
Approaches to Arabic Name Transliteration and Matching in the
DataFlux Quality Knowledge Base

Brant N. Kay Brian C. Rineer

SAS Institute Inc. SAS Institute Inc.
100 SAS Campus Drive 100 SAS Campus Drive

Cary, NC 27513 Cary, NC 27513
brant.kay@sas.com brian.rineer@sas.com

Abstract

This paper discusses a hybrid approach to
transliterating and matching Arabic names,
as implemented in the DataFlux Quality
Knowledge Base (QKB), a knowledge base
used by data management software systems
from SAS Institute, Inc. The approach to
transliteration relies on a lexicon of names
with their corresponding transliterations as
its primary method, and falls back on
PERL regular expression rules to
transliterate any names that do not exist in
the lexicon. Transliteration in the QKB is
bi-directional; the technology transliterates
Arabic names written in the Arabic script
to the Latin script, and transliterates Arabic
names written in the Latin script to Arabic.
Arabic name matching takes a similar
approach and relies on a lexicon of Arabic
names and their corresponding
transliterations, falling back on phonetic
transliteration rules to transliterate names
into the Latin script. All names are
ultimately rendered in the Latin script
before matching takes place. Thus, the
technology is capable of matching names
across the Arabic and Latin scripts, as well
as within the Arabic script or within the
Latin script. The goal of the authors of this
paper was to build a software system
capable of transliterating and matching
Arabic names across scripts with an
accuracy deemed to be acceptable

according to internal software quality
standards.

1 Introduction

The challenges inherent to transliterating Arabic
names from the Latin script to the Arabic script lie
in the fact that there are many seemingly arbitrary
ways to spell Arabic names using Latin characters.
Halpern (2007) attributes this arbitrariness to the
fact that certain Arabic consonant sounds simply
do not exist in English, so they are represented in
different ways using the Latin script. He also notes
that dialectical differences in vowel pronunciation
contribute to the variety of Latin spellings.
Because there are often several Latin variants of a
single Arabic name, it is difficult to successfully
transliterate them from Latin to Arabic using a
rule-based approach. Take, for example, the name
 The single Arabic .(Latin: Mohammed) محمد
representation of this name, محمد, can be spelled in
several ways using the Latin script. Alternatives
include:

 Mohamad
 Mohamed
 Muhamad
 Muhamed
 Muhammet
 Mohammad
 Mohammed
 Muhammad
 Muhammed

Given the variety of spellings in these alternatives,
it becomes clear why a lexically-based approach is

32

necessary to transliterate such names from Latin to
Arabic -- rules cannot capture the arbitrary nature
of Arabic name orthography as it is rendered using
Latin characters. To illustrate this assertion, let’s
focus on only the two variants Muhammet and
Muhammed. These variants are a minimal pair
differing only by their final consonant (‘T’ or ‘D’).
The sounds for both ‘T’ and ‘D’ are rendered in
Arabic as د at the end of the name محمد. One might
therefore deduce that a rule can be devised to
transform ‘T’ and ‘D’ to د at the end of a word.
However, mapping both ‘T’ and ‘D’ to the Arabic
character د is not always appropriate in the word-
final context. For instance, the name Falahat in
Arabic is فلاحت. Mapping the final ‘T’ in Falahat to
 which is not a valid , فلاحد would produce د
transliteration of Falahat. To allow for such
idiosyncrasies, a list must be built of all known
Latin variants of Arabic names, along with their
accompanying Arabic transliterations.
 There are similar challenges inherent to
transliterating Arabic names in the opposite
direction -- from the Arabic script to the Latin
script. Take, for example, the name Ruwaida
(Arabic: رويده). The single Latin representation of
this name, Ruwaida, can be spelled in several ways
using the Arabic script. Alternatives include:

 رويده
 رويدا
 رويضه

Focusing specifically on the first two variants, it
becomes clear why a rule-based approach will not
produce the Latin transliteration Ruwaida. رويده and
 are a minimal pair differing only by their final رويدا
character (ه or ا). The sounds for both ه and ا are
rendered in Latin as ‘A’ at the end of the name
Ruwaida. One might therefore deduce that a rule
can be generated to transform ه and ا to ‘A’ at the
end of a word. However, mapping both ه and ا to
the Latin character ‘A’ is not always appropriate in
the word-final context. For instance, the name یهوج
in Latin is Wajee. Mapping the final ه in یهوج to ‘A’
would produce Waja, which is not a valid
transliteration for the name یهوج . To allow for this
orthographical idiosyncrasy, a list must be built of
all known Arabic variants of Arabic names, along
with their accompanying Latin transliterations.
 There is yet another orthographical
complication in Arabic. Arabic is written without

short vowels. Halpern (2007) refers to the omission
of short vowels as the greatest challenge to
achieving accuracy in transliterating Arabic to
English. In the absence of information about vowel
sounds, there could be several possible
transliterations of a single name written in Arabic.
Take, for example, فرغل (Latin: Farghal). Possible
transliterations of this name might include:

 Ferghal
 Farghal
 Firghul
 Farghel
 Farghil

One must have knowledge of the lexical item فرغل
to know that Farghal is the proper way to render
 using Latin characters. There are no rules that فرغل
would simply insert short vowels to produce the
correct Latin transliteration. To illustrate this
assertion we can examine the Arabic name یفردوس ,
which is properly transliterated to Latin as
Firdausi. Both فرغل (Latin: Farghal) and یفردوس
(Latin: Firdausi) begin with the same two Arabic
letters ف (Latin: ‘F’) and ر (Arabic: ‘R’). Yet in
 we would have to insert an ‘A’ between these فرغل
two letters, whereas in یفردوس we would have to
insert an ‘I’ between these two letters to generate
each respective Latin transliteration. By definition,
no vowel insertion rule can suffice. Knowledge of
each lexical item as a whole is necessary for
generating the correct Latin transliteration.
 The fact that Arabic is not written with short
vowels also presents challenges for matching
names across scripts when a rule-based approach is
employed. Given the absence of vowel information
from input in the Arabic script, we must ignore all
vowels from input in the Latin script entirely when
attempting to compare names across scripts. As a
result, certain false matches occur, as seen in the
following cluster of names:

Cluster:
 خالد
 Khaled
 خلود
 Kholoud

This cluster results from the fact that خالد is
transliterated to Khaled, whose vowels are then
removed via rules to produce the string KHLD.

33

Likewise, خلود is transliterated to Kholoud, whose
vowels are then removed via rules to produce the
string KHLD. The two Latin input strings Khaled
and Kholoud likewise have their vowels removed
via rules, producing the string KHLD in both
cases, and all four strings match. Of course, if we
consider using placeholders for vowels we could
render Khaled and Kholoud as KH*L*D and
KH*L**D, whereby preventing these two Latin
renderings from falsely matching. But since Arabic
does not contain short vowels, using a placeholder
character prevents us from matching Arabic with
Latin. There can be no placeholder in Arabic
because there are no short vowels to hold on to.
 A lexical-based approach would help eliminate
this problem of false matches. A list of all known
Latin variants and all known Arabic variants of a
single name could be mapped to a single canonical
Latin representation. خالد and Khaled (along with
all variants of this name in both scripts) could be
mapped to Khaled. خلود and Kholoud (along with
all variants of this name in both scripts) could be
mapped to Kholoud. The resultant match behavior
would produce these two clusters:

Cluster 1:
دخال
 Khaled
Cluster 2:
دخلو
 Kholoud

Hence the problem of false matches can be reduced
by using a comprehensive list of names and their
variants. A system cannot produce these separate
clusters by relying solely on a rule-based approach
with a step that removes vowels.
 Statistical machine translation-based
approaches, such as that described in Hermjakob
et. al (2008), have been successful at overcoming
many of these challenges. However, the software
discussed in this paper relies purely on a
deterministic approach to transliteration and
matching. The technologies employed in a
machine-learning environment were simply not
available in the QKB. The QKB is part of a generic
system used to analyze and transform data in many
languages across different data domains. It is not
built to solve any one particular language problem,
such as transliterating names between two scripts.
Its components are kept simple to enable business

users to customize language processing rules to
solve a variety of linguistic problems. Therefore
the statistical methods required for training on a
particular natural language task are not built into
its architecture.

2 Method

This section describes the development and testing
procedure of the Arabic name transliteration and
matching technology, as implemented in the
DataFlux Quality Knowledge Base (QKB).

2.1 Arabic to Latin Transliteration

A lexicon of approximately 55,000 Arabic name
variants written in the Arabic script, and their
accompanying Latin transliterations, was compiled
using data acquired from the CJK Dictionary
Institute.1 In addition, an Egyptian subject matter
expert manually created a lexicon of approximately
10,000 Arabic name variants written in the Arabic
script along with their accompanying preferred
Latin transliteration. Since the technology was
implemented as part of an Egyptian Arabic
software localization project, precedence was
given to Egyptian conventions for spelling and
spacing within Arabic names written in Latin as
the standard for transliterated names. The list of
preferred Egyptian transliterations was applied
first, followed by the general list of transliterations
acquired from the CJK Dictionary Institute.
Together these two lexicons served as the primary
source for transliteration. Prior to the application of
the transliteration lexicons, basic cleansing
operations, such as punctuation and diacritics
removal, were first applied. As a fall back, rules
were designed after the Buckwalter Arabic
transliteration scheme2 to transliterate any names
that were not found in either of the two lexicons.
Some additional context sensitive rules were
added. For example, the ه character transliterates to
the A character at a word boundary; elsewhere it
becomes H. Three other characters that do not exist
in the Buckwalter scheme (ء , ئ, and ؤ) were added
as well because they were found in the Egyptian
Arabic data that were used to test the system.

1 http://www.cjk.org/cjk/index.htm
2 http://open.xerox.com/Services/arabic-
morphology/Pages/translit-chart

34

 A sample of 500 full Arabic names was
randomly drawn from a population of
approximately 9000 full Arabic names written in
the Arabic script, taken from a regional banking
company’s customer database. The 500 names
were then transliterated to the Latin script using the
QKB. The results were sent to an Egyptian subject
matter expert for review. Any transliteration errors
were noted in the test results, and the correct
transliteration was added to the Egyptian
transliteration lexicon. Transliterations were
judged as errors if either the lexicon or the fallback
rules rendered an unacceptable transliteration
according to the subject matter expert. This
regression testing process was repeated until the
number of errors was deemed to be acceptable
according to internal software quality standards.

Example 1: Transliteration via Egyptian
transliteration scheme
 Æ Tareq Jafar AboAlEnein طارق جعفر ابوالعینین

Example 2: Transliteration via CJK Dictionary
Institute lexicon
 Æ Kayan Muharrij Zeitoun كاين محرج زيتون

Example 3: Transliteration via PERL regular
expression rules
 Æ Ana Nstur Malakhyas انا نستور مالاخیاس

2.2 Latin to Arabic Transliteration

A lexicon of approximately 863,282 Arabic name
variants written in the Latin script, and their
accompanying Arabic transliterations, was
compiled using data acquired from the CJK
Dictionary Institute. Additionally, an Egyptian
subject matter expert manually created a lexicon of
approximately 10,000 Arabic name variants
written in the Latin script along with their
accompanying preferred Arabic transliteration. As
stated earlier, precedence was given to Egyptian
conventions for spelling and spacing, so the list of
preferred Egyptian transliterations was applied
before the general CJK Dictionary Institute
lexicon. Prior to the application of the
transliteration lexicons, basic cleansing operations,
such as punctuation and diacritics removal, were
applied. As a fall back, rules were put in place after
the transliteration lists. These rules performed
basic letter-for-letter Latin to Arabic
transliteration, with some additional context

sensitive rules provided by the Egyptian subject
matter expert. For example, the Latin characters
‘Y’ and ‘I’ are transliterated to the Arabic
character ى at word boundaries; elsewhere they
become ي. The character ‘U’ is transliterated to و
if it occurs after ‘O’; elsewhere it becomes ع.

A sample of 500 full Arabic names was
randomly drawn from a population of
approximately 8000 full Arabic names written in
the Latin script, taken from a regional banking
company’s customer database. The 500 names
were then transliterated to the Arabic script using
the QKB. The results were sent to an Egyptian
subject matter expert for review. Any
transliteration errors were noted in the test results,
and the correct transliteration was added to the
Egyptian transliteration lexicon. Transliterations
were judged as errors if either the CJK Dictionary
Institute lexicon or the fallback rules rendered an
unacceptable transliteration according to the
subject matter expert. This regression testing
process was repeated until the number of errors
was deemed to be acceptable according to internal
software quality standards.

Example 1: Transliteration via Egyptian
transliteration scheme
 Mohamed Samir AbdElSalam Æ محمد سمیر
 عبدالسلام

Example 2: Transliteration via CJK Dictionary
Institute lexicon
 Makhtouf Nesra Abd Elwakel Æ مقطوف نصراء
 عبدالوكیل

Example 3: Transliteration via PERL regular
expression rules
 Anham Enshrah Shaghata Æ انهام انشراه شاغاته

2.3 Matching

Matching of Arabic names in the QKB is closely
related to the Arabic to Latin Transliteration
method described above. All names written in the
Arabic script are transliterated to Latin in order to
match the same, or similar, names across the two
scripts.

Prior to applying transliteration lexicons, basic
cleansing operations such as punctuation and
diacritics removal are applied. As a supplementary
step, Arabic name particles in both scripts (ex.

35

Abdel, Al, El, Abu, عبد, ال, ابو) are removed from the
input to reduce the input string to a basic canonical
representation before final matching. Names in the
Arabic script are then transliterated using a lexicon
of Arabic names and their Latin counterparts. A
second transliteration lexicon, consisting of names
in the Arabic script stripped of their particles, is
applied. For example, when عبدالرازق (Latin:
AbdelRazek) is stripped of the particle عبدال (Latin:
Abdel) in the step above, the name becomes رازق
(Latin: Razek). The second scheme then
transliterates رازق to Razek. For any names in the
Arabic script that are not in either of the two
lexicons, Arabic to Latin phonetic transliteration
rules are then applied on a letter-for-letter basis.
These rules are similar to the Buckwalter
transliterations, but are more simplified in that
there are fewer Arabic-to-Latin character
mappings. That is, there are more Arabic
characters that map to a single Latin character in
the phonetic rules than there are in the Buckwalter
transliteration scheme. This allows the system to
match more names that are similar in
pronunciation. After the phonetic transliteration
step, all Arabic input is now successfully rendered
in the Latin script, and further phonetic reductions
(ex. geminate consonant reduction, vowel
transformations) take place before final matching.

A sample of approximately 8000 full Arabic
names was randomly drawn from a population of
approximately 17,000 full Arabic names, half
written in Arabic, half in Latin, taken from a
regional banking company’s customer database.
The 8000 names were sent through a cluster
analysis test using the matching technology
heretofore described. The results were sent to an
Egyptian subject matter expert for review. Any
false matches or missed matches were noted in the
test results, and either the transliteration lexicon or
the phonetic transcription rules were updated to
yield more accurate match results. This regression
testing process was repeated until the number of
errors was deemed to be acceptable according to
internal software quality standards.

Examples: Clusters of similar names, identified by
the matching software system.

Example 1:

 فاطمه عباس عبدالرازق
Fatma Abbas Abdel Razek

Fatima Abas Abdel Razik

Example 2:

Ahmed Malawi Abdel-Aaty
 احمد معلاوى عبدالعاطى
 احمد معلوى عبدالعاطي

3 Results

This section describes the results of the testing
procedure of the Arabic name transliteration and
matching technology, as implemented in the
DataFlux Quality Knowledge Base (QKB).

3.1 Arabic to Latin Transliteration

After twelve iterations of regression testing, the
QKB transliterated Arabic names written in the
Arabic script to the Latin script with an accuracy
of 92%. Testing was halted after twelve iterations
because an 8% error rate was deemed acceptable
according to internal software quality standards.
Once the accuracy reached 92%, returns on further
testing iterations became diminished. Customers
seeking increased transliteration accuracy for their
particular data have the ability to add more names
to the existing transliteration schemes. Perfect
accuracy was neither necessary nor expected, and
thus the product was considered ready to go to
market. See above for sample transliterations.

3.2 Latin to Arabic Transliteration

After fourteen iterations of regression testing, the
QKB transliterated Arabic names written in the
Latin script to the Arabic script with an accuracy
of 93.9%. Testing was halted after fourteen
iterations because a 6.1% error rate was deemed
acceptable according to internal software quality
standards. Once the accuracy reached 93.9%,
returns on further testing iterations became
diminished. Customers seeking increased
transliteration accuracy for their particular data
have the ability to add more names to the existing
transliteration schemes. Perfect accuracy was
neither necessary nor expected, and thus the
product was considered ready to go to market. See
above for sample transliterations.

3.3 Matching

After six iterations of regression testing, the QKB
matched names across the Latin and Arabic scripts
with an accuracy of 99.6% with respect to false

36

matches. That is, 0.4% of the matches generated by
the QKB were false positives. The accuracy with
respect to missed matches was 99.98%; a mere
.025% of the data were missed matches; i.e. false
negatives. Testing was halted after six iterations
because the aforementioned error rates were quite
acceptable according to internal software quality
standards. See above for sample clusters of similar
names.

4 Conclusion

Transliterating and matching Arabic names
presents a challenge. Transliterating from Latin to
Arabic proves difficult because there are so many
Latin variants of a single Arabic name. This
variety cannot be readily captured using rules, so a
lexicon of Latin to Arabic transliterations must
supplement such rules. Transliterating from Arabic
to Latin is likewise a challenge for this very same
reason. The variety of known Latin transliterations
for a single Arabic name means no single
transliteration is canonically correct. A list of
preferred Latin transliterations for the Arabic-
speaking country or region in question determines
the correct transliteration. Rules schemes such as
the Buckwalter Arabic transliteration scheme
cannot capture regional orthographic conventions.
Finally, the absence of short vowels in the Arabic
script means there can be several possible Latin
transliterations of a single Arabic name if rules are
used. The absence of short vowels in Arabic also
accounts for the insufficiency of using rules to
match names across scripts. Without vowel
information in the Arabic script, we must remove
all vowels from the Latin script, and certain false
matches occur. The use of a comprehensive
lexicon to map all Latin and Arabic variants to a
single Latin representation would help solve this
problem.
 The hybrid approach to transliterating and
matching Arabic names, as implemented in the
DataFlux Quality Knowledge Base (QKB),
performed well in transliterating names across
scripts. It should be noted that this paper is
reporting on research in progress, as the QKB is
continually undergoing updates. As the
transliteration lexicons are grown over time,
transliteration accuracy will improve. Likewise,
any additional contextual rules that may be added
to the PERL regular expression rules, and/or the

phonetic transliteration rules, will likewise
contribute to better transliteration accuracy in both
directions. The match results were excellent, most
likely due to the significant phonetic reductions,
including vowel transformations, which take place
after transliteration. On the other hand, we
permitted a high tolerance for false positives when
evaluating the test results. At the time of
development of the QKB’s name matching
technology, the CJK Dictionary Institute lexicons
were not available. In the future, matching will rely
less on rules and will leverage the CJK Dictionary
Institute lexicons to produce fewer false positives.
Further research will involve testing the QKB on
more comprehensive data from various sources,
followed by subsequent improvements and updates
to handle the varying conventions for data formats
across different Arabic-speaking regions.

References
Jack Halpern. 2007. The Challenges and Pitfalls of

Arabic Romanization and Arabization. In
Proceedings of the Second Workshop on
Computational Approaches to Arabic Script-based
Languages. Palo Alta, CA.

U. Hermjakob, K. Knight, and H. Daumé III. 2008.
Name Translation in Statistical Machine Translation
- Learning when to Transliterate. In Proceedings of
the Annual Meeting of the Association of
Computational Linguistics (ACL), pages 389–397,
Columbus, Ohio, June.

37

