iteration . We urge readers, for whom
phrase-based translation is paramount, to mentally
perform the substitutions of Section 9:

t → τ ; s → σ ; i → {il, ih}



2 The IBM Scheme

In which we recapitulate the IBM update cycle.

In this article, we letP (•) denote the actual prob-
ability of an event•, let p(•) denote a parameter
estimate, and let̃p(•) denote an empirical probabil-
ity (normally a relative frequency, but here the latent
distributions generated by the IBM scheme: we re-
servep(•) for other types of estimates). It is a fun-
damental assumption of statistics that actual proba-
bilities exist as limits of relative frequencies for suf-
ficiently large numbers of observations. (Bayesian
statisticians envision also other types of actual prob-
abilities.)

In the IBM model 2 update cycle (Brown et al.,
1993), pp. 273–274, one improves the estimates
p̃(t ❀ s) andp̃(i 7→ j | i, I, J) of the bilexical and
alignment probabilities, respectively, by iteration.

For each position pair〈i, j〉 ∈ Ik × Jk of each
sentence pair〈tk1 . . . tkIk ; s

k
1 . . . s

k
Jk
〉, one weights the

cooccurrence counts with the product of the previ-
ous estimates of these probabilities.

pk(i, j) ≡ p̃(tki ❀ skj ) · p̃(i 7→ j | i, Ik, Jk)

pk(i | j) ≡
pk(i, j)

∑

i′ pk(i
′, j)

The weighted cooccurrence counts are

A(i, j, I, J) =
∑

k

pk(i | j) · δI,Ik · δJ,Jk

A(i, I, J) =
∑

j

A(i, j, I, J)

B(t, s) =
∑

k

∑

i,j

pk(i | j) · δt,tki · δs,skj

B(t) =
∑

s

B(t, s)

δX,Y =

{

1 if X = Y

0 otherwise

whereδX,Y is the Kronecker delta, which does the
actual counting.

The improved probability estimates are then

p̃(i 7→ j | i, I, J) ← A(i, j, I, J)

A(i, I, J)

p̃(t ❀ s) ← B(t, s)

B(t)

We take issue with these estimates in Section 3.
Since the unknown bilexical and the alignment

probabilities occur both in the left-hand and right-
hand sides, the reasoning goes, one must resort to
iteration. We challenge this premise in Sections 4
and 5, and its conclusion in Section 6. One starts
with some initial sets of probabilities, e.g., uniform
distributions, and iterates to a self-consistent pa-
rameter setting. This is an instance of the EM al-
gorithm, which is very well described in (Bishop,
2006), pp. 424–455.

The IBM scheme can be viewed as an optimizer.
Given a set of translation and alignment probabil-
ities, it produces a better set of such probabilities.
Better here means increasing the likelihood of the
training data under the model in question. It is cru-
cial to understand that there is no guarantee that this
will result in a better model as measured by other
criteria, such as improved translation quality.

IBM model 2 is typically not deployed in itself.
It often provides a set of bilexical probabilities that
are used to seed more elaborate IBM models, or to
extract biphrasal probabilities or lexical features for
generative and non-generative translation models.

3 Word Correlation

In which we argue that bilexical probability esti-

mates be proportional to(D′(t, s)− λ) · Cw(t, s)

Cw(t)
.

Consider a general weightwk(i, j) when counting
word cooccurrences.

Cw(t, s) =
∑

k

∑

i,j

wk(i, j) · δt,tki · δs,skj

Using the weightspk(i | j) of Section 2 yields the
weighted countsCw(t, s) = B(t, s) of the IBM
scheme. If all weights equal one, thenCw(t, s) =
C(t, s) is the number of timest ands cooccurred in
the data.

A very intuitive measure of word correlation is the
Dice coefficient (Dice, 1945),2

D(t, s) =
C(t, s)

C(t) · C(s)

2We have omitted a factor two from the expression.



which is closely related to the mutual information
statistics between two random variablesX andY .

I(X,Y ) ≡ E

[

ln

(

P (X,Y )

P (X) · P (Y )

)]

Many statistical machine translation approaches,
e.g., (Smadja et al., 1996), are based on the Dice
coefficient. Although not the original intention, we
extend it to weighted coocurrence countsCw(•).

3.1 Dimensional Analysis

We apply dimensional analysis (Hornung, 2006) to
probabilitiesPw(•) and frequency countsCw(•).

dim [Cw(•)] ≡ dim [w] · dim [•]

dim [Pw(•)] ≡ dim

[

Cw(•)
Cw()

]

= dim [•]

dim [Pw(X | Y )] ≡ dim

[

Pw(X,Y )

Pw(Y )

]

= dim [X]

Cw() is the total (weighted) count and it has dimen-
sionW .

For the bilexical counts we obtain

dim [Cw(t)] = dim [w] · dim [t] ≡ W · T
dim [Pw(s | t)] = dim [s] ≡ S

We thus want an estimate ofP (t ❀ s) with dimen-
sionS. Under IBM models, the bilexical probability
estimates have dimensionS, as they should.

dim [p̃(t ❀ s)] = dim

[

B(t, s)

B(t)

]

= S

The Dice coefficientDw(t, s) has dimension
1

W
.

dim [Dw(t, s)] =

=
dim [Cw(t, s)]

dim [Cw(t)] · dim [Cw(s)]
=

1

W

We render the Dice coefficient dimensionless by
multiplying it with the total countCw(), which has
dimensionW .

D′(t, s) =
Cw(t, s) · Cw()

Cw(t) · Cw(s)
=

Pw(t, s)

Pw(t) · Pw(s)

This means that the mutual information is

I(X,Y ) ≡ E
[

lnD′(X,Y )
]

If D′(t, s) < 1, thenlnD′(t, s) < 0, andt ands are
negatively correlated, andp(t ❀ s) should be zero.
Note that forD′(t, s) ≈ 1, we have

lnD′(t, s) = ln(1 +D′(t, s)− 1) ≈ D′(t, s)− 1

Assume that our estimate ofP (t ❀ s) is a func-
tion of Cw(t, s), Cw(t), Cw(s), andCw() and let
S, T,W be our standard dimensions. We can then
use the (modified) Dice coefficientD′(t, s) as our
single dimensionless variable: all possible estimates
of dimensionS are then of the form

p(t ❀ s) ∝ g(D′(t, s)) · Cw(t, s)

Cw(t)

for some functiong(D′(t, s)).
The most obvious choice isg(D′(t, s)) = 1. This

is the one used in Section 2.

p̃(t ❀ s) =
B(t, s)

B(t)
= 1 · Cw(t, s)

Cw(t)

This formula has the correct dimension, but it does
not measure word correlation, being independent of
Cw(s); nor is it zero forD′(t, s) = 1.

We instead useg(D′(t, s)) = D′(t, s) − λ, arriv-
ing at

p(t ❀ s) ∝ (D′(t, s)− λ) · Cw(t, s)

Cw(t)
=

=

(

Cw(t, s) · Cw()

Cw(t) · Cw(s)
− λ

)

· Cw(t, s)

Cw(t)

whereλ is a real parameter. This is the simplest
function ofCw(t, s), Cw(t), Cw(s), andCw() with
the correct dimension, that measures word correla-
tion and is, withλ = 1, zero forD′(t, s) = 1. We
setp(t ❀ s) = 0 for D′(t, s) < 1.

In the following, we will useλ = 0, rather than
λ = 1, to get a more inclusive bilexon.

3.2 Null Words

Unlike the IBM scheme, we do not collect weighted
counts for a hypothetical null wordǫ. Had we done
so, with a fixed null word alignment probabilityp0,
their Dice coefficients would be about one.

D′(t, ǫ) ≈ D′(ǫ, s) ≈ 1



since, theoretically,3

Cw(t, ǫ) = C(t) · p0 ; Cw(t) = C(t)

Cw(ǫ) = C() · p0 ; Cw() = C()

Instead, we set the deletion and insertion proba-
bilities p(t ❀ ǫ) andp(ǫ ❀ s), respectively, to

p(t ❀ ǫ) ∝ p0 ; p(ǫ ❀ s) ∝ C(s)

before renormalizing and symmetrizing.

4 Parametric Distributions: Theory

In which we argue that latent alignment probabili-
ties can be replaced with reflectedt distributions.

It is often claimed that systematic language dif-
ferences, such as pre- vs post-modifiers, auxiliary
verbs, verb movement, etc., will influence alignment
probabilities. We maintain that for as simple ones as
P (i 7→ j|i, I, J), averaging over a large number of
sentences, with sequences of a variety of such pat-
terns in various positions, will crisscross these pat-
terns until most traces of them are lost.

We will use reflected Student’st distributions.
However, both the reflection scheme of Section 4.2
and the parameter estimates of Section 4.3 apply to
any continuous distributionf(x;µ, σ) on(−∞,∞).

4.1 Student’st Distribution

A random variable obeying a Student’st distribution
with r degrees of freedom has a probability density
function—a pdf—f(x) as follows.

f(x;µ, σ, r) =

=
Γ
(

r+1
2

)

√
πrσ2Γ

(

r
2

)

(

1 +
1

r

(

x− µ

σ

)2
)

−
r+1

2

It has three parameters:µ, σ, andr. The special case
of r = 1 is known as the Cauchy distribution. The
limiting distribution whenr→∞ is the Gaussian:

f(x;µ, σ) =
1√
2πσ2

exp

(

−1

2

(

x− µ

σ

)2
)

3i.e., if, for all k (we then includei = 0 andj = 0)
∑

i

wk(i, j) =
∑

j

wk(i, j) = 1

which is only approximately true with pruning and/or with our
choice ofw(i, j), see the following section. Symmetrizing
w(i, j) is theoretical work in progress.
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Figure 1: The pdf of Student’st distribution with r =
1, . . . , 5

For r = 1 (the Cauchy distribution), neither the first
nor second moment (expectations ofx andx2) ex-
ists,µ indicates the position of the single mode and
σ is a scaling parameter. Forr = 2, the first mo-
ment exists and the expectation ofx equalsµ, butσ
is still a scaling parameter. Forr > 2, the variance
is r

r−2σ
2.

Figure 1 shows the pdfs oft distributions (in
shades of purple)with r = 1 . . . 5,4 and a Gaussian
distribution, all with the same parametersµ = 0 and
σ = 1. Thet distributions have slimmer shoulders
and fatter tails than the Gaussian, the economic ram-
ifications of which have recently been manifesting
globally (Taleb, 2007).

4.2 Reflection

We need to restrict the continuous distribution on
(−∞,∞) to {1, ..J}. We first fold it into an interval
[L,H] by summing the contributions from distribu-
tions reflected inL andH, and their mirror images,
ad infimum:

f̂(x) =
∞
∑

k=−∞

f(x+ 2kJ) + f(2L− x+ 2kJ)

HereJ = H − L. Note that2L+ 2J = 2H.
Figure 2 shows a reflected Cauchy distribution,

along with itsmirror distributions (in brown). This
physics-inspired scheme assigns higher probabilities
towards the interval ends, than does simply renor-
malizing by the interval probability mass.

4The Cauchy distribution (r = 1) is in brown.
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Figure 2: A reflected Cauchy distribution

We use this to apply parametric distributions to a
source-language sentence of finite lengthJ by re-
flecting (ad infimum) inL = 1

2 andH = J+ 1
2 . The

sentence starts atL = 1
2 and ends atH = J + 1

2 ,
sinceJ = H −L andL+H

2 = J+1
2 . Another way to

think about this is that the interval[1, J ] has length
J − 1, whereas the sentence length isJ , so we need
to pad it with 1

2 in both ends, arriving at[12 , J + 1
2 ].

We use the value of the pdf in integer points as
probabilities. Theoretically, the numeric normaliza-
tion factor differs for a sum and an integral, and a pdf
may exceed one, but we may safely ignore this. In
phrase-based approaches, it is practical to be able to
use rational points or to integrate over subintervals.

4.3 Parameters

We need to estimate the parametersµ, σ, andr. In
Section 5, we testr = 1, 2, . . . , 5 and estimate the
parametersµiIJ and σiIJ for each target sentence
position i, and target and source sentence lengthI

andJ , from the latent alignment probabilities gen-
erated by the IBM scheme of Section 2.

Of course, first running the IBM scheme defeats
the purpose of eliminating it, so we instead devise
language-independent (L-I) parameters,which turn
out to work just as well as both the fitted parameters
and the extracted latent alignment probabilities.

To simplify the expressions, we introduce

ı̂ = i− 1

2
; ̂ = j − 1

2

p(i 7→ j | i, I, J) =
∑

k

f(±̂ + 2kJ ;µı̂IJ , σ̂ıIJ , r)

We then set the language-independent parameters to

µı̂IJ =
ı̂

I
J

σ2
ı̂IJ =

ı̂

I

(

1− ı̂

I

)

· J =
ı̂(I − ı̂)

I2
J

The modes of the beginning, middle, and end are—
quite reasonably— the beginning, middle, and end.

µ0IJ = 0 ; µ I
2
IJ

=
J

2
; µIIJ = J

These estimate are based on a Binomial distribution
Bin(J, ı̂

I
) with J trials and probability ı̂

I
. The Bi-

nomial distribution itself is however too close to a
Gaussian. One could argue that the variance instead
be proportional toJ2. We use as an analogy the
difference between a deliberate and a random walk.
The former will land us a distance from the start-
ing point proportional to the walking time; the latter
proportional to its square root.

5 Parametric Distributions: Experiments

In which we show empirically that the language-
independent parameters work just as well as both
the fitted parameters and the extracted latent align-
ment probabilities themselves.

We automatically fittedt distributions with 1, 2, 3,
4, and 5 degrees of freedomr to the latent alignment
probabilities generated by the IBM scheme of Sec-
tion 2. The first distribution,r = 1, is the Cauchy
distribution; the last one,r = 5, is fairly close to the
Gaussian around the mode, see Figure 1.

For each target sentence positioni, and target and
source sentence lengthI andJ , the parametersµiIJ

and σiIJ of the chosen distribution reflected only
once in1

2 andJ + 1
2 were fitted automatically to the

latent distributionp̃(i 7→ j | i, I, J). Null probabili-
ties were omitted and the rest were renormalized.

p(i 7→ j | i, I, J) = f(j;µiIJ , σiIJ , r) +

+ f(1–j;µiIJ , σiIJ , r) + f(2J+1–j;µiIJ , σiIJ , r)

5.1 Alignment Experiment 1

We calculated, for each target sentence positioni,
and target and source sentence lengthI andJ , the



Kullback-Leibler (KL) divergence between the la-
tent and fitted alignment distributions:

DKL(p̃iIJ || piIJ) =

=
∑

j

p̃(i 7→ j | i, I, J) log p̃(i 7→ j | i, I, J)
p(i 7→ j | i, I, J)

The following table shows the average KL diver-
gence to the latent distribution, weighted by the fre-
quency count of〈I, J〉, for r = 1, . . . , 5. If this
count was less than 100, its contribution was omitted
to avoid data sparseness problems. We measure the
KL divergence for both the fitted (Fit) and language-
independent (L-I) parameters. In the last column
(Uni), the average KL divergence to the latent dis-
tribution from a uniform distributionp = 1

J
is given

as a reference point.

Kullback-Leibler Divergence
Lang Para Degrees of freedom (r) Uni

1 2 3 4 5
Fin Fit 0.088 0.064 0.077 0.092 0.1050.77

L-I 0.116 0.105 0.129 0.154 0.175 —
Fra Fit 0.107 0.085 0.101 0.120 0.1381.12

L-I 0.140 0.123 0.146 0.170 0.193 —
Ger Fit 0.106 0.095 0.117 0.138 0.1560.86

L-I 0.164 0.166 0.197 0.225 0.249 —
Swe Fit 0.094 0.081 0.104 0.128 0.1491.15

L-I 0.150 0.136 0.161 0.187 0.211 —

Two degrees of freedom seems to be optimal. The
KL divergences are less than 0.1, and less than a
tenth (except, just barely, for German) of that of a
uniform distribution. This is a very good fit indeed.

The KL divergences are low across the board,
especially compared to that of a uniform distribu-
tion. This shows that both the fitted and language-
independent distributions model the latent alignment
probabilities found by the IBM scheme very well.

This in turn shows that the latent alignment proba-
bilities contain less information than often assumed,
confirming our intuition at the opening of Section 4
that averaging over a large number of sentences
would crisscross language-pair-specific word-order
patterns until most traces of them were lost.

5.2 Alignment Experiment 2

We visually inspected the language-independent, fit-
ted, and latent alignment distributions forI = J =
17: i = 2, i = 10, andi = 16. The solid curves
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Figure 3: FinnishI = J = 17 andi = 2, 10, 16.
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Figure 4: FrenchI = J = 17 andi = 2, 10, 16.

show fitted andlanguage-independent (in brown)re-
flectedt distributions, respectively, withr = 2. The
latter curves are mirror images fori = 2 andi = 16.

Figure 3 shows Finnish alignment probabilities.
This is a great triumph for the language-independent
parameters postulated a priori. We conclude that
Finnish—a non-Indo-European language—is so dif-
ferent from English, that the latent alignment proba-
bilities contain very little information. There is con-
siderable correlation between words in the middle
of Finnish sentences and words toward the end of
English sentences, and vice versa. The situation is
similar to that with German.

Figure 4 shows French alignment probabilities.
The fit is extremely good and the variances are
small. French-English was one of the first transla-
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Figure 5: GermanI = J = 17 andi = 2, 10, 16.
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Figure 6: SwedishI = J = 17 andi = 2, 10, 16.

tion pairs to be attempted by statistical means, and
one for which machine translation works the best.

Figure 5 shows German alignment probabilities.
Note the probability increase towards the end for the
data seti = 10, making this latent distribution mul-
timodal, albeit just barely. For the data seti = 16,
the language-independent mode is an entire point
off, and the latent variance is much larger than for
the data seti = 2. Contrast this with the situation
for Swedish and French. We believe the stacking of
verbs at the end of German clauses for these effects
responsible to be.

Figure 6 shows Swedish alignment probabilities.
The fit is extremely good and the variances are
small. Swedish is one of the languages for which
machine translation into English works the best.

The language-independent distributions are con-
sistently too conservative—except for Finnish—
indicating that our choice of language-independent
variance is too high, erring on the side of caution.

5.3 Alignment Experiment 3

We extracted translation probabilities using the IBM
scheme of Section 2 both with the latent distribu-
tions (the original method) and the parametric dis-
tributions using the fitted and language-independent
parameters. We then compared the runtime perfor-
mance using the experimental set-up of Section 7.

Average BLEU Scores⋆

Lang Lat Fit L-I HAL Koehn
Fin 11.5 11.4 11.9 13.6 21.8
Fra 22.5 22.3 22.6 23.9 30.0
Ger 18.0 17.9 18.0 18.4 25.3
Swe 20.5 20.3 20.7 21.9 30.2

⋆ BLEU scores, see Section 7 and (Papineni et al., 2002).
The latent (Lat) and fitted parametric (Fit) dis-

tributions perform on par, as do the language-
independent parameters (L-I). This insensitivity of
translation quality to the exact form of the align-
ment probabilities supports the observations made
in (Fraser and Marcu, 2007).

Column HAL quotes the results from Section 7,
which uses the language-independent parameters
and correlation-weighted translation probabilities,
compare Section 3,but no iteration. Column Koehn
quotes the (Koehn, 2005) results, which uses a
phrase-based model and a stack decoder.

6 The HAL Scheme

In which we jettison the entire iterative procedure,
offer an alternative scheme, and name it HAL.

Assembling everything, we arrive at a new scheme,
which we call—for lack of a better name—HAL.

p(t ❀ s) ∝ (D(t, s)− λ) · C(t, s)

C(t)

p(t ❀ ǫ) ∝ p0 ; p(ǫ ❀ s) ∝ C(s)

C(t, s) =
∑

k

∑

i,j

p(i 7→ j | i, Ik, Jk) · δt,tki · δs,skj

D(t, s) =
C(t, s) · C()

C(t) · C(s)
; C() =

∑

t,s

C(t, s)

C(t) =
∑

s

C(t, s) ; C(s) =
∑

t

C(t, s)



with (̂ı = i− 1
2 and̂ = j − 1

2 )

p(i 7→ j | i, I, J) =

=
∞
∑

k=−∞

f(±̂ + 2kJ ;µı̂IJ , σ̂ıIJ)

f(x;µ, σ) =
1

2
√
2σ
·
(

1 +
1

2

(

x− µ

σ

)2
)

−
3

2

µı̂IJ =
ı̂

I
· J ; σ2

ı̂IJ =
ı̂

I
· I − ı̂

I
· J

Hereλ is a real parameter. Good values include 0
and 1. Alternatively, one can use some other func-
tion of the modified Dice coefficientD(t, s) in place
of the factorD(t, s)− λ, for examplelnD(t, s).

Note the absence of iteration: all right-hand-side
quantities are known. This is a single-pass scheme.

The alignment probability estimates are without
doubt needlessly complicated, and would benefit
from simplification—we only need some smoothed
window of roughly that shape. One candidate would
be a binomial distribution Bin

(

J − 1, ı̂
I

)

shifted one
position, were it not so close to a Gaussian.

7 Translation Experiments

In which we compare the IBM and HAL schemes.

We compared the IBM and HAL schemes on the
EuroParl 6.0 parallel corpora (Koehn, 2005), trans-
lating from Finnish, French, German, and Swedish
into English. All words were down-cased; unknown
words were translated verbatim. The entire data sets
were used to train the models, save a few thousand
sentences at the very end, which were reserved for
runtime testing.

Bilexical probabilities were extracted using the
IBM scheme of Section 2 (half a dozen iterations)
and the HAL scheme of Section 6 (a single pass), in
both cases of model 2. The probabilities were sym-
metrized by taking the geometric mean with their
converse probabilities and renormalizing

p′(t ❀ s) ∝
√

p(t ❀ s) · p(s ❀ t)

which is a standard procedure.
The word-based Viterbi decoder, similar to

Pharaoh (Koehn, 2004a), allows word insertions,
deletions, and inversions with heuristic penalties.

It employs a powerful, interpolated word hexagram
language model extracted from the training set.

One cannot expect the translation system to re-
produce the reference translation exactly. We gauge
translation quality by word n-gram BLEU scores
(Papineni et al., 2002) forn = 1 . . . 4, and, as is
customary, the average BLEU score is the geomet-
ric mean of the n-gram scores with a multiplicative
brevity penalty.

In a Bernoulli trial with probabilityp repeatedN
times,σ2 is p(1−p)

N
. As erf(1.386) = 0.95, a differ-

ence of1.386σ is 5% significant using a Gaussian
approximation. Forp = 0.25 andN = 1000, the
threshold is 1.90 BLEU score points. According to
(Koehn, 2004b), this is too conservative.

7.1 Translation Quality and Processing Speed

We translated the last 1 000 sentences of each lan-
guage data set into English. In addition to the IBM
and HAL schemes, we tested initializing the IBM
model with the output from the HAL model (rows
H+I). We also report the results from (Koehn, 2005)
as a comparison.

BLEU Scores
Lang Model Uni Bi Tri Tet Ave

IBM 45.9 19.8 9.0 4.2 11.5
Fin HAL 45.8 20.7 9.6 4.8 13.6

H+I 48.1 21.5 10.0 4.8 13.1
Koehn — — — — 21.8
IBM 49.3 28.9 17.1 10.5 22.5

Fra HAL 51.0 30.7 18.7 11.8 23.9
H+I 51.0 30.4 18.4 11.4 23.8
Koehn — — — — 30.0
IBM 47.6 24.7 13.0 7.2 18.0

Ger HAL 47.1 24.5 13.1 7.5 18.4
H+I 48.6 25.5 13.7 7.8 18.7
Koehn — — — — 25.3
IBM 50.2 28.1 15.9 9.6 20.5

Swe HAL 50.1 28.9 16.8 10.3 21.9
H+I 51.4 29.5 17.0 10.4 21.6
Koehn — — — — 30.2



Language Size⋆ Model Time (hh:mm)
Training Testing

IBM 9:37 0:29
Finnish 1.74M HAL 3:31 0:39

H+I 6:46† 0:23
IBM 9:55 0:46

French 1.82M HAL 2:39 0:58
H+I 7:19† 0:30
IBM 9:56 0:48

German 1.73M HAL 2:52 0:48
H+I 7:05† 0:30
IBM 8:23 0:26

Swedish 1.67M HAL 2:36 0:34
H+I 6:09† 0:23

⋆ Size of training corpus in (mega) sentence pairs.
†Total time, actually.

Most importantly,the HAL scheme outperforms the
IBM scheme and it is much faster to train.While the
improvement is not quite statistically significantly
for all language pairs, it most certainly is collec-
tively. Applying the IBM scheme to the HAL bilexi-
cal probabilities as a post-processor (H+I) speeds up
translation by one third, but more than doubles train-
ing times. Still, these two operations are faster than
training the IBM model initialized with uniform dis-
tributions. Unfortunately, it degrades performance.
A similar speed-up can however be obtained simply
by usingλ = 1 instead ofλ = 0; this is just an effect
of bilexicon size.

The HAL scheme is better at controlling the num-
ber of tag-along words, which make word insertions
more effective. An example would be translating
Europaparlamentetas the European parliament—
the Swedish suffix-et indicates definiteness—which
is possible with the bilexicon entriesthe❀ Europa-
parlamentet, European❀ Europaparlamentet, and
parliament❀ Europaparlamentet. A larger value of
λ (see Section 3) yields fewer tag-along words.

Instead usingλ = 1 or g(D′(t, s)) = lnD′(t, s)
yielded similar but often slightly lower BLEU
scores, yet still (almost) significantly higher than the
IBM models. The functiong(D′(t, s)) = lnD′(t, s)
scored the best in other experiments on translitera-
tion, where a tighter bilexicon was preferable.

7.2 Transitional Species

We tested both schemes with and without the Dice
coefficient factor in the bilexical estimates, and
the IBM scheme with fitted parametric (F) and la-

tent (L) alignment probabilities on a subset of the
Swedish/English data.

Swedish-to-English; 100 000 sentence training set
Model BLEU Scores

I A D Uni Bi Tri Tet Ave
Y L 0 48.40 24.54 12.71 6.90 18.0
Y F 0 49.23 25.11 12.86 6.93 18.2
Y L 1 44.64 19.15 8.75 4.24 13.3
Y F 1 48.50 23.28 11.48 5.92 16.6
N F 0 45.38 22.50 11.60 6.39 16.6
N F 1 49.32 26.00 13.93 7.94 19.4

I = Y/N with/without iteration.
A = L/F latent/parametric align. probs.
D = 1/0 with/without the Dice factor.
IBM is I=Y, A=E, D=0 (top entry).
HAL is I=N, A=F, D=1 (bottom entry).
The rest are transitional species.

The parametric distribution always improves trans-
lation quality. The Dice coefficient factor helps only
with the parametric distribution, without iteration: it
mixes poorly with the IBM weightspk(i | j). It is
however essential when omitting iteration.

8 Summary and Conclusions

IBM schemes estimate bilexical probabilities by
combining weighted coocurrence counts. These
have the correct dimension, but do not measure word
correlation. Using dimensional analysis, we found
another combination—with an additional Dice coef-
ficient factor—of the right dimension that does mea-
sure word correlation. It applies equally well to
phrase counts as to word counts.

Our experiments indicate that alignment probabil-
ities adopt Student’st distributions with predictable
parameters, folded into discrete intervals. There is
thus no need to determine alignment probabilities
empirically. Continuous distributions are practical
for phrase alignment probabilities.

Combining these observations, we removed the
entire iterative procedure. The resulting scheme,
named HAL, is applicable to all IBM models and
to word-based and phrase-based approaches alike.

In our experiments, a word-based IBM model 2
was pitted against its HAL analog. The latter out-
performed the former, and was much faster to train.
We also found that, while the parametric distribution
constitutes an improvement in general, the added



Dice coefficient factor in the bilexical probability es-
timates is needed to replace iteration, and at odds
with the IBM iterative procedure.

The HAL scheme is widely applicable. Compared
to the IBM scheme, it improves translation qual-
ity and eliminates iteration, thus radically reducing
training times. Theλ parameter allows controlling
bilexicon size. This is convenient when using HAL,
instead of IBM model 2, to provide a set of bilexical
probabilities for seeding more elaborate models, or
for extracting biphrasal probabilities or lexical fea-
tures for other translation models.
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9 The Phrase-HAL Scheme

In which we extend the HAL scheme to phrases.

Letσ = s1 . . . sJ be a string of words, and letσi−1,j

refer to the substring consisting of theith tojth word
of σ, heresi . . . sj .

We now generalize the HAL scheme as follows.

p(τ ❀ σ) ∝ (D(τ, σ)− λ) · C(τ, σ)

C(τ)

p(τ ❀ ǫ) ∝ p0 ; p(ǫ ❀ σ) ∝ C(σ)

C(τ, σ) =
∑

k

Ik−1
∑

i=0

Ik
∑

i′=i+1

Jk−1
∑

j=0

Jk
∑

j′=j+1

δτ,τk
i,i′
· δσ,σk

j,j′
·

· p({i, i′} 7→ {j, j′} | {i, i′}, Ik, Jk)

D(τ, σ) =
C(τ, σ) · C()

C(τ) · C(σ)
; C() =

∑

τ,σ

C(τ, σ)

C(τ) =
∑

σ

C(τ, σ) ; C(σ) =
∑

τ

C(τ, σ)

Againλ is a real parameter, such as 0 or 1.
We could, for example, decompose the alignment

probabilities thus.

p({i, i′} 7→ {j, j′} | {i, i′}, I, J) =

= q(j′ − j | i′ − i) · p (̂ı 7→ ̂ | ı̂, I, J)
Now ı̂ = i+i′

2 and ̂ = j+j′

2 . Note the difference
from the word-based case:−1

2 is built in. The prob-
abilities q(lj | li) model phrase length correspon-
dence and remain to be specified. We again have

p(̂ı 7→ ̂ | ı̂, I, J) =

∞
∑

k=−∞

f(±̂ + 2kJ ;µı̂IJ , σ̂ıIJ)

and (here,σ is something completely different)

f(x;µ, σ) =
1

2
√
2σ
·
(

1 +
1

2

(

x− µ

σ

)2
)

−
3

2

µı̂IJ =
ı̂

I
· J ; σ2

ı̂IJ =
ı̂

I
· I − ı̂

I
· J


