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Abstract 

Research done on Arabic sentiment analysis is 
considered very limited almost in its early steps 
compared to other languages like English whether 
at document-level or sentence-level. In this paper, 
we test the effect of preprocessing (normalization, 
stemming, and stop words removal) on the 
performance of an Arabic sentiment analysis system 
using Arabic tweets from twitter. The sentiment 
(positive or negative) of the crawled tweets is 
analyzed to interpret the attitude of the public with 
regards to topic of interest.  Using Twitter as the 
main source of data reflects the importance of the 
system for the Middle East region, which mostly 
speaks Arabic.  

        Keywords-component; Sentiment; Feature; 
Tweets; Polarity, Stop-words, Stemming, 
Normalization 

1. Introduction 
 

Sentiment analysis has recently become 
one of the growing areas of research related to text 
mining and natural language processing. Due to the 
increasing availability of online resources and 
popularity of rich and fast resources for opinion 
sharing like news, online review sites and personal 
blogs, several parties such as customers, 
companies, or even governments started to analyze 
and explore these opinions. Generally, we can say 
that determining the writer’s attitude regarding 
some topic or the overall tonality of the text is 
considered the main task of sentiment analysis.  In 
this paper, we are interested in the effect of the 
preprocessing stage on the performance of the 
sentiment classification process for the Arabic 
language at the sentence level in which the aim is to 
classify a sentence whether a blog, review, tweet, 
etc… as holding an overall positive or negative 
attitude concerning the given topic. It is important 
to mention that this work is part of a project that 

will include extracting sentiment topic and other 
features. 

The fields of text mining and information 
retrieval for the Arabic language had been the 
interest of many researchers and various studies 
have been carried in these fields resulting in diverse 
resources, corpora, and tools available for 
implementing applications like text classification 
(Duwairi, 2009) or named entity recognition 
(Shaalan and Raza, 2009). However, most of the 
research done in these fields was focused on 
English texts with very limited research done for 
other languages such as Arabic (Elhawary and 
Elfeky, 2010), particularly the Egyptian dialect 
which is the language of interest for this research. 
Although Arabic is considered from the top 10 
languages mostly used on the Internet based on the 
ranking carried out by the Internet World State rank 
in 20101 and it is spoken by hundreds of millions of 
people, there exist very limited annotated resources 
for sentiment analysis such as labeled corpora, and 
polarity lexica. This could be considered the main 
reason which had motivated the generation of an 
opinion corpus for Arabic in this work. 

The majority of the text produced by the 
social websites is considered to have an 
unstructured or noisy nature. This is due to the lack 
of standardization, spelling mistakes, missing 
punctuation, nonstandard words, repetitions, etc… 
(Al-Shammari, 2009). That is why the importance 
of preprocessing this kind of text is attracting the 
attention these days especially with the presence of 
several websites producing noisy text. There are 
mainly three steps in the preprocessing process: 1) 
normalization, 2) stemming, and 3) stop words 
removal.  Normalization is the process of 
transforming the text in order to be consistent, thus 
putting it in a common form. On the other hand, 
stemming is the process of reducing words to 
!
1 http://www.internetworldstats.com/ 
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their uninflected base forms. Sometimes the stem is 
different from the root, but it is useful as usually 
related words map to the same stem even if this 
stem is not in itself a valid root. And finally, the 
stop words removal which is the process of 
removing those words which are natural language 
words having very little meaning, such as "في" (in), 
 .and similar words ,(of) "من",(you) "#نت" ,(on) "علي"

The approaches for sentiment classification 
are: machine learning (ML) and semantic 
orientation (SO). The ML approach is a supervised 
approach where data marked with its class (positive 
or negative) are used as training data by the 
classifier implying that a combination of particular 
features yields a particular class (Morsy and Rafea, 
2012) using one of the supervised categorization 
algorithm like Naïve Bayesian Classifier, Support 
Vector Machine (SVM), Maximum Entropy, etc… 
In contrast, the SO approach is mainly an 
unsupervised approach in which a sentiment 
lexicon is built with the class of each word is 
inferred by a number indicating its semantic 
intensity. Then, all the sentiment words in the 
sentence are extracted using this lexicon and their 
polarities are summed up to determine if the 
sentence has an overall positive or negative 
sentiment (Morsy and Rafea, 2012). In this study 
we will be testing the effect of the proposed 
preprocessing steps on both ML and SO 
approaches.  

The remaining of the paper shows in more 
details our achieved work in the preprocessing of 
the Arabic tweets for analyzing and extracting their 
sentiments. Section II summarizes the work done in 
the preprocessing stage of most Arabic sentiment 
mining systems, which is our focus in this study, 
while section III proposes the system architecture 
and discusses the system implementation details. 
Section IV describes the experiments conducted 
and their results. Finally, Section V talks about the 
challenges, conclusion and future work. 

 
2. Related Work  

Firstly is the normalizing stage which is 
putting the Arabic text in a consistent form. A 
normalizer1 is implemented for doing this job using 
Ruby. This normalizer performs several tasks such 
as removing diacritics from the letters, removing ‘ء’ 
(Hamza), making both ‘!’ and ‘!’ change to 
‘!’(y), etc… 

 
1 http://arabtechies.sourceforge.net/projec/ normalization 
_ruby  

Secondly is the stemming stage which is 
considered one of the most important stages in any 
Arabic information retrieval or text mining systems. 
Stemming Arabic terms has proven in several 
researches that it is not an easy task because of its 
highly inflected and derivational nature (Larkey. 
2007). There are mainly two classes of stemmers 
for the Arabic language: aggressive stemmers 
(reducing a given word to its root) and light 
stemmers (identifying a set of prefixes and suffixes 
that will be removed). The authors in (Khoja and 
Garside, 1999) developed an aggressive stemmer 
which reduces the words to their roots. Their 
stemmer removes all the punctuation marks, 
diacritics, numbers, the article “!"” (the), and the 
inseparable conjunction prefix"!" (and). 
Additionally, they have built a large prefixes’ and 
suffices’ list which is used to check all the input 
words if they include any of them, and the longest 
of these is stripped off, if found. Finally, the 
produced word is compared against a list of 
patterns and if a match is found, the root is 
produced. Also, the authors in (Taghva et al., 2005) 
developed an aggressive stemmer similar to the one 
described in (Khoja and Garside, 1999) aiming at 
deriving the root of the word, but they have tried to 
overcome three issues in that stemmer which they 
believe are weaknesses in it. The three issues they 
have identified were: (1) the produced roots are 
sometimes not related to the original words, (2) the 
root dictionary which they uses can be difficult to 
maintain , and (3) the inability of the stemmer to 
remove affixes that should have been removed. In 
general, it is noticeable that the problem with 
aggressive stemmers is that as they reduce the 
words to their roots, most of the time it results in 
losing the specific meaning of the original words. 
This fact has caused this type of stemmers to be 
poor candidates for systems involving high 
accuracy in matching between similar words. On 
the other hand, the authors in (Beltagy and Rafea, 
2011) extended one of the existing light stemmers, 
light10 stemmer, as it is considered to be one of the 
most accurate available stemmers. Also, they have 
proposed a set of rules in order to be able to handle 
broken plurals and transform them to their singular 
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forms. The approach they have used allowed the 
stemmer to satisfy accuracy requirements by 
employing text within a corpus concept to verify 
whether to carry out such transformation or not. 
The transformed word is checked to see whether the 
word resulting from the suggested transformation is 
present in the corpus or not. So, if a word resulting 
from applying a transformation rule on an input 
word (a potential stem), or from removing certain 
prefixes or suffixes, is found to have appeared in 
the corpus, then this word is considered as a stem 
for the input word. !

Similarly, the authors in (Nwesri, 2005) 
compared and proposed a set of techniques for 
stripping prepositions and conjunctions present at 
the beginning of a word, after which the result is 
checked against a lexicon to decide whether that 
certain prefix should be stripped from the input 
word or not.  And finally, the authors in (Goweder 
et al., 2004) dealt with the problem of identifying 
broken plurals and stemming them to their singular 
forms. In all the experiments they have performed, 
the input words were first lightly stemmed using 
the stemmer proposed in (Khoja and Garside, 
1999). As a result of observing that this method 
resulted in very low precision and aiming at 
improving the results, they have employing one of 
the machine learning approaches to add restriction 
rules automatically. But it is noticeable that the best 
results of all were obtained using a dictionary-based 
approach. 

And finally the stop words removal stage. 
There is not one definite list of stop words for 
Arabic. Depending on the type of the application 
they are implementing, authors use different stop 
words list. Some authors build lists that consist 
mainly of the most common and short function 
words like “في” (in), “من” (of), “علي” (on), etc…1. 
On the other hand, some authors build list that 
contains the most common words including lexical 
words like “مثل” (like), “ر"د"” (want), “!قو$” (say), 
etc…2. 

3. Conceptual Overview  

The main aim of this research is to 
investigate how preprocessing of tweets written in  
1 http://www.ranks.nl/resources/stopwords.html 
2 http://arabicstopwords.sourceforge.net 
3 http://arabtechies.sourceforge.net/projec/ normalization 
_ruby 

Egyptian dialect could improve the results of 
sentiment analysis of these tweets. As stated before 
the preprocessing stage consists mainly of three 
stages: 

3.1 Normalizing the Annotated Tweets 

We have used the normalizer 3 as it is very 
efficient and there is not much work that can be 
done in this area.  Table 1 defines language 
normalization rules: 

 
Rule Example 

Tashkeel َثنَا  حدثنا <- حَدَّ
Tatweel !الله <- %للــــــــــــــــــــــــ 
Hamza  ! or ء" or ء <- ء 

Alef  ! or ! or ! -> ! 
lamalef  لا or لآ or لأor  لإ  لا <-

yeh ! or ! -> ! 
heh ! or ! -> ! 

Table 1. Normalization Rules 
 

3.2 Stemming the Normalized Tweets 

Due to the complexity of the Arabic language, 
several studies with various complexity levels were 
carried out to address stemming because of its 
significance in informational retrieval and text 
mining systems. However, most of these studies 
were mainly for modern standard Arabic (MSA) 
and so they can’t handle the different dialect 
specific rules like the Egyptian dialect. For example 
the word “!علشا” (because) if we tried the MSA 
stemmer the word would become “عش” (hut) since 
in MSA when a word ends in “!"” it reflects duality, 
however this word should not have been stemmed 
originally. The fact which forced us to implement 
our own customized stemmer. The main objective 
of the stemmer is to reduce the input word to its 
shortest possible form without compromising its 
meaning. That is why we have adopted the light 
stemming methodology using dialect specific set of 
prefixes and suffixes because in aggressive 
stemmers reducing the word to its root can 
sometimes result in the mapping of too many 
related terms, each with a unique meaning, to a 
single root. Moreover, light stemmers are 
considered very simple to implement and have 
proven to be highly effective in several information 
retrieval systems. On the other hand, light stemmers 
are not applicable of handling some affixes and 
broken plurals which are very common in the 
Arabic language (Larkey, 2007). That is why in our 
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implemented light stemmer, we have combined 
some of the rules introduced in (Beltagy and Rafea, 
2011), together with a set of rules we have 
introduced to handle broken plurals for Egyptian 
dialect which sometimes results in the addition of 
infixes to a word, as well as handling the removal 
of certain affixes. In our stemmer’s 
implementation, we have built two lists: one for 
irregular terms (words that originally start or end by 
any of the prefixes or suffixes and should not be 
stemmed) and another one for irregular plurals and 
their singular forms. These lists are normalized and 
stemmed. Thus, the input word is first checked 
against these lists of irregulars if it is present then it 
won’t be stemmed, otherwise the stemming rules 
will be applied.  

 
The implemented stemmer consists mainly of 

three stages: 1) prefix removal, 2) suffix removal, 
and 3) infix removal which is mainly applying the 
rules for broken plurals. Generally, the prefix 
removal is the first stage attempted, followed by the 
suffix removal stage, and finally the infix removal 
stage. After each stage, the transformed word is 
checked against the dictionary to determine whether 
to continue with stemming it, or just stop. Figures 2 
and 3 show the sets of prefixes and suffixes 
proposed for the Egyptian dialect, while figure 4 
shows the set rules for handling broken plurals. 
Most of these rules were inspired from the ones 
introduced in (Beltagy and Rafea, 2011) with the 
new ones we propose are highlighted in red.  
 

  
Figure 1: Set of compound and single prefixes with 

their meanings 
 

 
Figure 2: Sets of suffixes 

 

 
Figure 3: Rules for broken plurals 

3.3 Find a List of Egyptian Dialect Stop 
Words 

 
Given the absence of any stop words list for the 

Egyptian dialect, we had to build this list from the 
beginning. The process started by identifying the 
words in the whole corpus (20,000 tweets) between 
different frequency ranges as shown in figure 5. 
The figure shows the number of the words in each 
frequency range, and it is clear from the graph that 
there is an inverse relationship between the 
frequency range and the number of words which 
complies with Zipf's law (Li, 1992). After that, we 
started by the first set of words consisting of 11 
words which had the highest frequency range to be 
our list of stop words after removing all the 
sentiment words “جم"ل” (beautiful), “بشع” (ugly), 
etc.. , named entities like “!فلو” (Followers), “مصر” 
(Egypt), “!"مبا” (Mubarak), etc…, and verbs like 
 etc…, and tested its ,(kill) ”قتل“ ,(Trial) "%حاكم"
effect on the accuracy of the classifier. At the 
beginning there were drops in performance, means 
that there might be some important words that 
should not have been removed, or there some other 
stop words that still needs to be removed. So we 
worked on identifying these words manually. Then, 
this process continued accumulatively by adding 
lists from the following frequency ranges until we 
have reached a list of stop words consisting of 128 
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words that increases the accuracy by almost 1.5%. 
Figure 6 shows the frequency of each stop. 

Figure 4. The Number of words in different 
Frequency Ranges 

Figure 5. The frequency of each stop word 

4. Sentiment Analysis Approaches  

The effect of preprocessing on sentiment analysis 
performance was measured on the two approaches 
namely ML and SO approaches 
 

4.1 Machine Learning Approach (ML) 

 This approach uses different feature sets 
(unigrams, bigrams, and trigrams), together with 
the Support Vector Machines (SVM) as the 
machine learning classifier. The preprocessing, 
features’ extraction and the classification are done 
in three different components, creating the ability to 
try various arrangements of preprocessing, features 
and classifiers till reaching the one which yields the 
highest accuracy.  

The methodology used for building the ML 
classifier consists mainly 5 stages: 1) crawling 
tweets from twitter to form a corpus, 2) cleaning 
this created corpus and annotating 1,000 tweets 

(500 positive tweets and 500 negative tweets), 3) 
normalizing, stemming and removing the stop 
words 4) identifying unigrams, bigrams, and 
trigrams to be used as candidates features in 
building the feature vectors, 5) using the most 
known classifier in sentiment classification; SVM. 
We have used the Weka Suite software (Hall et al., 
2009) for the classification process.  

4.1.1 Getting Data from Twitter (Arabic 
Tweets) 

Despite the importance of the Arabic language, it is 
believed to be one of the languages with poor 
content over the web as very limited number of 
pages specializes in Arabic reviews. The fact which 
encouraged us to start using Twitter as the main 
source for getting vast amounts of data, especially 
that it provides a search API enabling the search for 
tweets in the language of interest (Twitter search 
API, http://search.twitter.com/search.atom? 
lang=ar& rpp=100&page={0}&q={1}).  We were 
able to crawl more than 20,000 tweets from 
different news topics. The majority of these 
crawled tweets were in the Egyptian dialect with 
small number of tweets in standard Arabic. The size 
of the corpus was considered one of the main issues 
as the bigger the size of the training data, the more 
accurate the classifier will be in classifying any 
new supplied sentence. 
 
4.1.2 Tweets Cleaning and Annotation 

 
From the 20,000 crawled tweets, 1,000 tweets were 
annotated (500 positive tweets and 500 negative 
tweets). For the annotation process, two raters were 
working on labeling the tweets, and it was observed 
that they had a high degree of agreement in their 
classification (over 80%). For those tweets that they 
labeled differently, a third rater was used to 
determine its final sentiment. For those annotated 
tweets, all the user-names, pictures, non-Arabic 
hash tags, URLs and all non-Arabic words were 
removed. The tweets selected were chosen based on 
two assumptions: 1) the sentence represents the 
opinion of just one author, 2) the sentence holds the 
author’s opinion about only one topic and not 
sarcastic. 
 
4.1.3 Tweets Pre-Processing 

 
In this stage we just apply the proposed 
preprocessing tool on the cleaned tweets. Each 
process is done accumulatively to produce at the 
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end normalized, stemmed tweets with the stop 
words removed. 
 
4.1.4 Feature Extraction and Feature Vector 

 
Given that our work is mostly in word/phrase level 
sentiment analysis, we have chosen to work with 
unigrams, bigrams and trigrams (Khreisata, 2009). 
Unigrams are considered the simplest features to 
extract and they provide good courage for the data, 
while bigrams and trigrams provide the ability to 
capture negation or sentiment expression patterns. 
Therefore, the process starts by extracting all the 
unigrams, bigrams, and trigrams in the 1000 
annotated tweets. Then for each of these candidate 
features, its frequency in the 20,000 tweets was 
calculated, creating a dictionary for all the 
candidate features with their corresponding 
frequencies. Finally for each Tweet, if any of these 
candidate features is present in it, then this 
candidate feature frequency is fetched from the 
dictionary and it is placed in the feature vector 
representing this tweet. Therefore, the feature 
vector built for each tweet used term frequency: 
({word1:frequency1, word2:frequency2 …}, 
“polarity”) 
 
4.1.5 Weka Suite Software 

 
For the classification, the Weka Suite Software 
version 3.6.6 is used as it is a collection of ML 
algorithms such as NB, SVM, etc… as well as 
feature selection methods such as IG. Also, various 
test options exists like configurable number of fold 
cross validation, test set and percentage split. When 
the dataset size is large, it is possible to run it 
directly by inserting the dataset into the program or 
from the command line. 

4.2 Semantic Orientation Approach 

The methodology used to build the SO classifier 
consists mainly of 3 steps: 1) using 600 sentiment 
annotated tweets (300 positive and 300 negative) to 
build the sentiment words list, 2) normalizing, 
stemming and removing the stop words and 3) 
classifying the remaining 400 tweets (200 positive 
and 200 negative) as positive or negative using the 
sentiment word found in the tweet, and building a 
confusion matrix for the tweets classified as 
positive and another matrix for the tweets classified 
as negative to measure the accuracy of 
classification. 

4.2.1 Building the list of Sentiment Words 

Given the limited work done for Arabic text in 
the field of sentiment analysis, especially for the 
Egyptian dialect, we had first to start by manually 
building two lists: one for the most occurring 
positive sentiment words, and one for the most 
occurring negative sentiment words. Then for each 
word in these lists a weight is given to it based on 
its frequency in 300 positive tweets and its 
frequency in 300 negative tweets.  

4.2.2 Tweets Pre-Processing 
 

The same steps (normalizing, stemming, stop words 
removal) are done in the same order as in the ML 
approach. Both the tweets and the sentiment words 
list are processed. 
 
4.2.3 Classifying the Test Set of Tweets 

To determine the class of each tweet, a cumulative 
score is calculated using the sentiment words in the 
tweet to determine its class. For each sentiment 
words present, its score is added to the total in the 
following way: 

 

where !!" !is the positive weight of the word, !!"!is 
the negative weight of the word, and they are 
calculated based on the number of times this word 
appeared in the positive tweets, and the number of 
times this word appeared in the negative tweets. 
The weights assigned to the sentiment words are 
used to determine how close it is to positive “1” or 
to negative “-1”. The final value of the score (score 
> 0 or score < 0) determines polarity of the whole 
tweet. Since, in this stage we are only dealing with 
two classes building a binary classifier, positive and 
negative, the neutral class, where either no 
sentiment words were found or both numbers of 
positive and negative sentiment words are equal, is 
not acceptable. Thus for each class a classifier is 
built determining whether the tweet belongs to its 
corresponding class, or it belongs to the class 
named “other”. Then, the accuracy, the precision, 
the recall, and the F-measure of each classifier will 
be calculated, which will be averaged at the end to 
reach a final unified accuracy. 
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5 Experimentation and Evaluation  
 

5.1 ML Results and Discussion 
 

5.1.1 Results 
 

To test the performance of our proposed 
preprocessing stages, we have applied our 3 stages 
accumulatively meaning that the normalized tweets 
will be then stemmed, and finally the stop words 
will be removed from these stemmed tweets. Four 
experiments were carried out: 1) using raw tweets, 
2) after applying the normalizer, 3) after applying 
the stemmer, and 4) after removing the stop words; 
and their results are shown in tables 2, 3, 4 and 5. 
The SVM classifier was first trained using the 
frequency of the unigrams only; secondly it was 
trained using a combination of both unigrams and 
bigrams with an attempt to capture any negation or 
sentiment switching phrases; and finally it was 
trained using a combination of unigrams, bigrams 
and trigrams to capture any sentiment expression or 
idioms. The results were as follows using 10-fold 
validation: 
 

 SVM 
 Accuracy Precision Recall F-Measure 

Unigrams 0.740 0.740 0.740 0.740 
Unigrams 

+ 
Bigrams 

0.739 0.740 0.739 0.739 

Unigrams 
+ 

Bigrams 
+ 

Trigrams 

0.737 0.738 0.737 0.737 

Table 2. SVM results using raw tweets  

 SVM 
 Accuracy Precision Recall F-Measure 
Unigrams 0.756 0.756 0.756 0.756 
Unigrams 

+ 
Bigrams 

0.754 0.755 0.754 0.754 

Unigrams 
+ 

Bigrams 
+ 

Trigrams 

0.753 0.754 0.753 0.753 

Table 3. SVM results using normalized tweets 

 

 SVM 
 Accuracy Precision Recall F-Measure 
Unigrams 0.774 0.774 0.774 0.774 
Unigrams 

+ 
Bigrams 

0.784 0.784 0.784 0.784 

Unigrams 
+ 

Bigrams 
+ 

Trigrams 

0.787 0.787 0.787 0.787 

Table 4. SVM results using stemmed tweets (1) 

 
 SVM 

 Accuracy Precision Recall F-Measure 
Unigrams 0.738 0.739 0.738 0.738 
Unigrams 

+ 
Bigrams 

0.775 0.775 0.775 0.775 

Unigrams 
+ 

Bigrams 
+ 

Trigrams 

0.779 0.779 0.779 0.779 

Table 5. SVM results using stemmed tweets (2) 

 
 SVM 

 Accuracy Precision Recall F-Measure 
Unigrams 0.777 0.777 0.777 0.777 
Unigrams 

+ 
Bigrams 

0.788 0.788 0.788 0.788 

Unigrams 
+ 

Bigrams 
+ 

Trigrams 

0.788 0.788 0.788 0.788 

Table 6. SVM result after stop words removal  
 
Tables 2 shows the results obtained in the 
classification process for SVM classifier using term 
frequency scheme respectively before applying any 
preprocessing, then Table 3-6 show the results 
obtained after applying each process 
accumulatively.  Tables 4 and 5 show the result of 
applying two stemmers: 1) our implemented 
stemmer, and 2) light stemmer 1. It is important to 
note that the performance measures of both the  
 
1 http://pypi.python.org/pypi/Tashaphyne/ 
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positive and the negative classifiers were first 
calculated using the average of the 10-fold 
validations, then these measures were averaged to 
produce the numbers presented in the tables. 
 
5.1.2 Discussion 

 
Comparing the results of SVM, it was clear 

better results were produced after applying the 
preprocessing stages. The improvement between 
the best accuracy results before and after applying 
preprocessing is almost 4.5%. The same goes with 
the precision, recall and the F-measure. This 
behavior was observed in more than one study as 
preprocessing usually tries to reduce the noise in 
the text, thus eliminating part of the distortions in 
the features space. Also an important observation 
was noticed is that the number of features was 
reduced dramatically from 6622 features in case of 
best result using unigrams before applying 
preprocessing to 4893 features in case of best result 
using trigrams after applying preprocessing. That is 
because the more steps we apply from the 
preprocessing stage, the more related features 
converge together reducing the problem of features 
over-fitting and increasing the rate of the learning 
scheme. 

 
We have tested our implemented stemmer 

against one of the light stemmers available. 
Analyzing the results in tables 4 and 5, it is 
noticeable that our implemented stemmer produces 
better results because dialect specific issues that we 
have addressed in our implementation. For 
example, the word “!علشا” and “!عشا” both forms 
of the words are right and they mean “because”, in 
our stemmer we have included them in the irregular 
list and so they won’t be stemmed, however in the 
light stemmer they will be stemmed to “علش-not a 
word” and “عش-hut” which are completely two 
different words. 

 
Regarding the n-gram model, we can note 

clearly that after applying the stemming, adding the 
bigram model to the unigram model greatly 
improves the performance. However, there were not 
big differences in the performance by adding the 
trigram model to the combined unigram and bigram 
model. It should be noted that we have used only 
the 1000 annotated tweets to build the unigram, 
bigram and trigrams models, may be using more 
tweets could result in more unigrams, bigrams and 
trigrams, thus further improvements in the results.  

5.2 SO Results and Discussion 
 

5.2.1 Results 
 

To test the effect of the preprocessing on the SO 
performance, 3 experiments were carried out one at 
each stage with the preprocessing applied to both 
the sentiment words and the tweets. Before carrying 
the experiments, we have removed stop words as 
their removal should not have any impact on 
enhancing the results but their removal will 
accelerate the classification process. In the first 
experiment we normalized both the tweets and the 
sentiment words, and then in the second experiment 
both were also stemmed. We didn’t test the effect 
of stop words removal on SO performance as there 
is no intersection between the sentiment words and 
the stop words, thus removing the stop words won’t 
affect the performance of the SO, it is only the 
sentiment words which affect it. 
 

 Positive Negative Average 
Accuracy 0.725 0.653 0.689 
Precision 0.768 0.714 0.741 

Recall 0.725 0.653 0.689 
F-measure 0.746 0.682 0.714 

Table 7. SO results using raw tweets  

 Positive Negative Average 

Accuracy 0.728 0.658 0.693 

Precision 0.767 0.711 0.739 
Recall 0.728 0.658 0.693 

F-measure 0.747 0.683 0.715 
Table 8. SO results using normalized tweets 

 Positive Negative Average 
Accuracy 0.760 0.758 0.759 
Precision 0.761 0.770 0.765 

Recall 0.760 0.758 0.759 
F-measure 0.760 0.764 0.762 

Table 9. SO results using stemmed tweets (1) 
 Positive Negative Average 

Accuracy 0.753 0.755 0.754 
Precision 0.758 0.763 0.760 

Recall 0.753 0.755 0.754 
F-measure 0.755 0.759 0. 757 

Table 10. SO results using stemmed tweets (2) 
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Tables 7-10 calculate the performance results for 
the classification of the binary classifiers at each 
stage of the preprocessing. Tables 9 and 10 test the 
result of applying two stemmers: 1) our 
implemented stemmer, and 2) light stemmer. 
 
5.2.2 Discussion 

 
Regarding the effect of the preprocessing 

on the SO performance, we can note that there was 
an improvement of 7% in the accuracy and the 
recall, while there was an improvement of 2% in 
precision and 5% in the F-measure. That is because 
in SO it is only the form of the sentiment words 
which affect the performance, thus after 
preprocessing, the sentiment words in the tweets 
were almost converted to the same form of the 
sentiment words in the lists and they were easily 
extracted. However not all tweets contain sentiment 
words and even if there exist they represent a very 
small percentage of the words in the tweet. Hence, 
building more comprehensive lists of sentiment 
words could be considered a possible solution to 
further enhance the performance. 

 
Analyzing the results in tables 9 and 10, it 

is noticeable that both stemmers produce almost the 
same results with very minor changes. This 
behavior is somehow expected as the stemming of 
most of the sentiment words is expected to be the 
same because there are less dialect specific 
sentiment words. 

 
Comparing the results of the positive and 

the negative binary classifiers, it was clear that the 
performance of the positive classifier was 
improving over the performance of the negative 
classifier until we have applied the stemmer they 
started to become very close. This behavior reflects 
the fact that the positive tweets are less noisy than 
the negative tweets; therefore with minimal 
preprocessing (just normalizing) it has almost 
reached the best result.  
 

6. Conclusion and Future Work  
In this paper, we have demonstrated the 

effect of the preprocessing on enhancing the 
sentiment classification of 1000 Arabic tweets 
(positive or negative) written in Egyptian dialect 
from Twitter. As a first step, we believe that the 
results obtained are very promising. We have used 
two stemmers (our implemented stemmer and light 

stemmer) for the aim of comparing their 
performance in both approaches, and it was 
noticeable that in ML approach our stemmer 
produced an improvement of 1% over the light 
stemmer, while in the SO approach our stemmer 
produced an improvement of 0.5% over the light 
stemmer due adding Egyptian dialect prefixes, 
suffixes and rules for broken plurals. In the ML 
approach, we have applied the feature vectors to the 
SVM classifier once before applying the 
preprocessing and once after applying each stage of 
the preprocessing to test its effect on the system’s 
performance, and at the end we have reached an 
improvement in the performance of almost 4.5% in 
all measures. While in the SO approach, we have 
applied each stage of the preprocessing to both the 
tweets and our created sentiment words lists, and at 
the end we have reached an improvement between 
2-7% for the different performance measures.  

 
It is important to note that from the possible 

causes behind the improvement of the ML approach 
(78.8%) over the SO approach (75.9%) given that 
the SO depends only on the sentiment words: 1) the 
tweet originally contains no sentiment words, 2) the 
sentiment word in the tweet is not present in the 
lists, 3) the sentiment word even after applying the 
preprocessing is written in a different form from the 
one stored in the list. For example, the word “خ"ر - 
good” and “!خ#ر - good”, in meaning they are the 
same but here the suffix “!” present after the 
stemming makes them two different words. 
However, this is considered a defect in the 
normalization program we are using as “!” is 
considered a diacritic that should have been 
removed. 

 
For future work, we believe that our 

developed stemmer could be further improved by 
closely monitoring the performance of each applied 
rule, thus increasing the probability that more 
related words will be reduced to the same stems. 
Also our developed stop words list needs to be 
further investigated as the performance increased 
by only 0.1% which! means that there are some 
other stop words that still need to be removed. 
Moreover, we will be trying to include the semantic 
to build a hybrid approach combining both ML and 
SO approaches and testing the effect of 
preprocessing on this hybrid approach. 
Accordingly, a more comprehensive list of all 
Egyptian dialect positive and negative sentiment 
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words needs to be built since there doesn’t exist any 
of them.  

Finally, improving the performance of this 
preprocessing component with all its stages is 
currently considered our main aim as it is part of a 
bigger system for determining sentiment of the 
Arabic tweets, extracting hot topics, and identifying 
influential bloggers (Shoukry and Rafea, 2012).  
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