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ABSTRACT.Unsupervised and semi-supervised learning of morphology provide practical solu-
tions for processing morphologically rich languages with less human labor than the traditional
rule-based analyzers. Direct evaluation of the learning methods using linguistic reference anal-
yses is important for their development, as evaluation through the final applications is often time
consuming. However, even linguistic evaluation is not straightforward for full morphological
analysis, because the morpheme labels generated by the learning methodcan be arbitrary. We
review the previous evaluation methods for the learning tasks and proposenew variations. In
order to compare the methods, we perform an extensive meta-evaluation using the large collec-
tion of results from the Morpho Challenge competitions.

RÉSUMÉ.L’apprentissage non supervisé et semi-supervisé de la morphologie fournit des so-
lutions pratiques pour le traitement des langues morphologiquement riches et requiert une
intervention humaine réduite comparée aux analyseurs traditionnels basés sur des règles.
L’évaluation directe des méthodes d’apprentissage utilisant des analyses de référence linguis-
tique est importante pour leur développement, puisque l’évaluation par lesapplications fi-
nales prend généralement beaucoup de temps. Cependant, même l’évaluation linguistique n’est
pas simple pour l’analyse morphologique complète, car les identifiants de morphèmes géné-
rés par la méthode d’apprentissage peuvent se révéler arbitraires. Nous passons en revue les
méthodes d’évaluation existantes pour les tâches d’apprentissage et proposons de nouvelles va-
riations. Afin de comparer les méthodes, nous effectuons une vaste méta-évaluation à l’aide de
l’importante base de résultats provenant des compétitions Morpho Challenge.
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1. Introduction

A common task in natural language processing (NLP) applications such as speech
recognition, machine translation and information retrieval is to construct a vocabulary
and a statistical language model for all words that will be used. For many languages,
particularly the morphologically rich ones, the vast amount of various inflected forms
in which the words appear poses an important challenge. By using a rule-based mor-
phological analyzer that exists already for quite many languages, most word forms can
be returned to their base forms. However, these analyzers donot cover the whole lan-
guage and leave out many word forms that are either rare, foreign, or ungrammatical.
While the frequency of the unanalyzed types may be small in running text or speech,
they might still be meaningful for the application. A special challenge is posed by less
resourced languages for which the available morphologicalanalyzers are particularly
poor, as well as dialects and colloquial and historical languages.

A large variety of algorithms for unsupervised morpheme analysis have been pre-
sented during the last ten years.1 Due to the amount of work required by evaluation
in applications, the algorithms are most often evaluated directly based on a linguistic
reference analysis. Various automatic evaluations have been proposed, depending on
the task of the algorithm and the available reference analyses. For morphological seg-
mentation, the simplest solution is to calculate how well the segmentation boundaries
correspond to the ones in the reference analysis (e.g., Creutz and Lindén, 2004; Ku-
rimo et al., 2006). For finding morphologically related words, the evaluations are
usually based on pairs or groups of words that share the same stem or root in the
reference (e.g., Schone and Jurafsky, 2000; Snoveret al., 2002).

The most general task, full morphological analysis of word forms, is hard not only
for the algorithms, but also for the evaluation. If the learning task is unsupervised or
semi-supervised, it cannot be expected that the algorithm comes up with morpheme
labels that exactly correspond to the ones designed by linguists. For example, the
words “foot” and “feet” might both contain the morpheme “foot_N” in an English ref-
erence analysis. Also the applied algorithm should discover a morpheme that occurs
in both these word forms, but it may be labeled as “FOOT”, “morpheme784”, “foot”,
or something else (Kurimoet al., 2008). The problem is similar to the one in the eval-
uation of unsupervised part-of-speech (POS) tagging (see,e.g., Christodoulopoulos
et al., 2010). However, there the number of labels per word is exactly one.

Spiegler and Monson (2010) have listed computational and linguistic criteria for an
automatic evaluation method dealing with full morphological analyses. The method
should be quicker and easier to compute than large NLP tasks (readily computable),
reflect accurately the distribution of predicted and true morphemes and be difficult
to game (robust), the results shouldcorrelate to the performance in NLP tasks, and
be useful for identifying the strengths and weaknesses of the algorithm (readily in-
terpretable). Moreover, it should account formorphophonology, allomorphy, syn-

1. For a recent survey, see Hammarström and Borin (2011).
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cretism, andambiguity. So far, only the metric used in the recent Morpho Challenge
competitions (Kurimoet al., 2008; Kurimoet al., 2009; Kurimoet al., 2010c; Kurimo
et al., 2010b) and EMMA by Spiegler and Monson (2010) have met all ormost of
these criteria.

The series of the Morpho Challenge competitions, started in2005, has supported
the research for unsupervised morpheme analysis by providing annual evaluations
for shared tasks using shared training data for various languages (for an overview,
see Kurimoet al., 2010a). The goal has been to develop unsupervised and language
independent machine learning algorithms that could discover morphemes from large
amount of given raw text data. From 2007 onwards, the tasks have been designed
for algorithms performing full morphological analyses. In2010, small amounts of
labeled data were provided to support semi-supervised algorithms, relevant for this
task particularly because small samples of morphologically labeled words are often
easy to obtain. So far, more than fifty algorithms have been evaluated and compared
using the shared tasks. They have been evaluated not only by comparing the obtained
morphemes to the linguistic ones, but also by testing them inreal NLP applications
using state-of-the-art technology.

In this article, we utilize the large database of results from the Morpho Challenges
to perform the most extensive meta-evaluation of unsupervised learning of morphol-
ogy so far. While we review the previous evaluation methods also for morphological
segmentation and clustering, the main focus of this articleare the evaluation methods
for unsupervised morphological analysis.

The structure of the rest of the article is as follows: in section 2, we present the
central terminology and issues in morphology and machine learning. In section 3, we
review the evaluation methods proposed for the unsupervised learning of morphology,
including the Morpho Challenge evaluation and EMMA, and propose a few new vari-
ants for the evaluation of full morphological analyses. In section 4, we describe the
setup and the results of the experimental meta-evaluation.We consider correlations
to information retrieval and machine translation applications, as well as robustness,
interpretability, stability, and computational complexity of the methods. In section 5,
we conclude the work and give a few recommendations for thosewho need to evaluate
their algorithms.

2. Background on Morphology and Machine Learning

2.1. Morphology

Morphology is the study of internal structure of words.2 A common way to look
at the structure is to observemorphemes, the smallest meaning-bearing units of the

2. For a text-book description on morphology, see, e.g., Matthews (1991) or Chapter 3 in Juraf-
sky and Martin (2008).
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language, and how they are combined to form words. To formalize the different prob-
lems related to learning of morphology, we use the idea of two-level morphology
by Koskenniemi (1983). The two levels of representation arelexical level, which has
the abstract morphemes (each reflecting a certain meaning),and surface level, which
has the phonemes or letters that are the realizations of the morpheme. The surface
realizations of morphemes are calledmorphs. For example,walked has two morphs,
walk anded, corresponding to abstract morphemes that refer to the meaning of walk-
ing and past tense, respectively. Sometimes a morpheme thatdoes not have a surface
realization (e.g., one representing the singular form of anEnglish noun) may be added
to the lexical representation; these are callednull morphemes.

Morphemes are divided intofreeor boundmorphemes depending on whether they
can occur independently as a word form or not. Bound morphemes are usuallyaffixes
that are attached tostems. Stem is the word without any inflections, but it may be a
compound word or include derivative morphemes, whereasroot is the minimal part
of the stem that cannot be reproduced. For example,buildingshas the stembuilding
and the rootbuild. Affixes are further divided intoprefixes, suffixes, infixes, andcir-
cumfixes, depending on whether they occur before, after, in between,or both after and
before of the stem, respectively.

There are several ways how the morphemes of the word are realized in the surface
form. The simplest one isagglutination, where the morphs are concatenated together,
as in walk+ed. This contrasts tofusion, in which the surface form does not have
separable morphs corresponding to the morphemes. For example, run and past tense
are realized as a single morphran. Another type of non-concatenative process is
transfixation, present for example in Arabic, where consonantal roots aremodified
by vowel patterns.

Even in concatenative case, the interaction between morphological and phonetic
processes (morphophonology) may produce different morphs for the same morpheme.
For example, the past tense ofinvite has morphd instead ofed, and and plural ofwife
is wive+s, not wife+s. Two morphs of the same morpheme are calledallomorphs.
In addition to phonological processes that occur at morph orword boundaries (called
sandhi), allomorphic variations are produced by such phenomena asconsonant grada-
tion (Finnish example:takka–taka+n), vowel harmony (Finnish example:alu+ssa–
äly+ssä), and wovel variations calledablaut (English example:sing–sang–sung).

The case in which several morphemes have the same surface realization is called
syncretism. A common example is English plural and 3rd person singular, which
are both realized by the suffixs (or es). Syncretism is one cause for morphological
ambiguityof the word form. For example,bites may either be noun in plural form
or verb in 3rd person singular form. However, the full word form can be ambiguous
even without syncretism. For example, Finnish wordistuin may refer either to the
noun “seat” or the verb “sit” in 1st person past tense (“I sat”).

The richness of morphological phenomena varies between languages. Specifi-
cally, some languages areanalytic or isolating, with one-to-one correspondence be-
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tween words and morphemes, and some aresynthetic, with often many morphemes
per word. Synthetic languages can furthermore be divided into agglutinative(or con-
catenative) andfusional languages, depending on whether the morphs of a word are
clearly distinguishable from each other or not. Naturally,the characteristics of many
languages are in between these categories. Of the languagesused in the experiments
of this article, English is moderately analytic and often considered as a fusional lan-
guage. Finnish and Turkish are highly synthetic and agglutinative languages. Also
German is mainly agglutinative, and more synthetic than English, but less synthetic
than Finnish or Turkish.

2.2. Supervised and Unsupervised Learning

Machine learning algorithms can be divided intosupervisedand unsupervised
learning depending on what kind of training data they use (Alpaydin, 2004). In the
tasks of morphology learning,input dataconsists of word forms. Depending on the
task, theoutput datamay be stems or lemmas of the words, segments of the words,
or labels for the morphemes of the words. Regardless of the output type, data with
samples of input-output pairs is calledlabeled(or annotated) data, and data with only
input samples is calledunlabeled(or unannotated) data.

Supervised algorithms try to learn a mapping from the input variableX to output
variableY given pairs of data samples(xi, yi), i.e., labeled data. For the task of
morphology learning, the usefulness of this kind of algorithms is limited: in order to
have enough training data samples, there already needs to bea morphological analyzer
for the language. Of course, a sophisticated method might beable to generalize the
analyses to samples not correctly identified by the originalanalyzer.

In unsupervised learning, the samples of the desired outputY are not available.
The algorithm needs to assume some statistical regularities in the input data, and use
those to create a model for the input that can be used also for predicting the output.
In morphology learning, large amounts of unlabeled data (i.e., words) are easy to get.
The problem is how to use the information in the word forms to get the desired output.

Semi-supervised algorithms deal with settings where both unlabeled and labeled
data are available (for a survey, see Zhu, 2005). Usually theamount of labeled data is
remarkably smaller than the amount of unlabeled data, so that supervised algorithms
do not have enough data to get good results. This setting is very relevant for learning
of morphology, as small amounts of labeled data are easy to get by manual annotation.

In the case of morphology learning, there are also many settings where all the
training data ispartially labeled. That is, the labelyi in the data samples is not directly
the desired output of the algorithm, but some part of it. The partial information can be,
e.g., suffixes (Yarowsky and Wicentowski, 2000), stems (Shalonovaet al., 2009), or
even all morphs of the word, if the desired output is morphemes. See Spiegler (2011)
for a more extensive categorization of different types of scenarios.
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2.3. Tasks in Learning Morphology

There are three common tasks for morphological processing in NLP applications:
segmenting words into morphs, identification of morphologically related word forms,
and performing full morphological analysis, that is, finding the morphemes of the
words.

2.3.1. Morphological Segmentation

Morphological segmentation (or word decomposition) is a useful approach for spe-
cific applications and languages. First, in applications such as speech recognition, it
may be enough to deal with the surface forms of the words. Second, if the language
is mainly agglutinative, the set of morphs is not essentially different from the set of
morphemes, and thus the result of segmentation is close to the full analysis.

Direct evaluation of a morphological segmentation is straightforward given that
reference segmentations are available. The output for a segmentation algorithm is an
ordered list of substrings, morphs, and the strings should be the same that are found
from the reference segmentation.

2.3.2. Clustering of Related Word Forms

From the machine learning viewpoint, finding morphologically-related words can
be considered asclustering: a set of words are grouped together either by their stem
or root. The task is important especially for improving the recall of an information
retrieval system: if the user searches for “election”, it islikely that also the documents
containing, e.g., “elections” or “elect” are relevant. Formany languages, the standard
way of finding related word forms is suffix stripping: if the morphology is relatively
simple, a set of hand-crafted rules are often enough to get reasonably good results.

When clustering morphologically related word forms, the output is one label per
each word. While the labels of the proposed result and the reference result have to be
matched in order to do evaluation, this is still a relativelysimple setting: either two
words are in the same cluster or in different clusters.

2.3.3. Morphological Analysis

The most challenging task is the full morphological analysis. In order to find the
correct morphemes, morphological analyzers need to deal with complex phenomena
such as allomorphy and syncretism. In consequence, the analyzers have traditionally
been rule-based and designed by linguists.

For morphological analysis, the output is ordered list of labels, and in the case of
unsupervised learning, there is no direct evidence on whichpredicted label is related
to which reference label. Even in the (semi-)supervised case, not all labels are found
in the labeled training data. The problem in evaluation can be avoided only if there
is a systematic way to label the morphemes to be equivalent tothose in the reference
analysis.
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To illustrate the problem, Table 1 shows how various unsupervised and semi-
supervised methods (described later in section 4.4) analyze the wordsreproducesand
vulnerabilities. Of the present methods, only Morfessor Baseline, Morfessor S+W and
Promodes 2010 are strictly based on segmentation. Some others, such as Bernhard 2
2007 and Morfessor CatMAP, do mainly segmentation, but alsotry to differentiate
between stem and affix morphemes. Evidently, there is no way to evaluate the analy-
ses of individual words without observing the other relatedwords. For example, that
reproducedhas a morphemeproduc_B is a useful piece of information only if the
formsproduce, produced, producing, etc., have the same morpheme.

Table 1. Examples of the analyses of different algorithms for English words “repro-
duces” and “vulnerabilities”.

Method Analysis for “reproduces” Analysis for “vulnerabilities”

Allomorfessor 2009 re produce s vulnerability ies
Bernhard 2 2007 re_P produc_B e_S s_S vulnerabilit_B i_L e_S s_S
Bordag 5a 2007 re pro.prop duc es vulnerabilities
DEAP MDL-CAT re_p produc_a es_pl vulnerabil_n iti_s es_pl
Lignos Base Inference REPRODUCE +(s) VULNERABILITY +(ies)
MAGIP 2010 REPRODUC ES VULNERABI L ITI ES
Morfessor Baseline re produce s vulner + abilities
Morfessor CatMAP re/PRE + produce/STM + s/SUF vulner/STM + abilities/STM
Morfessor S+W re produce s vulner abilities
Morfessor S+W+L re_p produce_N +PL vulner_N abilities_N
MorphAcq 2010 +#re -produc- +e# +s# -vulnerab- +ilities#
MorphoNet 2009 produce _s re_s re_ vulnerabilty _ies
ParaMor Mimic reproduc +e +s vulner +a +bilit +ie +s
Promodes 2010 re pro du c e s vul nera b i l iti e s
RALI-COF prod uce re s vulnerability ies
Reference re_p produce_V +3SG vulnerable_A ity_s +PL

3. Evaluation Methods

There are two main approaches to evaluate the methods for learning morphology.
In direct evaluation, we directly study the produced morphological analyses, either
manually or by comparing to external data. Inindirect evaluation, we evaluate the ef-
fect on using the method as a part of a larger system, typically an application such as
information retrieval or speech recognition. While the realusefulness of the method
is measured by how well it can help the applications of natural language processing,
the application evaluations are often too time consuming touse during the develop-
ment of the method. Apart from being simpler, direct evaluations often provide more
information on the specific problems of the evaluated method.
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3.1. Direct Evaluations

There are two basic ways to do direct evaluation. Either the results are manu-
ally evaluated by experts of the language, or the results arecompared to a linguistic
reference (“gold standard”) analysis using an automatic evaluation method.

Regardless of the details of the evaluation method, the measures of evaluation are
often the same. Similarly to IR tasks, there are two sets to consider:predicteditems
P (analogous to retrieved documents) andreferenceitemsR (analogous to relevant
documents). The intersection of the sets,P ∩ R, tells which of the predicted items
were correct. If the size of the intersection is normalized with the number of predicted
items, we get theprecision(Pre), and if it is normalized with the number of reference
items, we get therecall (Rec):

Pre=
|P ∩R|

|P |
; Rec=

|P ∩R|

|R|
, [1]

where|A| denotes the size of the setA. Precision measures how many of the predicted
items are correct, whereas recall measures how many of the reference items are pre-
dicted. To get a global estimate, the average is taken over a set of words, sometimes
weighted by the number of items|P | and|R|.

If the task is morphological clustering,P andR contain only the proposed root or
lemma of the word. As|P | = |R| = 1, precision and recall are equal and, for a single
word, either one or zero. The global measure is accuracy, theproportion of correct
answers to all answers.

If the task is morphological segmentation,P andR are either segmentation points
(section 3.1.2 below) or sets of morphs. In morphological analysis,P andR are usu-
ally sets of morphemes. In all of these cases, both precisionand recall have to be
observed. Otherwise, the evaluation can begamedby either predicting as few items
as possible, which gives high precision but low recall, or predicting as many items
as possible, which gives high recall but low precision. In the case of segmentation
algorithms, the former is referred to asundersegmentationand the latter asoverseg-
mentation.

To get a single measure that includes the aspects of both precision and recall, they
are combined using harmonic mean, resulting inF-scoreor F-measure:

F =
2

1
Pre +

1
Rec

=
2× Pre× Rec

Pre+ Rec
[2]

In addition to the balanced F-score, we consider also the more general Fβ-score:

Fβ =
(1 + β2)× Pre× Rec

β2 × Pre+ Rec
, [3]

whereβ > 1 gives more weight to recall andβ < 1 gives more weight to precision.
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3.1.1. Manual Evaluation

While manual inspection is very useful for developing a method, the amount of
the work involved restricts its usage. Moreover, the decisions on correct and incorrect
answers can be subjective, as exemplified by Goldsmith (2001). Usually a binary
true/false categorization is too coarse, and some intermediate categories are added. For
example, Goldsmith (2001) uses four categories (“good”, “wrong analysis”, “failed
to analyze”, and “spurious analysis”) and Creutz and Lagus (2002) three categories
(“correct”, “incomplete”, and “incorrect”).

3.1.2. Segmentation Boundaries

In many languages, the main parts of the morphological processes are concate-
native. For such languages, the problem can be reduced to finding surface forms of
the morphemes, morphs, that the words contain. Equivalently, the task is to predict
whether there is amorph boundarybetween each of the two successive letters of a
word or not. Given a reference segmentation, precision (howmany of the predicted
segmentation points were correct) and recall (how many of the correct segmentation
points were found) can be calculated. This kind of evaluation has been done already
by Hafer and Weiss (1974), who did several segmentation methods based on the idea
of letter successor variety (LSV) by Harris (1955). More recently, evaluation based
on segmentation boundaries has been used in Morpho Challenge 2005 competition
(Kurimo et al., 2006), and by many separate studies such as Creutz and Lagus(2007),
Dasgupta and Ng (2007), Snyder and Barzilay (2008) and Poonet al.(2009). In addi-
tion to neglecting non-concatenative processes such as allomorphy, there is an amount
of subjectivity involved at judging the correct segmentation point.

3.1.3. Co-occurrence Analysis

If non-concatenative processes are taken into account, andthe task is fully un-
supervised, the predicted morphemes can be arbitrary. Thisprevents calculation of
precision and recall directly using the intersection of thesets of predicted and refer-
ence morphemes as in Equation 1.

Disregarding the ordering of the morphemes inside each word, the analyses for
a set of words can be represented as abipartite graphG = (M,W ;E) (Spiegler
and Monson, 2010). The graph has two disjoint sets of vertices, morphemesM =
{m1, . . . ,mn} and wordsW = {w1, . . . , wm}, and edgese(mi, wj) that connect
vertices inM to vertices inW . Such a graph is illustrated by Figure 1. The edges can
have weights corresponding to how many times the morphememi occurs in the word
wj . 3 Equivalently to the graph, the analyses can be presented as amorpheme-word
co-occurrence matrixA, where the elementaij is the weight of the corresponding
edge or zero if the edge is missing.

3. In some languages, the same morpheme can occur more than once in aword due to redupli-
cation or compounding. For example, Finnish wordmaankuoren(“of earth’s crust”) contains
two genitives marked by suffixn.
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explain

explanation
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explainingexplain_V

applies

apply+3SG

ation_s
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expire_V

+PCP1
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Figure 1. Bipartite morpheme-word graph for a set of morphological gold standard
analyses of English words. An edge between a morpheme and a word indicates that
the word contains the morpheme. Edges to suffixes are drawn with dashed lines.

Considering predicted and reference analyses for the same set of words, we have
two bipartite graphs that have the same word vertices but different morpheme ver-
tices. Evidently, the evaluation must be based on the information of which words are
linked to the same morphemes. Furthermore, the methods relate to solving graphiso-
morphism: two sets of analyses are equivalent only if the corresponding graphs are
isomorphic, i.e., there exist a bijection between the vertices of the two graphs.

In this section, we consider methods that do not explicitly match the predicted and
reference morphemes, but study co-occurrences of morphemes in the words. While
Spiegler and Monson (2010) called this type of approachsoft isomorphic analysis,
we use the termco-occurrence analysisto distinguish it from methods that use soft
matching for the predicted and reference morphemes (discussed in section 3.1.4).

The bipartite morpheme-word graph can be transformed into aword graphby re-
moving the morpheme vertices and replacing each pair of edgese(mi, wj), e(mi, wk)
by edgee(wj , wk). Figure 2 illustrates the word graph corresponding to the bipartite
graph in Figure 1. An equivalent word matrix is obtained by the productAT

A of the
morpheme-word matrixA. As the set of the vertices are now the same regardless of
the evaluated method, it is enough to compare the edges between the vertices.

Given two word graphs, one from reference analyses and one from predicted anal-
yses, we can compare the sets of words that are connected. Specifically, recall can
be determined from the number of edges that are in the reference graph but are not in
the predicted graph, and precision from the number of edges that are in the predicted
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explanations

explaining

explainapplication

applications

applied

expiringexpired

explanation

applies

apply

Figure 2. Word graph for a set of morphological analyses of English words. An egde
between two words indicates a co-occurring morpheme. Edgescorresponding to suf-
fixes are drawn with dashed lines.

graph but are not in the reference graph. Intuitively, low recall in co-occurrence based
metrics then indicates that you are missing co-occurrences, and low precision indi-
cates that you have spurious co-occurrences. As an example,consider the mistakes
that a segmentation algorithm might make for the example in Figure 2. On one hand,
oversegmentation, such as predictingex- to be a morpheme in all the word forms that
start with it, will add many new edges to the graph and thus decrease precision. Recall
is either unchanged or increased if some correct edges are added by chance. Similarly,
not distinguishing between the two different morphemes (plural and 3rd person sin-
gular) for suffix morph-s will add incorrect links betweenapplies—applicationsand
applies—explanations. On the other hand, leaving a true suffix together with a stem,
e.g., not segmenting-ing from expiring andexplaining, will remove true edges and
thus decrease recall. Correct edges will also be missed if allomorphs such asapply,
appli, andapplic are left as separate morphemes.

For algorithms that try to find morphologically related words (i.e., those having the
same stem or root), the evaluation is relatively straightforward. Schone and Jurafsky
(2000; 2001) studyconflation setsof the words, that is, the sets of words which share
the same stem. For example, removing all the affix edges from the graph in Figure 2
results in three conflation sets:{apply, applied, applies, application, applications},
{explain, explaining, explanation, explanations}, and{expired, expiring}. For each
word, Schone and Jurafsky sum the number of correct (C), inserted (I), and deleted
(D) words compared to the reference conflation set. The numbersare summed over
the words, and precision (C/(C + I)) and recall (C/(C +D)) are calculated. Snover
et al. (2002) use a similar setting, but instead of observing the groups of words, they
go over thestem relations, i.e., pairs of words that share the same stem. Precision
gives how many of the predicted relations were correct, and recall how many of the
relations found from the reference analysis were found. Also Baroni et al. (2002)
discover morphologically related pairs. As the result of the algorithm is a ranked list
of pairs, they evaluate it by calculating the precision (amount of correct pairings with
respect to the reference analysis) over different numbers of pairs.
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There is less work on evaluation metrics for full morphological analyses, where
both stems and affixes should match to the reference. The mostnotable is the method
developed by Mathias Creutz that has been used in the Morpho Challenges from 2007
onwards (Kurimoet al., 2008). The method was slightly revised for Morpho Chal-
lenge 2009 (see Kurimoet al., 2010c). We will refer to it as the MC evaluation.

The first step in the MC evaluation is to randomly sample a number of focus words
from the set of words for which both predicted and reference analyses are available.
Then, for each predicted morpheme of each focus word, another word that has the
same morpheme is sampled. Morphemes that do not occur in any other words are
excluded. The result is a set of word pairs that have at least one morpheme in com-
mon. The precision for one focus word is the proportion of itsword pairs that have
a common morpheme also according to the reference analyses.However, if a word
pair shares multiple morphemes, the reference analysis hasto have an equal amount
of shared morphemes in order to get full points. Otherwise, acorresponding fraction
of points is given. The overall precision is the average overthe focus words. Simi-
larly, focus words and their pairs are sampled from the reference, and the recall is the
average proportion of word pairs that have a common morphemealso in the predicted
analyses.

The rationale behind the two-phase sampling of word pairs isthat because two
random words rarely share a common morpheme, the evaluationshould concentrate
on the pairs that do. Considering the word graph representation (Figure 2), the idea
is simply to sample edges of the graph for evaluation. While this approach is well-
motivated and efficient for large graphs that cannot be compared as a whole, it has
two drawbacks. First, as the word pairs that are sampled for calculating precision are
dependent on the predicted analyses, two different algorithms will have different word
pairs in the evaluation. Second, the approach is inconvenient if the reference set has
only a small number of words, as it does not use all the information in the known
analyses.

The MC evaluation also allows alternative analyses for the possibly ambiguous
word forms. If a word in the predicted analyses has several alternatives, the precision
for the word is the average over them. If the reference has several alternative analyses,
the one that gives the highest precision is selected. The same holds the other way
round for recall, as precision and recall are calculated symmetrically. However, this
allows a way of improving the recall artificially by adding alternative analyses for
the predictions: for each word, precision is the average precision over the alternative
analyses, but recall is the best one (Kurimoet al., 2010a).

The limitations of the MC evaluation have been analyzed in more detail by Spiegler
(2011). To improve on especially the two problems mentionedabove, we propose
a new set of evaluation methods based on co-occurrence analysis, referred to as
CoMMA 4.

4. CoMMA stands for Co-occurrence based Metric for Morphological Analysis.
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Let us first assume that we have only one analysis per word. LetV be the set of
words for which we have the analyses,Pi the set of predicted morpheme labels,Ri

the set of reference morpheme labels for thei:th word, andP andR matrices of size
|V | × |V | where

pij = |Pi ∩ Pj |, rij = |Ri ∩Rj |. [4]

That is,pij is the number of predicted labels andrij is the number of reference labels
that are both in wordi andj. Clearly, if the analyses are isomorphic,P andR will
be equal. A simple measure for the error would be the 1-norm distance|P − R| =∑

i

∑
j |pij − rij |. However, we can also derive precision and recall measures similar

to those of the MC evaluation. For each word, let the number ofwords with at least one
common morpheme with wordi beni = |{j : pij > 0}| andmi = |{j : rij > 0}|,
and the number of words that have at least one common morphemewith any word
vp = |{i : ni > 0}| andvr = |{i : mi > 0}|. The overall precision and recall are

Pre =
1

vp

∑

i:ni>0

1

ni

∑

j:pij>0

min(pij , rij)

pij
; [5]

Rec =
1

vr

∑

i:mi>0

1

mi

∑

j:rij>0

min(rij , pij)

rij
. [6]

For example, if there are two morphemes that are shared between wordsi andj in the
predicted analyses (pij = 2) and one morpheme in the reference analyses (rij = 1),
the precision increases0.5 point and the recall increases one point (min ensuring that
the maximal points are one). One option is to set the diagonals of the matricesP and
R to zeros, that is,pii = rii = 0 for all i. This excludes the isolated words that do not
have a common morpheme with any other words from the evaluation.

Next, let us consider the case of several alternative analyses. If Pik is thek:th
alternative for thei:th word in the predicted analyses, andRil similarly for the refer-
ence analyses, the simplest way to proceed is to reduce the alternatives by taking the
maximal co-occurrence counts:

pij = max
k

max
l

|Pik ∩ Pjl|, rij = max
k

max
l

|Rik ∩Rjl| [7]

This ensures that adding more alternatives in the prediction will increasepij :s, thus
generally improving recall but degrading precision. We refer to this method as
“CoMMA-B”.

We can also derive a measure that directly penalizes for a wrong number of alter-
natives. ForP andR to be comparable, we cannot expand both the rows and columns
to include the alternative analyses. Instead, we add them only to the rows:

p(ik)j = max
l

|Pik ∩ Pjl|, r(ik)j = max
l

|Rik ∩Rjl|, [8]

where(ik) denotes the index for thek:th analysis of thei:th word. The numbers of
words with shared morphemes arenik = |{j : pikj > 0}| for the predicted analyses
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andmik = |{j : rikj > 0}| for the reference analyses. Letoi = |{k : nik > 0}| and
qi = |{k : mik > 0}| be the number of alternative analyses for wordi in predicted
and reference analyses, respectively. Nowvp andvr are defined asvp = |{i : oi > 0}|
andvr = |{i : qi > 0}|. The overall precision and recall are

Pre =
1

vp

∑

i:oi>0

1

oi
max
Ai

∑

k:nik>0

1

nik

∑

j:pikj>0

aikl ×
min(pikj , rilj)

pikj
; [9]

Rec =
1

vr

∑

i:qi>0

1

qi
max
Ai

∑

k:mik>0

1

mik

∑

j:rikj>0

aikl ×
min(rikj , pilj)

rikj
, [10]

whereAi is an assignment matrix between predicted and reference alternatives of the
i:th word. That is, we want

∑
k aikl ≤ 1,

∑
l aikl ≤ 1, andaikl ∈ {0, 1} for all i,

k, andl. The best assignment can be solved using the Hungarian algorithm (Kuhn,
1955; Munkres, 1957). The cost for assigning thek:th and thel:th alternative of the
i:th word is set to one minus the F-score for the pair of analyses, using the precision
and recall as defined above. This results in the best average F-score. The assignment
is quick regardless of theO(n3) time complexity for then × n matrix, because the
number of alternatives is usually low. We refer to this version as “CoMMA-S”.

3.1.4. Morpheme Assignment

The evaluations based on morpheme assignment try to find a one-to-one or one-
to-many assignments between the predicted and reference morphemes. One-to-one
matching can be considered as hard isomorphic analysis. One-to-many (or many-to-
one) matching is often simpler to solve than one-to-one matching, but as they are
easier to game by providing a low (or high) number of predicted morphemes, the
evaluation setup becomes more complicated.

In the case of supervision, the assignment is often known. E.g., Yarowsky and
Wicentowski (2000) study finding the roots of inflected word forms, including irreg-
ular inflections. Since the input data consists of a finite setof candidate roots for the
algorithm, they can directly calculate the proportion of correct roots.

Creutz and Lagus (2002) and Creutz (2003) use the Viterbi algorithm to align
predicted morph segmentation to a linguistic morpheme analysis. To calculate a dis-
tance between a predicted morphm and a morpheme labell, they use the measure
d(m, l) = − log

cm,l

cm
, wherecm,l is the number of word tokens in which the morphm

is aligned with the labell andcm the total count ofm. As one-to-many mapping from
morphs to labels is accepted, a separate training and test set are needed to avoid over-
fitting predictions that are undersegmented (i.e., a singlepredicted morph is mapped to
all the labels of the word). The final measure is the alignmentdistance in the test set.
A similar cross-validation setting has been applied in the evaluations of unsupervised
POS tagging (Gao and Johnson, 2008; Christodoulopouloset al., 2010).

Spiegler and Monson (2010) propose an evaluation method, EMMA, which ap-
plies a one-to-one assignment. In EMMA, each predicted morpheme is matched for
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each morpheme in the reference. One-to-one matching allowsdirect calculation of
precision (how many morphemes in the proposed analysis are in the reference anal-
ysis) and recall (how many morphemes in the reference analysis are in the proposed
analysis) for each word (Equation 1).

The assignment problem can be described using a bipartite graph, where one set
of vertices correspond to the reference morphemes and another set of vertices to the
predicted morphemes. LetRk andPk be the reference and predicted morphemes for
word wk, respectively. An edgee(mi,mj) exists between reference morphememi

and predicted morphememj if they both are in the analysis of at least one same word
wk. The weightcij of the edge is the number of such words:

cij = |{k : mi ∈ Pk ∧mj ∈ Rk}|. [11]

Given morpheme-word graphs for the reference and predictions, such a morpheme
graph can be formed by removing the word vertices and replacing pairs of edges
e(mi, wk) ande(mj , wk) by e(mi,mj). For example, if we have the reference analy-
sis corresponding to Figure 1 and segmentationsapp+ly, app+lie+s, applied, applica-
tion, application+s, expir+ing, expir+ed, explain, expla+nation, expla+nation+s, and
explain+ingfor the same words, the resulting graph is the one in Figure 3.

explain_V

+3SG

ation_s

apply_V

+PAST

expire_V

+PCP1

+PL

ly

app

lie

applied

application

s

ing

ed

expla

nation

explain

expir

Figure 3. Bipartite morpheme graph for reference (left) and predicted (right) mor-
phemes of English words. An egde between two morphemes indicates that there is one
(thin lines) or two (thick lines) words that have the left morpheme in reference anal-
ysis and the right morpheme in the predicted analysis. Blacklines show one possible
assignment that maximizes the target criterion in EMMA.
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Matching two morphemes that have an edge increases both precision and recall, the
more the larger the weight of the edge is. Thus the task is to select such an assignment
that maximizes the sum of the weights of the selected edges. Mathematically, it is
defined as

argmax
B

∑

i,j

(cij × bij) s.t.
∑

i

bij ≤ 1,
∑

j

bij ≤ 1, bij ∈ {0, 1}. [12]

B is a binary assignment matrix, wherebij = 1 indicates that morphememi in the
predicted analysis is matched to morphememj in the reference analysis. The black
edges in Figure 3 show one assignment that maximizes the criterion for the example
graph. There are several other assignments that give the same sum: for example,
+PAST could be matched toed instead ofapplied. This is, however, less likely with
larger data sets for which the weights are more varied.

To permit several alternative analyses per word in EMMA,cij is redefined as the
average over all the combinations of the alternative analyses. After obtainingB, a
one-to-one mapping between the alternatives is optimized.

While EMMA is a robust measure that correlates well on the application evalua-
tions (Spiegler and Monson, 2010; Kurimoet al., 2010b), it has one major drawback.
The time complexity of solving the assignment in Equation 12is O(n3) for n mor-
phemes using the Hungarian algorithm5, so the computation time increases rapidly
with the size of the evaluation set.

We introduce a modified version of the EMMA (referred to as “EMMA-2”), which
solves this problem by replacing the single one-to-one assignment problem with two
many-to-one problems. The idea is that failing to join two allomorphs (e.g., plural suf-
fixes -s and-es in English) does not need to degrade precision. Thus, when calculat-
ing precision, we apply a many-to-one mapping, where several predicted morphemes
may be assigned to one reference morpheme. Similarly, failing to distinguish between
surface-identical syncretic morphemes (e.g., plural-s and 3rd person singular-s in
English) does not need to degrade recall, so one-to-many mapping is applied there. A
potential problem is that the relaxed mappings may facilitate gaming.

The modified assignment problems in EMMA-2 are

BPre= argmax
B

∑

i,j

(cij × bij) s.t.
∑

j

bij ≤ 1, bij ∈ {0, 1}, [13]

for precision and

BRec= argmax
B

∑

i,j

(cij × bij) s.t.
∑

i

bij ≤ 1, bij ∈ {0, 1}, [14]

5. Spiegler and Monson (2010) use a general integer linear programming software. Integer
linear programming is a NP-hard problem (Karp, 1972), so the time complexity cannot be any
better than with the Hungarian algorithm.
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for recall. In contrast to the assignment problem in EMMA, solving these problems
is very simple, as the best match for each reference or predicted morpheme can be
selected independently of the others. For precision, we setbij = 1 for certaini only
if j = argmaxj cij . For recall, we setbij = 1 for certainj only if i = argmaxi cij .
This requiresO(nm) time forn predicted andm reference morphemes. Other aspects
of the evaluation (dealing with alternative analyses and calculating precision and re-
call) are done similarly to the original EMMA.

3.1.5. Information-Theoretic Methods

Instead of heuristic evaluations based on co-occurrence analyses or morpheme as-
signment, it would be desirable to have a measure that would directly tell how much
information is preserved or changed when comparing the predicted analysesP to the
reference analysesR. Indeed, Rosenberg and Hirschberg (2007) have proposed an
entropy-based V-measure, which resembles F-measure. It isthe harmonic mean of
homogeneityh (analogous to precision) and completenessc (analogous to recall):

h =
I(P,R)

H(P)
; c =

I(P,R)

H(R)
, [15]

whereH is entropy (analogous to the size of the set) andI mutual information (anal-
ogous to the size of the intersection of the sets). V-measureand other information-
theoretic measures have been applied to unsupervised POS tagging. Christodoulopou-
los et al. (2010) compared several evaluation measures for this task,and found V-
measure to be the most stable one.

Why not use information-theoretic measures for evaluating morphological analy-
ses? Note that POS tagging is similar to hard clustering, as there is only one tag per
word. In this case, the entropyH(C) = −

∑K

k=1 P (Ck) logP (Ck) of the random
variableC, corresponding to the choice of the clusterCk amongK clusters, is read-
ily computable (see Meila, 2003). However, in the case of a morphological analysis,
there are several morpheme labels per word. The random variable is thus the binary
vectorM = (b1, . . . , bn), wherebi = 1 if morphemei occurs in the word. If we con-
sider calculating the entropy,H(M) = −

∑
M P (M) logP (M), there are at least

two problems. First, it is hard to estimateP (M): independence of the morphemes
is not likely to be a good assumption, but there is hardly enough data to do anything
else. Second, one has to sum over2n choices ofM , which is impossible in practice
for any morpheme lexicon of a reasonable size.

Although there does not seem to be any simple way to apply the information-
theoretic measures to the evaluation of full analyses, theycan still be useful for sub-
problems of the morphology learning. For example, Chan (2006) evaluates signatures
based on POS tags using entropy-based measures:POS fragmentationmeasures the
entropy of the signatures conditioned on the distribution of POS tags, andsignature
impurity measures the entropy of POS tags conditioned on the distribution of the suf-
fixes in the signatures.
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3.1.6. Other Direct Evaluations

In some cases, a method for morphology learning is developedas a model of lan-
guage acquisition (see, e.g., Chan, 2008). Application evaluations or evaluations based
on linguistic reference may not be as relevant for this goal as for others. Lignoset al.
(2010b) evaluate their model by applying it to child-directed data and manually com-
paring its learning process to the research in child language acquisition. Another
option is to do direct comparison using behavioral studies.For example, Limet al.
(2005) study a trie structure for storing Korean words, and find that the search times
correlate to three properties of words and non-words (frequency, length, and non-
words similarity to a correct word) in a similar manner as human reaction times. In
a recent work, Virpiojaet al. (2011) study how an unsupervised probabilistic model
can predict reaction times for Finnish nouns in a lexical decision task. These can be
considered as direct evaluations, although the external “reference” is not an analysis
by linguists but something measured from human test subjects.

3.2. Application Evaluations

The most important NLP application for morphological analyzers has so far been
information retrieval, where people often want to find documents including given
words regardless whether they are inflected or parts of compound words. However,
the problem of a huge vocabulary of words in morphologicallyrich languages con-
cerns directly all applications that need a statistical model for the language. Common
examples are speech recognition, which only needs to deal with the surface forms of
the words, and statistical machine translation.

3.2.1. Information Retrieval

A useful comparison of unsupervised morphological analysis methods is how well
they perform in an information retrieval task. Morphological analysis is needed, since
all matching documents should be retrieved irrespective ofwhich word forms are used
to describe the contents of the documents and the queries. The evaluation is carried out
simply by replacing the inflected words in the corpus and the queries by the suggested
morpheme analyses. The performance of the unsupervised algorithms can be com-
pared to doing no analysis at all or to the performance of rule-based morphological
analyzers or stemming.

Evaluating unsupervised segmentation algorithms in termsof IR performance has
been done already by Hafer and Weiss (1974). Segmentation based on LSV yielded
similar IR performance for English than stemming. Naturally, the effect of different
morphological analysis or stemming strategies have been extensively studied in the
field of IR, but usually focused only on language specific methods. Alkula (2001)
compared IR performance on Finnish using different morphological analyzers and
stemmers. Best performance was achieved by using base forms.



Comparison of Evaluation Methods 63

Algorithms should be compared using multiple languages, because the importance
of morphological analysis for IR depends on the language. Pirkola (2001) presents a
morphological classification of languages from the IR pointof view. For morpho-
logically simple languages such as English, simply removing affixes (stemming) is
often enough. For morphologically more complex languages such as Finnish, mor-
phological analysis is needed to turn word forms to their base forms (lemmatization)
and to split compound words into their parts (decompounding). Successful lemmati-
zation conflates word forms with similar meanings and separates ones with different
meanings. Thus lemmatization improves recall without hurting precision. In decom-
pounding, recall is also improved but precision may suffer.

For the algorithms that only segment the words, the IR performance depends en-
tirely on how aggressive the segmenting is. If the stem is tooshort, words that should
remain distinct are conflated. If the stem is too long, words that should be merged
together remain distinct. The former is calledoverstemmingand causes precision
to drop. The latter is calledunderstemmingand causes recall to drop. Due to non-
concatenative processes such as allomorphy, it is not even theoretically possible to
always find segment boundaries that avoid under- and overstemming issues. For best
IR performance, the unsupervised algorithms should also try to learn these phenom-
ena.

In the Morpho Challenge series, IR evaluations were introduced in 2007 (Kurimo
et al., 2007) using English, Finnish and German. To accurately measure the effect
of the morphological analysis on IR, the number of other variables will have to be
minimized. For example, different term weighting approaches may give different re-
sults depending on which morpheme segmentation or analysismethod is used. When
TFIDF and Okapi BM25 weighting approaches were tested in Morpho Challenge
2007, it was noted that Okapi BM25 suffers greatly if the corpus has a large number
of very frequent terms. Frequent terms are introduced by methods that separate suffix
morphs. If the suffix morphs were tagged, they could be removed, but most compared
methods did not tag the morphs. Simply removing terms with a corpus frequency
higher than some threshold improved Okapi BM25 results to a clearly higher level
than TFIDF weighting for all algorithms. With this method ofgenerating automatic
morpheme stop lists, all algorithms could be treated equally.

The evaluation criterion for the compared algorithms is theobtainedMean Average
Precision(MAP) in the IR task. For each query, the ranked list of documents returned
by the system is compared to the known relevant documents. Let rel(k) equal1 if the
document at rankk is relevant and0 if it is not. Precision at rankk (Pre(k)) is the
proportion of relevant documents among thek topmost documents:

Pre(k) =
1

k

k∑

i=1

rel(k). [16]
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Let R be the number of relevant documents for a query. Average Precision (AP) for
the query is the average of precisions at ranks that have a relevant document:

AP =
1

R

∑

k

Pre(k) rel(k). [17]

MAP is the mean of Average Precisions over all queries.

A complication for analyzing the results is the fact that it is hard to achieve sta-
tistically significant results with the limited number of queries available. This is
a known problem in the field of IR. However, the performance ofthe algorithms
across languages provides a useful comparison of their success. The results (Kurimo
et al., 2010a) showed that language specific reference methods give the best results,
but the best unsupervised algorithms are almost at par and the differences are not
significant.

3.2.2. Speech Recognition

An essential part of any large vocabulary speech recognition system is a language
model that can provide a probabilistic ranking for all word sequences that the recog-
nizer proposes. In morphologically rich languages, the estimation and use of such
a statistical model is very challenging and sets remarkablerequirements for train-
ing data and computational resources. This problem was one of the main motiva-
tions to develop the Morfessor Baseline algorithm (Creutz and Lagus, 2002) ten years
ago, which enabled the construction of the unlimited vocabulary dictation system
(Hirsimäki et al., 2006) with morph-based language models. The completion ofthis
system, and a corresponding one in Turkish, made it then possible to run the first Mor-
pho Challenge (Kurimoet al., 2006), where all submitted algorithms for unsupervised
morphemes could be tested in state-of-the-art speech recognition tasks.

The Morpho Challenge 2005 evaluation (Kurimoet al., 2006) was successful in
pointing out unsuitable morphemes, but it failed to providestatistically significant
differences in recognition error rate for the top algorithms. Furthermore, large scale
speech recognition evaluations required a substantial amount of work. For each com-
pared morpheme lexicon, we trained a new language model fromall the available
text data in that language, re-optimized the whole recognition system in the develop-
ment data, and recognized the test speech that was long enough to provide a statisti-
cally meaningful error rate. Thus, these evaluation metrics were not computed again
in later Morpho Challenge evaluations, even though speech recognition in morpho-
logically rich languages continues to be one of the main applications for large-scale
morphological analysis (Hirsimäkiet al., 2009).

3.2.3. Machine Translation

Machine learning approaches to morphology are not very relevant for traditional
rule-based machine translation systems, as they, in any case, require hand-crafted
linguistic rules. The situation is different for statistical machine translation (SMT),
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for which the ideal situation would be that the same models worked for many lan-
guages. For example, Virpiojaet al.(2007) proposed using an unsupervised method as
a language-independent tool for morphological preprocessing before training phrase-
based SMT systems.

There is a large amount of work for dealing with morphological analysis, de-
composition or stemming in SMT (e.g. Nießen and Ney, 2004; Yang and Kirch-
hoff, 2006; Oflazer and El-Kahlout, 2007), but the viewpointhas been on how the
information provided by a morphological analyzer (or a morphologically annotated
corpus) should be applied in the SMT framework. Comparison of different methods
for morphological analysis using the same SMT system has so far been done only in
the recent Morpho Challenges (Kurimoet al., 2010b; Kurimoet al., 2010c).

The SMT evaluations in Morpho Challenges have included two tasks, Finnish to
English and German to English, and the morphological analyses have been applied
only to the source language. The main problem in the evaluation has been that using
just the words provides often the best results. This is hardly surprising considering
that the SMT models have been designed for word-based translation, and that the tar-
get sentences contain full words. To avoid that the submissions with the least amount
of segmentation would get the best results, the evaluation setup has included com-
bining the results with those obtained using a plain word-based model. Still, only a
few algorithms have given statistically significant improvements over the word-based
translation. As morphologically rich languages pose a major problem to the results
of SMT, it is likely that translation systems that can betterincorporate morphological
analyses will be available sooner or later.

4. Experiments

The Morpho Challenge competitions have provided a databasethat consists of
the results of about fifty algorithms for unsupervised and semi-supervised learning of
morphology, evaluated for several tasks and languages. In the optimal case, the in-
put data for training the algorithms and the output data usedin the evaluations would
have been the same each year, and every algorithm would have participated in every
task. Unfortunately, that is not the case, and the database is somewhat sparse. First,
we excluded the results of Morpho Challenge 2005, where the data sets were signif-
icantly different from those in the following Challenges. Second, we excluded the
Arabic language, which was included in two Challenges (2008and 2009), but only
for the linguistic evaluation and using different data setseach time. For the remaining
languages and tasks, Table 2 shows the number of evaluated methods. We have no
reference segmentations for German, so boundary evaluations could not be applied to
it.
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Table 2. The number of methods evaluated in different tasks and languages. “Seg-
mentation” refers to the methods that could be evaluated by measuring precision and
recall of the morph boundaries.

Evaluation Number of methods

English Finnish German Turkish

Linguistic evaluation 49 42 39 45
– Segmentation 20 18 0 20

Information retrieval 36 31 25 0
Statistical machine translation 0 22 13 0

4.1. Linguistic Evaluations

As evaluation methods, we tested the following isomorphic evaluations: Morpho
Challenge evaluation method from 2009 and 2010 (MC), EMMA (Spiegler and Mon-
son, 2010), the modified EMMA using two one-to-many mappingsas described in
section 3.1.4 (EMMA-2), and the new co-occurrence based methods described in sec-
tion 3.1.3 (CoMMA). Among these, only EMMA is a hard isomorphic evaluation,
while the rest are soft isomorphic evaluations. As the boundary evaluation described
in section 3.1.2 is a very simple and popular method, we included it as a baseline. In
order to make it compatible to alternative analyses presentin the data, we used a sim-
ilar approach to CoMMA-S and matched them using the Hungarian algorithm to get
maximal average F-score. This method is referred to as “BPR”. Table 3 shows a com-
parison of the evaluations, including the type of evaluation, how alternative analyses
are handled, and whether isolated words that have no common morphemes to other
words in the evaluation set are excluded.

Table 3. Methods for linguistic evaluation: the type of evaluation,treatment of alter-
native analyses, and whether isolated words are included.

Name Evaluation type Alternatives Isolated words

BPR Boundary positions Best match Included
MC Co-occurrence Best single pair Excluded
EMMA Assignment (1-1) Best match Included
EMMA-2 Assignment (M-1 / 1-M) Best Pre / Rec Included
CoMMA-B0 Co-occurrence Reduced to max Excluded
CoMMA-B1 Co-occurrence Reduced to max Included
CoMMA-S0 Co-occurrence Best match Excluded
CoMMA-S1 Co-occurrence Best match Included

The reference analyses used in the linguistic evaluations were the same as in the
Morpho Challenges 2007-2010 (Kurimoet al., 2008; Kurimoet al., 2009; Kurimo
et al., 2010c; Kurimoet al., 2010b). The English and German gold standards were
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based on the CELEX database (Baayenet al., 1995). The Finnish gold standard was
based on the FINTWOL analyzer from Lingsoft, Inc., that applies the two-level mor-
phology model by Koskenniemi (1983). The English and Finnish reference analy-
ses were transformed to segmentations via Hutmegs (Creutz and Lindén, 2004). The
Turkish reference analyses, including segmentation, wereobtained from a morpho-
logical parser developed at Boǧaziçi University.

The Morpho Challenge evaluation differs from the other methods in that it first
requires sampling of the word pairs. We applied the same wordpair lists as in the
Morpho Challenges. They included 10,000 (English), 200,000 (Finnish), 50,000 (Ger-
man), and 50,000 (Turkish) focus words from the gold standards. For the other evalu-
ation methods, we collected all the words present in the wordpair lists, and sampled
ten random subsets of 1,000 word forms. For each evaluation method and evaluated
algorithm, we calculated precision, recall and F-score foreach subset, and then took
the average. The sets of average scores were used for calculating Spearman’s rank
correlation coefficients to the results of the application evaluations.

In addition, to study the computation time and stability of the evaluation methods
with respect to the size of the evaluation data, we sampled ten sets of 100, 300, 1000,
3,000, and 10,000 word forms from the English and Finnish test sets. Due to the long
evaluation times with the larger sets, we used these sets to evaluate only one algorithm,
Morfessor Baseline.

4.2. Information Retrieval Tasks

Our information retrieval tasks were the same as in Morpho Challenge 2010
(Kurimo et al., 2010b). Three languages were used: English, German and Finnish.
Test corpora, queries and relevance assessments were provided by Cross-Language
Evaluation Forum (CLEF) (Agirreet al., 2008). To evaluate the algorithms, the IR
tasks were run after replacing all word forms in the corpora and the queries by the sub-
mitted analyses. Success was measured in terms of Mean Average Precision (MAP).
The evaluations were carried out with the Lemur Toolkit (Ogilvie and Callan, 2002)
using Okapi BM25 ranking with default parameter values. Foreach submission, a
stop list was generated, since Okapi BM25 suffers if the corpus contains terms that are
very common. Any term that has a collection frequency higherthan 75,000 (Finnish)
or 150,000 (German and English) was excluded from indexing.

The information retrieval task has been repeated four timesin Morpho Challenges
2007-2010. The data, setup and methods for the task have remained the same. How-
ever, a number of issues have been detected and fixed over the years. In the 2007
challenge, a part of the evaluation corpus for German was missing, making the task
easier and thus the results comparably higher. On all languages, some fixes were
made to corpus preprocessing and word list generation that had small effects on the
results. For this paper, all algorithms from previous yearswere re-evaluated to make
the results comparable to the 2010 results.
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4.3. Statistical Machine Translation Tasks

We used the machine translation evaluation from Morpho Challenge 2010 (Kurimo
et al., 2010b). The translation was done from a morphologically complex source
language (here Finnish and German) to English. The words of the source language
were replaced by their morpheme analyses before training the translation models. The
morpheme-based models were combined to a standard word-based model by generat-
ing n-best lists of translation hypotheses from both models, and finding the best overall
translation with the Minimum Bayes Risk (MBR) decoding (Kumar and Byrne, 2004).
A state-of-the-art phrase-based SMT system, Moses (Koehnet al., 2007), was used for
training the translation models and generating the n-best lists. As an evaluation mea-
sure, we used the BLEU metric (Papineniet al., 2002).

The Europarl corpus (Koehn, 2005) was used for training and testing the SMT
systems. It was divided into three subsets: training set fortraining the models (about
300,000 sentences), development set for tuning the model parameters (about 3,000
sentences), and test set for evaluating the translations (about 3,000 sentences). The
word lists given for participants for learning morphology included all the word forms
in the Europarl corpus, including the test data.6 The data sets and the evaluation
setting were almost the same as in Morpho Challenge 2009 (Kurimo et al., 2010c), but
there was one change in 2010. As the alignment tool used in training the SMT system
has a limitation of 100 tokens per sentence, all the sentences that had more than 100
letters were discarded. This way, all the systems had the same amount of training
data regardless of the number of morphemes found. To get comparable results, we
re-evaluated all the algorithms from the machine translation competition of 2009.7

4.4. Algorithms in the Evaluation

In this section, the main algorithms in Morpho Challenges 2005-2010 are de-
scribed very briefly. Including all the variants of these, there were more than 50
submissions which are presented in detail in the following publications.

Bernhard [1, 2] 2007(Bernhard, 2008) first extracts a list of the most likely pre-
fixes and suffixes and then generates alternative segmentations for the word forms.
The best ones are selected based on cost functions that favour most frequent analysis
and some basic morphotactics.

6. A more realistic setting would be that the model learned on the training data would be applied
to analyze the tuning and test data. However, the practical arrangementsfor such a setting would
be more complicated.
7. However, a slight difference remains between the results from 2009 and 2010 algorithms. In
2009, the data set for the SMT competition was separate from the other datasets, while in 2010
there was one combined data set. The participants of Challenge 2009 wereallowed to use also
other data sets than the SMT set, but some may not have done so.
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Bordag [5, 5a] 2007(Bordag, 2008) applies iterative letter successor variety
(LSV) and clustering of morphs into morphemes.

Can [1, 2] 2009(Can and Manandhar, 2010) use unsupervised part-of-speechtag-
ging as an initial step to find morphological paradigms. Thishas so far been the only
approach to exploit the context information of the words.

DEAP [MDL-CAT, MDL-NOCAT, PROB-CAT, PROB-NOCAT] 2010
(Spiegleret al., 2010a) is a supervised algorithm using deductive-abductive parsing
with a context-free grammar. The best hypothesis from abduced parses is selected
either using a probabilistic or MDL-inspired criterion. For the NOCAT versions, the
morpheme labels returned by the parsing algorithms were removed, thus returning
only a segmentation, and for the CAT versions, they were kept.

Lignos 2009, 2010(Lignoset al., 2010a; Lignos, 2010) is based on the observation
that the derivation of the inflected forms can be modeled as transformations. The best
transformations can be found by optimizing the simplicity and frequency. The sub-
missions in 2010 included three variants,Base Inference, Aggressive Compounding,
andIterative Compounding.

McNamee [3, 4, 5] 2007(McNamee and Mayfield, 2007) extracts all the letter
n-grams in the words, and for each word selects the n-gram that occurred the least
number of times in total. The different versions apply different n-gram lengths (3, 4,
and 5). This method was intended mainly for the IR task.

MetaMorph 2009 (Tchoukalovet al., 2010) applies multiple sequence analysis
(MSA), which are popular in biological sequence processing, to the problem of learn-
ing morphology. The approach is problematic for large sets of word forms, but more
useful for smaller sets of orthographically related words.

Morfessor Baseline(Creutz and Lagus, 2002; Creutz and Lagus, 2005b) is a pub-
lic baseline algorithm based on jointly minimizing the sizeof the morph codebook and
the encoded size of all the word forms using the minimum description length (MDL)
cost function.

Morfessor Categories-MAP(Creutz and Lagus, 2005a) is a extension of the Mor-
fessor Baseline method, where hidden Markov models are usedto incorporate mor-
photactic categories. The structure is optimized using maximum a posteriori (MAP)
estimation.Morfessor Categories-MAP 2007and2008are submissions by Monson
et al. (2008) and Monsonet al. (2009) using the same method.

Allomorfessor 2008, 2009(Kohonenet al., 2009; Virpiojaet al., 2010) is an ex-
tension of Morfessor Baseline, where stem allomorphy is modeled using string muta-
tions that modify the letters close to the morpheme boundary.

Morfessor [U+W, S+W, S+W+L] 2010(Kohonenet al., 2010a; Kohonenet al.,
2010b) are semi-supervised versions of Morfessor Baseline. U+W uses supervision
only to find a suitable weight for the data likelihood, whereas S+W also uses the
known segmentations to guide the search algorithm. InS+W+L, a hidden Markov
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model is trained to label the segments according to those present in the annotated
data.

MorphAcq 2010 (Nicolaset al., 2010) is an unsupervised approach to find a set
of morphological rules, i.e., transformations that convert a stem into a related lexical
form. The method applies several strategies that first find pairs of candidate affixes
and then build morphological rules. Special attention is paid to frequency-related
phenomena.

MorphoNet 2009(Bernhard, 2010) is based on finding community structure from
a lexical network. The lexical network is constructed by learning transformation rules
based on graphical similarities between words.

ParaMor 2007-2010(Monsonet al., 2008; Monsonet al., 2009; Monsonet al.,
2010) applies an unsupervised model for inflection rules andsuffixation for the stems
by building linguistically motivated paradigms.ParaMor-Morfessor (2007, 2008)
combines ParaMor with Morfessor Categories-MAP by giving the analyses of the
both methods as alternatives.ParaMor-Morfessor Union (2010) combines ParaMor
and Morfessor by taking union of the segmentation points.ParaMor Mimic and
ParaMor-Morfessor Mimic (2010) are supervised probabilistic models trained on
the results of the unsupervised algorithms.

Promodes 2009-2010(Spiegleret al., 2010b; Spiegleret al., 2010c) presents a
probabilistic generative model that considers morpheme boundaries as hidden vari-
ables and includes probabilities for letter transitions within morphemes. In both years,
there were three different versions, one being a combination of the other two.

RALI-ANA andRALI-COF 2009 (Lavallée and Langlais, 2010) identify trans-
formations between word forms using formal analogy, i.e., relations of four forms
such asreaderis to doer as reading is to doing. RALI-ANA is a pure analogical
approach, while RALI-COF applies related but more general cofactor rules instead.

RePortS 2007(Keshava and Pitler, 2006) uses simple LSV-type criteria based on
two letter n-gram models that predict forward and backward to score potential prefixes
and suffixes. Combinations of other affixes are pruned from the candidate list, and the
final segmentation points determinated using the letter models.

UNGRADE 2009 (Goléniaet al., 2010a) aggregates two types of information:
stem candidates found using a MDL-type criterion, and affix candidates found using
a graph-based, LSV-type approach.

MAGIP 2010 (Goléniaet al., 2010b) is a supervised approach that creates a mor-
pheme graph similar as in UNGRADE, but trains it on known segmentations. Mixed-
integer programming is applied to select the best parse of anunseen word from the set
of parses generated from the graph.

Zeman [1, 3] 2007, 2008(Zeman, 2008; Zeman, 2009) uses a heuristic algorithm
to find paradigms assuming that there is only one stem and suffix per word. In 2008,
the method was extended to search also for prefixes using two different approaches.
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4.5. Results

The evaluation results for the participating algorithms are presented in the respec-
tive Morpho Challenge overview articles, so we do not concentrate on those in this
article. Table 4 shows selected results for some of the algorithms for the Finnish
tasks. The full result tables for all algorithms, languagesand evaluations are found
athttp://research.ics.tkk.fi/events/morphochallenge/. The importance
of the analysis of the evaluation metrics is clear from Table4: the differences in the
evaluations result in different orders for the algorithms.There are at least two rea-
sons for the differences of direct evaluations: some measure different things (morph
boundaries or morpheme sets), and some measure the same thing but in a different
manner (using co-occurrences or soft or hard assignment).

Table 4. Selected results for some of the evaluated methods for Finnish. T is the
type of the algorithm: semi-supervised (S), unsupervised (U), or unsupervised with
supervised parameter tuning (P). #a/w is the average numberof analyses per word,
#m/w is the the average number of morphemes per word, and #lexis the size of the
morpheme lexicon. The best score for each metric is in bold.

Method T #a/w #m/w #lex MC EMMA IR SMT
×1k F F MAP BLEU

Allomorfessor 2009 U 1.00 2.46 70 32.44 58.25 45.6826.80
Bernhard 2 2007 U 1.00 3.89 88 52.45 61.1149.07 -
Bordag 5a 2007 U 1.00 2.84 515 39.56 58.41 42.83 -
DEAP MDL-CAT S 5.31 3.23 2,549 61.67 31.66 37.25 25.90
DEAP MDL-NOCAT S 3.29 3.41 1,753 62.52 40.95 41.60 25.62
Lignos Base Inference U 1.00 2.58 560 37.35 65.88 41.51 26.19
Morfessor Baseline U 1.00 2.17 176 24.83 58.44 42.35 26.65
Morfessor CatMAP U 1.00 2.88 239 43.16 61.14 47.54 26.34
Morfessor S+W S 1.00 4.20 14 56.38 62.08 47.50 25.94
Morfessor S+W+L S 1.00 4.27 19 60.76 71.19 44.65 25.82
MorphoNet 2009 U 1.00 2.53 985 33.34 56.22 38.75 25.56
ParaMor 2008 U 1.00 2.62 1,124 42.93 55.58 38.28 -
ParaMor Mimic P 1.00 3.30 1,149 43.57 55.46 39.05 25.53
ParaMor-Morf. Mimic P 1.00 4.24 324 48.38 57.69 44.46 25.54
ParaMor-Morf. Union P 1.00 4.02 215 49.39 55.79 47.13 25.44
Promodes 2010 P 1.00 5.46 236 44.31 51.18 37.21 25.64
RALI-COF U 1.00 2.39 723 38.81 63.94 - -

4.5.1. Correlation to Application Evaluations

The upper part of Figure 4 shows the correlations between theresults of linguistic
evaluation methods and the IR tasks. EMMA provides high correlations (≥ 0.7) for
English and Finnish and moderate (≥ 0.5) for German. EMMA-2 gives slightly lower
correlation for German, but is otherwise close. The MC evaluation is among the worst
both in English and Finnish, but, surprisingly, provides the highest correlation for
German. Among the CoMMA methods, CoMMA-S gives higher correlations than
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CoMMA-B. Including isolated words improves correlation for English and Finnish,
but decreases for German. For the SMT tasks (lower part of Figure 4), only EMMA
shows a positive correlation for both languages, and EMMA-2and CoMMA-B1 for
Finnish, while all the others have negative correlations.

Figure 4. Spearman’s rank correlations between the F-scores of the linguistic evalu-
ation methods and the scores of information retrieval and statistical machine transla-
tion evaluations.

For co-occurrence based metrics, it was clear that the balanced F-score would
not give the best correlations to the application evaluations, as the optimal balance
between precision and recall is likely to depend on the application and language. To
study this effect, we calculated the correlations for a set of Fβ-scores with different
weightsβ. The results are plotted in Figure 5. For the CoMMA methods, as well as
MC, the optimalβ is always below one, emphasizing precision. CoMMA-B0 and S0
require usually more weighting than B1 and S1 to get as high correlations. For EMMA
and EMMA-2, the optimalβ is towards recall with the IR tasks. Peculiarly, the recall
of EMMA gives the highest overall correlation for the GermanIR. For Finnish SMT,
all methods give the best correlation just for precision. Itseems that the most of the
algorithms in the database made too recall-oriented analyses for this task.

With weighted Fβ , EMMA still provides the highest correlations for the IR tasks,
and EMMA-2 is close, but the best correlations for the co-occurrence based metrics
are much closer. For Finnish SMT, MC and CoMMA-B variants give higher corre-
lation for the precision than the others, and for German SMT,all the peaks are very
close. Figure 6 shows a similar plot for the English and Finnish IR tasks, but including
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Figure 5. Spearman’s rank correlations between the results of the application evalu-
ations and weighted Fβ-scores with varyingβ.

only the algorithms that return a segmentation so that the boundary evaluation (BPR)
can be included. Note that for this subset of the algorithms,the overall level of corre-
lations is higher. BPR gives the third highest numbers afterEMMA and EMMA-2 for
both languages.
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Figure 6. Spearman’s rank correlations between the results of the IR evaluations and
weighted Fβ-scores with varyingβ. Only segmentation algorithms are included in the
evaluation.

4.5.2. Correlation to Boundary Evaluation

For languages that have mostly concatenative morphology, it is useful to know
how well the isomorphic evaluations correlate to boundary evaluation. In many cases,
a linguistic reference does not include a segmentation but only morpheme labels, while
the evaluated algorithm does only segmentation. If the correlation is high, it is possible
to substitute the isomorphic evaluation for the boundary evaluation. Figure 7 shows
correlations between the F-scores of BPR and the isomorphicevaluations. The results
vary over the languages, and only EMMA and EMMA-2 provide high correlations in
all of them. CoMMA-B1 and CoMMA-S1 have the best correlations in English, and
MC in Turkish, but all of them have only moderate correlationin Finnish.

Figure 7. Spearman’s rank correlations of the F-scores of the isomorphic evaluation
methods and the BPR boundary evaluation.
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4.5.3. Robustness

To test robustness of the evaluations with respect to gaming, we used the tests
introduced by Spiegler and Monson (2010).

Ambiguity hijacking testaddresses how the evaluation method deals with alter-
natives in the predicted analyses. As some of the words are ambiguous regarding
their morphological analysis, the evaluation methods should allow the alternatives.
However, providing two alternative analyses for a non-ambiguous word should not
give higher score than providing a reasonable combined analysis or just the better
one. For example,ParaMor-Morfessor, which simply lists the analyses of ParaMor
and Morfessor Categories-MAP as two alternatives, should not outperformParaMor-
Morfessor Union, which combines the morpheme boundary predictions as a single
analysis. Figure 8 shows that MC and CoMMA-B give higher F-scores to ParaMor-
Morfessor than to ParaMor-Morfessor Union, while CoMMA-S and EMMA-2 are as
robust as EMMA in this respect.

Figure 8. Gaming with ambiguity hijacking on English and Finnish: ParaMor-
Morfessor returns ParaMor and Morfessor Categories-MAP astwo alternatives,
whereas ParaMor-Morfessor Union combines the two predictions into a single anal-
ysis. The number above ParaMor-Morfessor 2008 shows the absolute difference to
ParaMor-Morfessor Union. CoMMA-B0 gives similar results to B1 and S0 similar
results to S1.

Shared morpheme padding testaddresses the vulnerability of the evaluations to an
artificial modification of the analysis. A unique bogus morpheme is added to each
predicted analysis. For methods based on co-occurrence analysis, this means adding
an additional edge between each word. As expected, the results in Table 5 show that
the recall scores are clearly increased and precision scores decreased for the MC and
CoMMA methods. For those languages where high recall was hard to obtain (Finnish
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and Turkish), this improves the F-score, while for those where the recall was initially
high (English and German), the F-score decreases. EMMA-2 isalmost as robust as
the original EMMA, showing only small changes in the scores.

Table 5. Gaming with shared morpheme padding: average and standard deviations
of the ratio of padded to original scores for the evaluation methods.

Lang. Precision Recall F-score Precision Recall F-score

MC evaluation
English 0.36±0.08 2.02±0.66 0.63±0.10
Finnish 0.57±0.08 3.07±2.46 1.19±0.68
German 0.43±0.08 2.90±1.45 0.84±0.16
Turkish 0.58±0.09 2.95±1.65 1.19±0.37

EMMA evaluation EMMA-2 evaluation
English 0.73±0.15 1.05±0.08 0.86±0.12 0.76±0.07 1.28±0.10 0.96±0.03
Finnish 0.87±0.19 1.12±0.10 0.99±0.14 0.86±0.05 1.62±0.25 1.18±0.09
German 0.80±0.17 1.09±0.08 0.94±0.11 0.79±0.05 1.52±0.22 1.07±0.08
Turkish 0.85±0.08 1.07±0.04 0.97±0.05 0.85±0.05 1.76±0.32 1.29±0.15

CoMMA-B0 evaluation CoMMA-B1 evaluation
English 0.15±0.10 2.24±0.81 0.31±0.13 0.12±0.04 1.86±0.46 0.23±0.06
Finnish 0.51±0.14 6.46±7.88 1.76±1.74 0.44±0.11 5.03±4.44 1.34±0.89
German 0.28±0.12 3.35±2.91 0.59±0.35 0.21±0.05 3.07±2.10 0.49±0.24
Turkish 0.48±0.15 5.65±4.51 1.76±1.14 0.43±0.12 5.91±4.58 1.46±0.88

CoMMA-S0 evaluation CoMMA-S1 evaluation
English 0.15±0.10 2.24±0.81 0.31±0.13 0.16±0.17 1.79±0.46 0.28±0.16
Finnish 0.51±0.14 6.46±7.88 1.76±1.74 0.46±0.14 4.67±3.92 1.34±0.83
German 0.28±0.12 3.35±2.91 0.59±0.35 0.24±0.16 2.94±2.01 0.52±0.25
Turkish 0.48±0.15 5.65±4.51 1.76±1.14 0.45±0.15 4.57±3.02 1.46±0.74

4.5.4. Interpretability

Interpretability of an evaluation method, as defined by Spiegler and Monson
(2010), concerns how the evaluation results can be used for identifying the strengths
and weaknesses of the predicted analyses. The F-scores of all the discussed evaluation
methods are readily interpretable in the sense that they measure well-defined proper-
ties of the predicted analyses: EMMA and EMMA-2 measure how well the predicted
morphemes can be matched to reference morphemes, while MC and CoMMA mea-
sure whether the words have the correct number of shared morphemes in the predicted
analysis. However, the evaluations can also provide additional information on the
evaluated analyses.

EMMA has the benefit of providing a mapping between the predicted and the
reference morphemes. This is useful especially for human inspection of the results as
it helps qualitative evaluation. This applies also to EMMA-2, but as it provides two
many-to-one mappings that often have some obscure mappingsfor the morphemes
that occur only once, they are not as easy to utilize as in EMMA.
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Instead of studying individual morphemes or analyses, sometimes a more general
view on the result is more useful. One question is whether theprecision and recall of
the evaluation method can provide useful information. As explained in section 3.1.3,
low recall in co-occurrence based metrics should mean that you are missing some co-
occurrences (e.g., not segmenting enough or not joining allomorphs) and low precision
that you have spurious co-occurrences (e.g., segmenting too much or having the same
label for syncretic morphemes). In contrast, one-to-one matching gives neither good
precision nor recall if the number of predicted morphemes iswrong.

To study this experimentally, we trained the Morfessor Baseline algorithm with
different likelihood weights (see Kohonenet al., 2010a), thus controlling the amount
of segmentation. Then we calculated precision and recall for the results using the
different evaluation methods, shown in Figure 9. The pointsin upper-left corner cor-
respond to models that severely undersegment, and the amount of segmentation in-
creases by each point. All co-occurrence based methods (including the CoMMA vari-
ants not in the figure), boundary evaluations, and EMMA-2 have recall and precision
that consistently decrease and increase, respectively, when the words are segmented
more. If the evaluated algorithm gets, for example, Pre= 0.45 and Rec= 0.5, it
indicates that the analyses are balanced in that the amount of missing co-occurrences
and the amount of spurious co-occurrences are about the same. With EMMA, recall
starts to decrease after a certain point, obstructing this kind of interpretations.

Figure 9. Precision-recall curves of the evaluation methods for Morfessor Baseline
models with varying amount of segmentation. The points in the upper-left corner
correspond to models that resulted in fewer segmentations.
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4.5.5. Computation Time

Figure 10 shows the average computation times of the evaluation methods for eval-
uating Morfessor Baseline using evaluation sets of varyingsize. The MC evaluation is
excluded, as its approach based on random sampling is very different from the others.
The boundary evaluation (BPR) is very fast, having in practice a linear complexity.
All CoMMA variants show polynomial growth of the same order (linear and same
slope in the log-log scale). For EMMA, 16 GB of memory are not enough for the
3,000-word sets, so we had to stop at 2,000 words. The growth of the computation
time is faster than with CoMMA, potentially exponential. EMMA-2 was very fast
for the tested evaluation sets, but the super-linear trend in the log-log scale indicates
exponential growth for it, too. The exponential growth in EMMA and EMMA-2 is an
implementation issue, related to using the integer linear programming for morpheme
assignment (only in EMMA) and for matching the alternatives(in both).

Figure 10. Computation times of different evaluation methods with respect to the size
of the evaluation data (100-10,000 words) for English and Finnish. Both the time
and the number of words are shown in logarithmic scale. The evaluated method is
Morfessor Baseline.

4.5.6. Stability for Evaluation Data Variations

In order to study the stability of the evaluation methods with respect to the size of
the evaluation data, we calculated precision, recall and F-score for Morfessor Baseline
using the sets from 100 to 10,000 words. The means and standard deviations of the
results are plotted in Figure 11. Unsurprisingly, boundaryevaluation is a very stable
method with respect to the size of the data. The MC evaluationshows more variation:
for Finnish, all scores are underestimated with small data sets, while for English, they
are first overestimated and then underestimated. EMMA and EMMA-2 give smaller
standard deviations than the other methods, but they clearly overestimate the scores
with small data sets. For CoMMA, S0 and B0 as well as S1 and B1 give similar
results, so only the formers are included. Variants that exclude isolated words show a
similar pattern as the MC evaluation, but the changes are smaller (in particular for the
recall in Finnish). Variants that include isolated words overestimate the scores with
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small data sets, but in contrast to EMMA and EMMA-2, the changes get smaller as
the data size grows.

Figure 11. The mean and standard deviation for precision, recall, and F-score of
different evaluation methods with respect to the size of theevaluation data (100-10,000
words) for English and Finnish. The evaluated method is Morfessor Baseline.

4.6. Discussion

As finding theβ that gives the highest correlation of Fβ to the application evalu-
ations can be considered as tuning the evaluation metric, a relevant question is how
general the found value is for given language and application. That is, if Fβ optimized
for the task is utilized for evaluating a new set of algorithms, will it actually give better
correlations at all?

In order to test this, we used theβ:s optimized for the IR correlations using the
segmentation algorithms (Figure 6 on page 74) to calculate correlation using all the
other (non-segmentation) algorithms. For English IR, there were 17 segmentation al-
gorithms and 18 non-segmentation algorithms, and for Finnish IR, 15 for both. The
obtainedβ:s and correlations are shown in Table 6. Using theβ optimized for segmen-
tation algorithms often gives higher correlations also fornon-segmentation algorithms
than the balanced F1-score. In the cases that it does not, Fβ and F1 are either equal
or very close. Moreover, in half of the cases, the correlation of Fβ tuned for the non-
segmentation algorithms (shown in last column) is only slightly (≤ 0.05) higher than
the one tuned for the segmentation algorithms.
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Table 6. Correlations with Fβ tuned for segmentation algorithms and tested on non-
segmentation algorithms. For comparison, the fifth column shows the correlation of
balanced F-score for non-segmentation algorithms and the last column shows the
correlation of the Fβ-score optimized using the non-segmentation algorithms. The
higher of the correlations for F1 and Fβ is shown in bold.

Language Method Segmentation Non-segmentation

β Fβ F1 Fβ bestFβ

English EMMA 1.25 0.87 0.73 0.71 0.73
English MC 0.6 0.62 0.43 0.56 0.70
English CoMMA-B0 0.6 0.69 0.44 0.60 0.72
English CoMMA-B1 0.9 0.66 0.69 0.74 0.76
English EMMA-2 1.1 0.86 0.74 0.74 0.75
English CoMMA-S1 1.0 0.70 0.79 0.79 0.84
English CoMMA-S0 0.6 0.70 0.67 0.65 0.82
Finnish EMMA 1.25 0.91 0.59 0.61 0.76
Finnish MC 0.3 0.76 0.35 0.73 0.73
Finnish CoMMA-B0 0.3 0.65 0.18 0.47 0.60
Finnish CoMMA-B1 0.4 0.71 0.29 0.52 0.52
Finnish EMMA-2 0.8 0.90 0.55 0.53 0.67
Finnish CoMMA-S1 0.5 0.76 0.44 0.62 0.66
Finnish CoMMA-S0 0.3 0.74 0.44 0.61 0.69

Note that in the experiment above, the set of algorithms for tuning theβ and those
testing it were quite different, as only the second set considered any non-concatenative
processes at all. Thus, theβ:s optimized for the whole set of algorithms evaluated so
far are likely to provide good correlations also for novel sets of algorithms. How-
ever, this certainly does not mean that application evaluations are unnecessary for
future evaluation campaigns. A simple reason is that the best unsupervised algorithms
have actually outperformed the grammatically correct analyses for the applications
evaluated in Morpho Challenges (Kurimoet al., 2008; Kurimoet al., 2009; Kurimo
et al., 2010c; Kurimoet al., 2010b). In other words, the grammatically correct analysis
is not likely to be the optimal solution for the applications.

The optimally correlated Fβ of the soft isomorphic evaluations usually weights
precision over recall, especially for agglutinative languages (Finnish and German).
This indicates that undersegmentation is sometimes usefulfor the applications. While
this may originate from some application-specific methods (developed usually for En-
glish), the phenomenon can also be considered, for example,in the context of the
psycholinguistic discussion on whether inflected words arestored as full-forms or
inferred from their morphological parts in human mind (see,e.g., Pinker and Ull-
man, 2002; Baayen, 2007).

Finally, we emphasize that the results are always dependenton the gold standard
used for reference analyses. In particular, labels that have no direct correspondences
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in the surface forms pose a large problem for unsupervised approaches. Common
examples are separate part-of-speech labels and null morphemes marking singular
forms of nouns. Such labels are likely to encourage oversegmentation, especially
with co-occurrence based metrics, as happened with the Arabic evaluations in Morpho
Challenge 2009 (Kurimoet al., 2010c). While the reference analyses used in this study
are clean from most of such labels, some other peculiaritiesremain. For example, the
shortened words in the English gold standard have the morphemes of the long form
(e.g.,ad hasadvertise_Vandment_s; a-bombhasatom_Nandbomb_N).

4.7. Summary

We end this section by summarizing the experimental resultsfor the isomorphic
evaluation methods.

MC: the MC evaluation has only weak correlation to application evaluations with
balanced F-score, but a decent one when precision is given more weight than recall.
The evaluation, based on random sampling of morpheme-sharing word pairs, is de-
signed for the case where there is a large number of analyzed words to compare. The
naive treatment of alternative analyses makes the method vulnerable to gaming. Al-
gorithms with low recall can be artificially boosted also by adding shared morphemes.

EMMA: EMMA gives high correlations to application evaluations even with bal-
anced F-score. Even among Fβ-scores, the correlations to the results of the IR task
are the highest. EMMA is also robust to gaming both with ambiguity hijacking and
morpheme padding. In addition, it provides the mapping fromthe predicted to the
reference morphemes that can be used in qualitative evaluation. The main problems
are the computational complexity and the memory requirements of the algorithm. The
actual implementation uses integer linear programming, which could be replaced by
the Hungarian algorithm, but the complexity will still be atleast cubic with respect
to the number of morphemes. Minor drawbacks are that the precision and recall do
not have as practical interpretations as in soft isomorphicmethods, and the measures
results are overestimated for small data sets.

EMMA-2: like EMMA, EMMA-2 provides high correlations to application evalu-
ations even with balanced F-score and is robust to gaming. Also similar to EMMA, it
gives overestimated results with small data sets. Precision and recall of EMMA-2
behave similarly to those of the co-occurrence metrics and are more useful than
in EMMA, but the matchings between predicted and reference morphemes are not
as easy to use in qualitative evaluation. The main advantageover EMMA is that
EMMA-2 is very quick to compute.

CoMMA: the S0 and S1 versions of CoMMA show a positive correlation tothe
IR results with balanced F-score, but the correlation is high only for English. With
weighted Fβ-score, the correlations vary from high (English) to moderate (German).
B0 and B1 have clearly lower correlations in both cases. Excluding the isolated words
from the evaluation has mixed effects on correlations: B0 has the lowest correlations
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of the variants, but S0 is among the best ones. More weightingis usually needed to get
as good correlations to the application evaluations. However, it provides more stable
results for small evaluation sets, for which the scores are otherwise overestimated.
Similar to MC, the recall of the CoMMA evaluations is vulnerable to gaming with
shared morpheme padding. However, they are more robust thanMC with respect to
ambiguity hijacking, especially CoMMA-S which uses a strict matching between the
alternatives. All the variants have reasonable computation times up to 10,000 words.

5. Conclusions

Unsupervised learning of morphology has been an active research topic for over
a decade, but there has not been any standard way of evaluating the algorithms based
on linguistic reference analyses. While this is partly due tothe lack of free and pub-
licly available linguistic references, also the implementations and experimental com-
parisons of the evaluation methods have been missing. The situation has been im-
proved by the yearly Morpho Challenge evaluations and the publication of the EMMA
method (Spiegler and Monson, 2010). For this article, we have performed the most
extensive meta-evaluation so far, using the large number ofsubmissions to the Morpho
Challenge competitions. Based on the experiments, we can give some recommenda-
tions for the usage of the evaluation methods.

While the emphasis of this work was on isomorphic evaluations, the results con-
firm that using boundary evaluation is sensible whenever it is applicable (i.e., both
predicted analyses and reference analyses are segmentations). In addition to being
robust, simple and intuitive, it provides high correlations to application evaluations.
In the case that reference segmentations are not available,isomorphic evaluations pro-
vide reasonable correlations to the boundary evaluation. However, it should be kept
in mind that the correlation depends both on the language andthe reference analysis,
which may require cleaning from, e.g., null morphemes.

Among the isomorphic evaluation methods, EMMA is recommended especially
if either the goal is to get as close to the reference analysisas possible (one-to-one
assignment provides detailed information) or a good correlation of the balanced F-
score to the application evaluations is sought. However, computational complexity of
the assignment prevents using it for large evaluation data sets. EMMA-2 maintains
the strengths of EMMA, robustness and high correlation to application evaluations,
while having substantially shorter computation times. Theuse of soft (many-to-one)
assignment instead of the hard assignment of EMMA reduces the interpretability of
the morpheme assignments, but increases the interpretability of precision and recall.
The combination of robustness and efficiency makes it a strong candidate for any
large-scale experiments and competitions.

CoMMA-S fixes the two main problems in the old MC evaluation. First, it re-
moves the need of sampling and thus is more suitable to use with small evaluation
sets. Second, it deals with alternative analyses in more robust manner. Compared to
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the assignment based methods, CoMMA-S loses in the strengthof the correlations
to application evaluations, in particular with balanced F-scores and morphologically
rich languages. However, it can still be recommended for English (and possibly other
mostly analytic languages), where it works as well as EMMA and EMMA-2 practi-
cally in all aspects. The advantage of CoMMA-S0 over EMMA or EMMA-2 is the
stablility with respect to the size of the evaluation set, which helps comparing the
results from a small development set to those of the final testset.

Implementations of the new evaluation methods, as well as the results for the
individual algorithms submitted to Morpho Challenges, will be published athttp:
//research.ics.tkk.fi/events/morphochallenge/.
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Oflazer K., El-KahlouṫI. D., “Exploring Different Representational Units in English-to-Turkish
Statistical Machine Translation”,Proceedings of the Statistical Machine Translation Work-
shop at ACL 2007, Association for Computational Linguistics, Prague, Czech Republic,
p. 25-32, June, 2007.

Ogilvie P., Callan J., “Experiments Using the Lemur Toolkit”,Proc. TREC ’01, National In-
stitute of Standards and Technology, special publication, Gaithersburg,Maryland, USA,
p. 103-108, 2002.

Papineni K., Roukos S., Ward T., Zhu W.-J., “BLEU: A Method for Automatic Evaluation of
Machine Translation”,Proceedings of the 40th Annual Meeting on Association for Compu-
tational Linguistics (ACL’02), Association for Computational Linguistics, Morristown, NJ,
USA, p. 311-318, 2002.

Pinker S., Ullman M. T., “The Past and Future of the Past Tense”,Trends in Cognitive Sciences,
vol. 6, p. 456-463, November, 2002.

Pirkola A., “Morphological Typology of Languages for IR”,Journal of Documentation, vol. 57,
no. 3, p. 330-348, 2001.

Poon H., Cherry C., Toutanova K., “Unsupervised Morphological Segmentation with Log-
Linear Models”,Proceedings of Human Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Association for ComputationalLinguistics
(NAACL HLT 2009), Association for Computational Linguistics, p. 209-217, 2009.

Rosenberg A., Hirschberg J., “V-Measure: A Conditional Entropy-Based External Cluster
Evaluation Measure”,Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), Association for Computational Linguistics, Prague, Czech Republic, p.410-420,
June, 2007.

Schone P., Jurafsky D., “Knowledge-Free Induction of Morphology Using Latent Semantic
Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th

Conference on Computational Natural Language Learning, Association for Computational
Linguistics, Morristown, NJ, USA, p. 67-72, 2000.



Comparison of Evaluation Methods 89

Schone P., Jurafsky D., “Knowledge-Free Induction of Inflectional Morphologies”,Proceedings
of the Second Meeting of the North American Chapter of the Association for Computational
Linguistics, Association for Computational Linguistics, Pittsburgh, USA, 2001.

Shalonova K., Golenia B., Flach P., “Towards Learning Morphology for Under-Resourced Fu-
sional and Agglutinating Languages”,IEEE Transactions on Audio, Speech, and Language
Processing, vol. 17, no. 5, p. 956-965, July, 2009.

Snover M. G., Jarosz G. E., Brent M. R., “Unsupervised Learningof Morphology Using a Novel
Directed Search Algorithm: Taking the First Step”,Proceedings of the ACL-02 Workshop
on Morphological and Phonological Learning, Association for Computational Linguistics,
p. 11-20, July, 2002.

Snyder B., Barzilay R., “Unsupervised Multilingual Learning for Morphological Segmenta-
tion”, Proceedings of ACL-08: HLT, Association for Computational Linguistics, Columbus,
Ohio, p. 737-745, June, 2008.

Spiegler S.,Machine Learning for the Analysis of Morphologically Complex Languages, PhD
thesis, Merchant Venturers School of Engineering, University of Bristol, April, 2011.

Spiegler S., Golénia B., Flach P. A., “DEAP: Deductive-Abductive Parsing for Morphological
Analysis”, in M. Kurimo, S. Virpioja, V. T. Turunen (eds),Proceedings of the Morpho Chal-
lenge 2010 Workshop, Aalto University School of Science and Technology, Department of
Information and Computer Science, Espoo, Finland, p. 44-48, September, 2010a. Technical
Report TKK-ICS-R37. Extended abstract.

Spiegler S., Golénia B., Flach P. A., “Unsupervised Word Decomposition With the Promodes
Algorithm”, Multilingual Information Access Evaluation I. Text Retrieval Experiments:
10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece,
September 30 - October 2, 2009, Revised Selected Papers, vol. 6241 ofLecture Notes in
Computer Science, Springer, p. 625-632, 2010b.

Spiegler S., Golénia B., Flach P. A., “Word Decomposition With the Promodes Algorithm Fam-
ily Bootstrapped on a Small Labelled Dataset”,in M. Kurimo, S. Virpioja, V. T. Turunen
(eds),Proceedings of the Morpho Challenge 2010 Workshop, Aalto University School of
Science and Technology, Department of Information and Computer Science, Espoo, Fin-
land, p. 49-52, September, 2010c. Technical Report TKK-ICS-R37. Extended abstract.

Spiegler S., Monson C., “EMMA: A Novel Evaluation Metric for Morphological Analysis”,
Proceedings of the 23rd International Conference on Computational Linguistics (COL-
ING), August, 2010.

Tchoukalov T., Monson C., Roark B., “Morphological Analysis by Multiple Sequence Align-
ment”, Multilingual Information Access Evaluation I. Text Retrieval Experiments:10th

Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece, Septem-
ber 30 - October 2, 2009, Revised Selected Papers, vol. 6241 ofLecture Notes in Computer
Science, Springer, p. 666-673, 2010.

Virpioja S., Kohonen O., Lagus K., “Unsupervised Morpheme Analysis with Allomorfessor”,
Multilingual Information Access Evaluation I. Text Retrieval Experiments:10th Workshop
of the Cross-Language Evaluation Forum, CLEF 2009, Corfu, Greece, September 30 - Oc-
tober 2, 2009, Revised Selected Papers, vol. 6241 ofLecture Notes in Computer Science,
Springer, p. 609-616, 2010.

Virpioja S., Lehtonen M., Hultén A., Salmelin R., Lagus K., “Predicting Reaction Times in
Word Recognition by Unsupervised Learning of Morphology”,Proceedings of Interna-



90 TAL. Volume 52 – n° 2/2011

tional Conference on Artificial Neural Networks (ICANN 2011), vol. 6791 ofLecture Notes
in Computer Science, Springer Berlin / Heidelberg, Espoo, Finland, p. 275-282, 2011.

Virpioja S., Väyrynen J. J., Creutz M., Sadeniemi M., “Morphology-Aware Statistical Machine
Translation Based on Morphs Induced in an Unsupervised Manner”,Proceedings of the
Machine Translation Summit XI, Copenhagen, Denmark, p. 491-498, September, 2007.

Yang M., Kirchhoff K., “Phrase-Based Backoff Models for Machine Translation of Highly
Inflected Languages”,Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2006), Association for Computational
Linguistics, Trento, Italy, p. 41-48, 2006.

Yarowsky D., Wicentowski R., “Minimally Supervised Morphological Analysis by Multimodal
Alignment”, Proceedings of the 38th Meeting of the ACL, Association for Computational
Linguistics, p. 207-216, 2000.

Zeman D., “Unsupervised Acquiring of Morphological Paradigms from Tokenized Text”,Ad-
vances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the Cross-
Language Evaluation Forum, CLEF 2007, Budapest, Hungary, September 19-21, 2007,
Revised Selected Papers, vol. 5152 ofLecture Notes in Computer Science, Springer, p. 892-
899, 2008.

Zeman D., “Using Unsupervised Paradigm Acquisition for Prefixes”,Evaluating Systems for
Multilingual and Multimodal Information Access, 9th Workshop of the Cross-Language
Evaluation Forum, CLEF 2008, Aarhus, Denmark, September 17-19,2008, Revised Se-
lected Papers, vol. 5706 ofLecture Notes in Computer Science, Springer, p. 983-990, 2009.

Zhu X., “Semi-Supervised Learning Literature Survey”, Technical Report no. 1530, Computer
Sciences, University of Wisconsin-Madison, 2005.


