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ABSTRACTUnNsupervised and semi-supervised learning of morphology provaligal solu-
tions for processing morphologically rich languages with less human latzor the traditional
rule-based analyzers. Direct evaluation of the learning methods usiggi$itic reference anal-
yses is important for their development, as evaluation through the finéitafipns is often time
consuming. However, even linguistic evaluation is not straightforward fbrfarphological
analysis, because the morpheme labels generated by the learning neathbe arbitrary. We
review the previous evaluation methods for the learning tasks and promeseariations. In
order to compare the methods, we perform an extensive meta-evalusiigthe large collec-
tion of results from the Morpho Challenge competitions.

RESUME.L'apprentissage non supervisé et semi-supervisé de la morpholagieitfales so-
lutions pratiques pour le traitement des langues morphologiquementsrieheequiert une
intervention humaine réduite comparée aux analyseurs traditionnelsstasedes regles.
L’évaluation directe des méthodes d’apprentissage utilisant des asatigseéférence linguis-
tique est importante pour leur développement, puisque I'évaluation paagpscations fi-
nales prend généralement beaucoup de temps. Cependant, méaheakiéw linguistique n’est
pas simple pour I'analyse morphologique compléte, car les identifiantsadph@mes géné-
rés par la méthode d’apprentissage peuvent se révéler arbitrairess [gassons en revue les
méthodes d’évaluation existantes pour les taches d’apprentissagepetsons de nouvelles va-
riations. Afin de comparer les méthodes, nous effectuons une vastévabiation a I'aide de
'importante base de résultats provenant des compétitions Morpho Clgellen

KEYwoRDsMorphology, evaluation, unsupervised learning.
MoTS-CLES Morphologie, évaluation, apprentissage non-supervisé.
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1. Introduction

A common task in natural language processing (NLP) appticatsuch as speech
recognition, machine translation and information retilés to construct a vocabulary
and a statistical language model for all words that will bedug=or many languages,
particularly the morphologically rich ones, the vast antafrvarious inflected forms
in which the words appear poses an important challenge. By asrule-based mor-
phological analyzer that exists already for quite many legs, most word forms can
be returned to their base forms. However, these analyzemstdmver the whole lan-
guage and leave out many word forms that are either raragfgrer ungrammatical.
While the frequency of the unanalyzed types may be small iningntext or speech,
they might still be meaningful for the application. A speciaallenge is posed by less
resourced languages for which the available morphologicalyzers are particularly
poor, as well as dialects and colloquial and historical leuges.

A large variety of algorithms for unsupervised morphemdyaisthave been pre-
sented during the last ten yedrsDue to the amount of work required by evaluation
in applications, the algorithms are most often evaluateectly based on a linguistic
reference analysis. Various automatic evaluations haga peoposed, depending on
the task of the algorithm and the available reference aaalysor morphological seg-
mentation, the simplest solution is to calculate how wedl skgmentation boundaries
correspond to the ones in the reference analysis (e.g.faed Lindén, 2004; Ku-
rimo et al, 2006). For finding morphologically related words, the aations are
usually based on pairs or groups of words that share the swme® root in the
reference (e.g., Schone and Jurafsky, 2000; Sretval, 2002).

The most general task, full morphological analysis of wanhfs, is hard not only
for the algorithms, but also for the evaluation. If the léagitask is unsupervised or
semi-supervised, it cannot be expected that the algorittmes up with morpheme
labels that exactly correspond to the ones designed byistsguFor example, the
words “foot” and “feet” might both contain the morpheme “fobl” in an English ref-
erence analysis. Also the applied algorithm should discavaorpheme that occurs
in both these word forms, but it may be labeled as “FOOT”, “pi@me784”, “foot”,
or something else (Kurimet al, 2008). The problem is similar to the one in the eval-
uation of unsupervised part-of-speech (POS) tagging @&ege, Christodoulopoulos
et al, 2010). However, there the number of labels per word is &xace.

Spiegler and Monson (2010) have listed computational agaistic criteria for an
automatic evaluation method dealing with full morphol@jianalyses. The method
should be quicker and easier to compute than large NLP tas&dify computablg
reflect accurately the distribution of predicted and truephemes and be difficult
to game (obus), the results shouldorrelateto the performance in NLP tasks, and
be useful for identifying the strengths and weaknessesehtgorithm (eadily in-
terpretablg. Moreover, it should account fanorphophonologyallomorphy syn-

1. For a recent survey, see Hammarstréom and Borin (2011).
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cretism andambiguity So far, only the metric used in the recent Morpho Challenge
competitions (Kurimeet al., 2008; Kurimoet al., 2009; Kurimoet al,, 2010c; Kurimo

et al, 2010b) and EMMA by Spiegler and Monson (2010) have met athost of
these criteria.

The series of the Morpho Challenge competitions, start&@D0b, has supported
the research for unsupervised morpheme analysis by pravigihnual evaluations
for shared tasks using shared training data for variousulages (for an overview,
see Kurimoet al,, 2010a). The goal has been to develop unsupervised andagagu
independent machine learning algorithms that could discovorphemes from large
amount of given raw text data. From 2007 onwards, the tasks haen designed
for algorithms performing full morphological analyses. 2610, small amounts of
labeled data were provided to support semi-superviseditiges, relevant for this
task particularly because small samples of morphologidalbeled words are often
easy to obtain. So far, more than fifty algorithms have beatuated and compared
using the shared tasks. They have been evaluated not onbyniyyazing the obtained
morphemes to the linguistic ones, but also by testing theneah NLP applications
using state-of-the-art technology.

In this article, we utilize the large database of resultsiftbe Morpho Challenges
to perform the most extensive meta-evaluation of unsupedviearning of morphol-
ogy so far. While we review the previous evaluation methods &r morphological
segmentation and clustering, the main focus of this aréictethe evaluation methods
for unsupervised morphological analysis.

The structure of the rest of the article is as follows: in &ec®, we present the
central terminology and issues in morphology and machiamleg. In section 3, we
review the evaluation methods proposed for the unsupehésening of morphology,
including the Morpho Challenge evaluation and EMMA, andgage a few new vari-
ants for the evaluation of full morphological analyses. éct®n 4, we describe the
setup and the results of the experimental meta-evaluatida consider correlations
to information retrieval and machine translation applmas, as well as robustness,
interpretability, stability, and computational complgxof the methods. In section 5,
we conclude the work and give a few recommendations for thbgeneed to evaluate
their algorithms.

2. Background on Morphology and Machine Learning

2.1. Morphology

Morphology is the study of internal structure of woréisA common way to look
at the structure is to observeorphemesthe smallest meaning-bearing units of the

2. For a text-book description on morphology, see, e.g., Matthewd §X8Chapter 3 in Juraf-
sky and Martin (2008).
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language, and how they are combined to form words. To foradtie different prob-
lems related to learning of morphology, we use the idea oflavel morphology
by Koskenniemi (1983). The two levels of representationlexieal level, which has
the abstract morphemes (each reflecting a certain meaiind)surface level, which
has the phonemes or letters that are the realizations of dnph@mme. The surface
realizations of morphemes are callerphs For examplewalkedhas two morphs,
walk anded corresponding to abstract morphemes that refer to the imgpahwalk-
ing and past tense, respectively. Sometimes a morphemddbaatnot have a surface
realization (e.g., one representing the singular form dEaglish noun) may be added
to the lexical representation; these are catlatl morphemes

Morphemes are divided infoee or boundmorphemes depending on whether they
can occur independently as a word form or not. Bound morpkareusuallaffixes
that are attached tstems Stem is the word without any inflections, but it may be a
compound word or include derivative morphemes, whereasis the minimal part
of the stem that cannot be reproduced. For exaniplédingshas the stenbuilding
and the rootuild. Affixes are further divided int@refixes suffixesinfixes andcir-
cumfixesdepending on whether they occur before, after, in betwadngth after and
before of the stem, respectively.

There are several ways how the morphemes of the word areedati the surface
form. The simplest one iagglutination where the morphs are concatenated together,
as inwalk+ed This contrasts tdusion in which the surface form does not have
separable morphs corresponding to the morphemes. For éxampand past tense
are realized as a single morphn Another type of non-concatenative process is
transfixation present for example in Arabic, where consonantal rootsvaudified
by vowel patterns.

Even in concatenative case, the interaction between mumgical and phonetic
processesniorphophonologymay produce different morphs for the same morpheme.
For example, the past tensein¥ite has morptd instead ofed and and plural ofvife
is wive+s not wife+s Two morphs of the same morpheme are caliddmorphs
In addition to phonological processes that occur at morphayd boundaries (called
sandh), allomorphic variations are produced by such phenomercarasonant grada-
tion (Finnish exampletakk a-taka+n), vowel harmony (Finnish examplalu+ssa-
dly+ssg, and wovel variations calleablaut (English examples ng—sang—sing).

The case in which several morphemes have the same surfdicatien is called
syncretism A common example is English plural and3person singular, which
are both realized by the suffix(or es). Syncretism is one cause for morphological
ambiguityof the word form. For examplejites may either be noun in plural form
or verb in 3d person singular form. However, the full word form can be agubis
even without syncretism. For example, Finnish wésthin may refer either to the
noun “seat” or the verb “sit” in 3t person past tense (“I sat”).

The richness of morphological phenomena varies betweeyuéayes. Specifi-
cally, some languages aamalytic or isolating with one-to-one correspondence be-
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tween words and morphemes, and somesgrehetic with often many morphemes
per word. Synthetic languages can furthermore be dividedagglutinative(or con-
catenativg andfusionallanguages, depending on whether the morphs of a word are
clearly distinguishable from each other or not. Naturdlig characteristics of many
languages are in between these categories. Of the langusgesn the experiments

of this article, English is moderately analytic and oftemsidered as a fusional lan-
guage. Finnish and Turkish are highly synthetic and agudtitre languages. Also
German is mainly agglutinative, and more synthetic thanliEngbut less synthetic
than Finnish or Turkish.

2.2. Supervised and Unsupervised Learning

Machine learning algorithms can be divided irgdopervisedand unsupervised
learning depending on what kind of training data they us@#&tliin, 2004). In the
tasks of morphology learningnput dataconsists of word forms. Depending on the
task, theoutput datamay be stems or lemmas of the words, segments of the words,
or labels for the morphemes of the words. Regardless of thgubtype, data with
samples of input-output pairs is callbeled(or annotated) data, and data with only
input samples is callednlabeled(or unannotated) data.

Supervised algorithms try to learn a mapping from the inpuiable X to output
variableY given pairs of data sampl€s;,y;), i.e., labeled data. For the task of
morphology learning, the usefulness of this kind of aldoms is limited: in order to
have enough training data samples, there already needsatmbghological analyzer
for the language. Of course, a sophisticated method miglabbeto generalize the
analyses to samples not correctly identified by the origamalyzer.

In unsupervised learning, the samples of the desired odfparte not available.
The algorithm needs to assume some statistical regukaiitithe input data, and use
those to create a model for the input that can be used alsaédigting the output.
In morphology learning, large amounts of unlabeled dagg, fivords) are easy to get.
The problem is how to use the information in the word formsebtge desired output.

Semi-supervised algorithms deal with settings where batabheled and labeled
data are available (for a survey, see Zhu, 2005). Usuallptheunt of labeled data is
remarkably smaller than the amount of unlabeled data, sthzervised algorithms
do not have enough data to get good results. This settingysrekevant for learning
of morphology, as small amounts of labeled data are easyt toygeanual annotation.

In the case of morphology learning, there are also manyngsttivhere all the
training data ipartially labeled. That s, the labg} in the data samples is not directly
the desired output of the algorithm, but some part of it. Téial information can be,
e.g., suffixes (Yarowsky and Wicentowski, 2000), stems iStavaet al, 2009), or
even all morphs of the word, if the desired output is morphen$ee Spiegler (2011)
for a more extensive categorization of different types efnstios.
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2.3. Tasksin Learning Morphology

There are three common tasks for morphological processiid.P applications:
segmenting words into morphs, identification of morphatadly related word forms,
and performing full morphological analysis, that is, finglithe morphemes of the
words.

2.3.1. Morphological Segmentation

Morphological segmentation (or word decomposition) isefuisapproach for spe-
cific applications and languages. First, in applicationshsas speech recognition, it
may be enough to deal with the surface forms of the words. rékdbthe language
is mainly agglutinative, the set of morphs is not essentidiffferent from the set of
morphemes, and thus the result of segmentation is close toltranalysis.

Direct evaluation of a morphological segmentation is gtiiorward given that
reference segmentations are available. The output forraesgigtion algorithm is an
ordered list of substrings, morphs, and the strings shoelthe same that are found
from the reference segmentation.

2.3.2. Clustering of Related Word Forms

From the machine learning viewpoint, finding morpholodicatélated words can
be considered adustering a set of words are grouped together either by their stem
or root. The task is important especially for improving tleeall of an information
retrieval system: if the user searches for “election”, liksly that also the documents
containing, e.g., “elections” or “elect” are relevant. faany languages, the standard
way of finding related word forms is suffix stripping: if the rpbology is relatively
simple, a set of hand-crafted rules are often enough to gebrebly good results.

When clustering morphologically related word forms, thepottiis one label per
each word. While the labels of the proposed result and thearde result have to be
matched in order to do evaluation, this is still a relativeiyple setting: either two
words are in the same cluster or in different clusters.

2.3.3. Morphological Analysis

The most challenging task is the full morphological analys$n order to find the
correct morphemes, morphological analyzers need to déalasimplex phenomena
such as allomorphy and syncretism. In consequence, thgzanslhave traditionally
been rule-based and designed by linguists.

For morphological analysis, the output is ordered list btla, and in the case of
unsupervised learning, there is no direct evidence on whieticted label is related
to which reference label. Even in the (semi-)supervised,aast all labels are found
in the labeled training data. The problem in evaluation camwided only if there
is a systematic way to label the morphemes to be equivalghbg&e in the reference
analysis.
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To illustrate the problem, Table 1 shows how various unstiped and semi-
supervised methods (described later in section 4.4) aadhgzwordseproducesnd
vulnerabilities Of the present methods, only Morfessor Baseline, MorieSsdV and
Promodes 2010 are strictly based on segmentation. Somesosiieh as Bernhard 2
2007 and Morfessor CatMAP, do mainly segmentation, but aisto differentiate
between stem and affix morphemes. Evidently, there is no wayaluate the analy-
ses of individual words without observing the other relatedds. For example, that
reproducedhas a morphemeroduc Bis a useful piece of information only if the
forms produce producedproducing etc., have the same morpheme.

Table 1. Examples of the analyses of different algorithms for Ehghi®rds “repro-
duces” and “vulnerabilities”.

Method Analysis for “reproduces” Analysis for “vulnerabilities”
Allomorfessor 2009 re produce s vulnerability ies

Bernhard 2 2007 re_Pproduc_ Be_Ss S vulnerabilit Bi Le Ss S
Bordag 5a 2007 re pro.prop duc es vulnerabilities

DEAP MDL-CAT re_p produc_aes_pl vulnerabil_niti_s es_pl
Lignos Base Inference  REPRODUCE +(s) VULNERABILITY +(ies)
MAGIP 2010 REPRODUC ES VULNERABI L ITIES
Morfessor Baseline re produce s vulner + abilities

Morfessor CatMAP re/PRE + produce/STM + s/SUF  vulner/STM + abilities/STM
Morfessor S+W re produce s vulner abilities

Morfessor S+W+L re_p produce_N +PL vulner_N abilities_N
MorphAcq 2010 +#re -produc- +e# +s# -vulnerab- +ilities#
MorphoNet 2009 produce _sre_sre_ vulnerabilty _ies

ParaMor Mimic reproduc +e +s vulner +a +bilit +ie +s
Promodes 2010 reproduces vulnerabilities
RALI-COF prod ucere s vulnerability ies

Reference re_p produce_V +3SG vulnerable_Aity_s +PL

3. Evaluation Methods

There are two main approaches to evaluate the methods fairlgamorphology.
In direct evaluation, we directly study the produced morphologicellgses, either
manually or by comparing to external data.imdirect evaluation, we evaluate the ef-
fect on using the method as a part of a larger system, typiaallapplication such as
information retrieval or speech recognition. While the nesg¢fulness of the method
is measured by how well it can help the applications of n&tarsguage processing,
the application evaluations are often too time consumingst® during the develop-
ment of the method. Apart from being simpler, direct evabret often provide more
information on the specific problems of the evaluated method
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3.1. Direct Evaluations

There are two basic ways to do direct evaluation. Either #seilts are manu-
ally evaluated by experts of the language, or the results@mpared to a linguistic
reference (“gold standard”) analysis using an automattuation method.

Regardless of the details of the evaluation method, the unes®f evaluation are
often the same. Similarly to IR tasks, there are two sets tsider: predicteditems
P (analogous to retrieved documents) aaterenceitems R (analogous to relevant
documents). The intersection of the se®sn R, tells which of the predicted items
were correct. If the size of the intersection is normalizéith the number of predicted
items, we get th@recision(Pre), and if it is normalized with the number of reference
items, we get theecall (Rec):

PNR PNR
_IPORI o IPOR

Pre ; = ,
1P| R

(1]

where| A| denotes the size of the sét Precision measures how many of the predicted
items are correct, whereas recall measures how many of fdxenee items are pre-
dicted. To get a global estimate, the average is taken over af svords, sometimes
weighted by the number of itemi®| and| R|.

If the task is morphological clustering, and R contain only the proposed root or
lemma of the word. A$P| = |R| = 1, precision and recall are equal and, for a single
word, either one or zero. The global measure is accuracyprgortion of correct
answers to all answers.

If the task is morphological segmentatidnand R are either segmentation points
(section 3.1.2 below) or sets of morphs. In morphologicalysis, P and R are usu-
ally sets of morphemes. In all of these cases, both precenghrecall have to be
observed. Otherwise, the evaluation cargbenedby either predicting as few items
as possible, which gives high precision but low recall, a&dicting as many items
as possible, which gives high recall but low precision. la tase of segmentation
algorithms, the former is referred to aadersegmentatioand the latter asverseg-
mentation

To get a single measure that includes the aspects of bottsjmreand recall, they
are combined using harmonic mean, resulting-scoreor F-measure

2 _2x Prex Rec

F p—
Pre+ Rec

(2]

1 1
Pre T Rec
In addition to the balanced F-score, we consider also the meneral g-score:

(14 %) x Prex Rec 3]
32 x Pre+Rec '’

Fo—

wheref > 1 gives more weight to recall angl < 1 gives more weight to precision.
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3.1.1. Manual Evaluation

While manual inspection is very useful for developing a mdihtbe amount of
the work involved restricts its usage. Moreover, the deaision correct and incorrect
answers can be subjective, as exemplified by Goldsmith (20Q0%kually a binary
true/false categorization is too coarse, and some intaateechtegories are added. For
example, Goldsmith (2001) uses four categories (“goodroftvg analysis”, “failed
to analyze”, and “spurious analysis”) and Creutz and La@@€7) three categories
(“correct”, “incomplete”, and “incorrect”).

3.1.2. Segmentation Boundaries

In many languages, the main parts of the morphological psE®are concate-
native. For such languages, the problem can be reduced fodisdrface forms of
the morphemes, morphs, that the words contain. Equivgleht task is to predict
whether there is anorph boundarybetween each of the two successive letters of a
word or not. Given a reference segmentation, precision (mamy of the predicted
segmentation points were correct) and recall (how manyettrrect segmentation
points were found) can be calculated. This kind of evaluetias been done already
by Hafer and Weiss (1974), who did several segmentationodstbased on the idea
of letter successor variety (LSV) by Harris (1955). Moreemrtty, evaluation based
on segmentation boundaries has been used in Morpho ChalR8@b competition
(Kurimo et al., 2006), and by many separate studies such as Creutz and (28919,
Dasgupta and Ng (2007), Snyder and Barzilay (2008) and Bbah(2009). In addi-
tion to neglecting non-concatenative processes suchas@iphy, there is an amount
of subjectivity involved at judging the correct segmermatpoint.

3.1.3. Co-occurrence Analysis

If non-concatenative processes are taken into accountthenthsk is fully un-
supervised, the predicted morphemes can be arbitrary. prhigents calculation of
precision and recall directly using the intersection of $kés of predicted and refer-
ence morphemes as in Equation 1.

Disregarding the ordering of the morphemes inside each wbslanalyses for
a set of words can be represented dsipartite graphG = (M, W; E) (Spiegler
and Monson, 2010). The graph has two disjoint sets of vestioeorphemes/ =
{m1,...,my} and wordsiW = {ws,...,w,}, and edges(m;, w;) that connect
vertices inM to vertices inlW. Such a graph is illustrated by Figure 1. The edges can
have weights corresponding to how many times the morphemaccurs in the word
w;.3 Equivalently to the graph, the analyses can be presentedrasgheme-word
co-occurrence matriA, where the element;; is the weight of the corresponding
edge or zero if the edge is missing.

3. In some languages, the same morpheme can occur more than onwerith due to redupli-
cation or compounding. For example, Finnish wandankuorer(“of earth’s crust”) contains
two genitives marked by suffir.
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explain_V

“~! explaining

Figure 1. Bipartite morpheme-word graph for a set of morphologicaldgstandard
analyses of English words. An edge between a morpheme anddandicates that
the word contains the morpheme. Edges to suffixes are drathirdashed lines.

Considering predicted and reference analyses for the sahué words, we have
two bipartite graphs that have the same word vertices btgrdiit morpheme ver-
tices. Evidently, the evaluation must be based on the irdition of which words are
linked to the same morphemes. Furthermore, the methods telaolving grapliso-
morphism two sets of analyses are equivalent only if the correspandraphs are
isomorphic, i.e., there exist a bijection between the gestiof the two graphs.

In this section, we consider methods that do not explicithteh the predicted and
reference morphemes, but study co-occurrences of morphemnibe words. While
Spiegler and Monson (2010) called this type of approsatt isomorphic analysjs
we use the ternco-occurrence analysi® distinguish it from methods that use soft
matching for the predicted and reference morphemes (disdua section 3.1.4).

The bipartite morpheme-word graph can be transformed imtord graphby re-
moving the morpheme vertices and replacing each pair ofssdge;, w;), e(m;, wy)
by edgee(w;, wy). Figure 2 illustrates the word graph corresponding to tipattite
graph in Figure 1. An equivalent word matrix is obtained by pinoductAT A of the
morpheme-word matriXA. As the set of the vertices are now the same regardless of
the evaluated method, it is enough to compare the edges éxetive vertices.

Given two word graphs, one from reference analyses and onegredicted anal-
yses, we can compare the sets of words that are connectedifiGply, recall can
be determined from the number of edges that are in the refergraph but are not in
the predicted graph, and precision from the number of edgssare in the predicted
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‘ \ - -
‘ applied H application %———‘ explanation }——{ explain ‘

‘ expired H expiring } ———————————— { explaining

Figure 2. Word graph for a set of morphological analyses of EnglishdgoAn egde
between two words indicates a co-occurring morpheme. Edgessponding to suf-
fixes are drawn with dashed lines.

graph but are not in the reference graph. Intuitively, lovatkin co-occurrence based
metrics then indicates that you are missing co-occurreranas low precision indi-
cates that you have spurious co-occurrences. As an exaoqguisider the mistakes
that a segmentation algorithm might make for the examplegare 2. On one hand,
oversegmentation, such as predictaxgto be a morpheme in all the word forms that
start with it, will add many new edges to the graph and thusedese precision. Recall
is either unchanged or increased if some correct edges deel &y chance. Similarly,
not distinguishing between the two different morphemeargland 34 person sin-
gular) for suffix morph-s will add incorrect links betweeapplies—applicationsand
applies—explanationsOn the other hand, leaving a true suffix together with a stem,
e.g., hot segmentingng from expiring and explaining will remove true edges and
thus decrease recall. Correct edges will also be missetbihafphs such aapply,
appli andapplicare left as separate morphemes.

For algorithms that try to find morphologically related weKde., those having the
same stem or root), the evaluation is relatively straigitéod. Schone and Jurafsky
(2000; 2001) studgonflation set®f the words, that is, the sets of words which share
the same stem. For example, removing all the affix edges fhengtaph in Figure 2
results in three conflation setgapply, applied, applies, application, applications}
{explain, explaining, explanation, explanatiopnghd{expired, expiring} For each
word, Schone and Jurafsky sum the number of cori@gt ihserted (), and deleted
(D) words compared to the reference conflation set. The nun#sersummed over
the words, and precisior€(/ (C + I)) and recall C'/(C + D)) are calculated. Snover
et al. (2002) use a similar setting, but instead of observing tloegs of words, they
go over thestem relationsi.e., pairs of words that share the same stem. Precision
gives how many of the predicted relations were correct, aadlr how many of the
relations found from the reference analysis were found.oAaroniet al. (2002)
discover morphologically related pairs. As the result & #hgorithm is a ranked list
of pairs, they evaluate it by calculating the precision (amaf correct pairings with
respect to the reference analysis) over different numkfgraics.
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There is less work on evaluation metrics for full morphotagianalyses, where
both stems and affixes should match to the reference. Thenuotatile is the method
developed by Mathias Creutz that has been used in the Morpabeiges from 2007
onwards (Kurimoet al, 2008). The method was slightly revised for Morpho Chal-
lenge 2009 (see Kurimet al., 2010c). We will refer to it as the MC evaluation.

The first step in the MC evaluation is to randomly sample a remobfocus words
from the set of words for which both predicted and referentayeses are available.
Then, for each predicted morpheme of each focus word, anetbel that has the
same morpheme is sampled. Morphemes that do not occur inthey words are
excluded. The result is a set of word pairs that have at lesstneorpheme in com-
mon. The precision for one focus word is the proportion ofaitsd pairs that have
a common morpheme also according to the reference analifwgever, if a word
pair shares multiple morphemes, the reference analysitoHzs/e an equal amount
of shared morphemes in order to get full points. Otherwismreesponding fraction
of points is given. The overall precision is the average akerfocus words. Simi-
larly, focus words and their pairs are sampled from the esfes, and the recall is the
average proportion of word pairs that have a common morplagsodan the predicted
analyses.

The rationale behind the two-phase sampling of word paitkas because two
random words rarely share a common morpheme, the evalustiimud concentrate
on the pairs that do. Considering the word graph representégigure 2), the idea
is simply to sample edges of the graph for evaluation. While alpproach is well-
motivated and efficient for large graphs that cannot be coetpas a whole, it has
two drawbacks. First, as the word pairs that are sampleddoutating precision are
dependent on the predicted analyses, two different algostwill have different word
pairs in the evaluation. Second, the approach is inconmeifithe reference set has
only a small number of words, as it does not use all the inftionan the known
analyses.

The MC evaluation also allows alternative analyses for thesiily ambiguous
word forms. If a word in the predicted analyses has sevetairaltives, the precision
for the word is the average over them. If the reference harakalternative analyses,
the one that gives the highest precision is selected. The $emas the other way
round for recall, as precision and recall are calculatednsgtrically. However, this
allows a way of improving the recall artificially by addingtexinative analyses for
the predictions: for each word, precision is the averageigion over the alternative
analyses, but recall is the best one (Kuriet@l,, 2010a).

The limitations of the MC evaluation have been analyzed inedetail by Spiegler
(2011). To improve on especially the two problems mentioakdve, we propose
a new set of evaluation methods based on co-occurrences@jatgferred to as
CoMMA 4.

4. CoMMA stands for Co-occurrence based Metric for Morphologicahkxsis.
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Let us first assume that we have only one analysis per wordV L&t the set of
words for which we have the analysds, the set of predicted morpheme label,
the set of reference morpheme labels for titie word, andP andR matrices of size
|[V| x |V| where

pij:|PiﬂPj|a T’ij:‘Rj,ij‘. [4]

That is,p;; is the number of predicted labels and is the number of reference labels
that are both in word andj. Clearly, if the analyses are isomorphie,andR will
be equal. A simple measure for the error would be the 1-nostadce|P — R| =
>_i 2, [pij —rij|. However, we can also derive precision and recall measurgisis
to those of the MC evaluation. For each word, let the numberotls with at least one
common morpheme with wordben; = [{j : p;; > 0} andm; = [{j : r;; > 0},
and the number of words that have at least one common morphémeny word
vp = [{7 : n; > 0} andv,. = |{i : m; > 0}|. The overall precision and recall are
Pre — i Z i Z mln(p”,?"”); [5]

v n: ..
p :m; >0 v Jipi; >0 pl‘]

1 1 min(rij,pij)
Rec = — — — e [6]
r i:mzi>0 m; j%;o Tij
For example, if there are two morphemes that are shared bptwerds and; in the
predicted analyseg(; = 2) and one morpheme in the reference analysgs= 1),
the precision increas@s5 point and the recall increases one poiniif ensuring that
the maximal points are one). One option is to set the diagarfahe matrice® and
R to zeros, that isy;; = r;; = 0 for all 4. This excludes the isolated words that do not
have a common morpheme with any other words from the evaluati

Next, let us consider the case of several alternative aealy¥ P;; is the k:th
alternative for the:th word in the predicted analyses, afgl similarly for the refer-
ence analyses, the simplest way to proceed is to reducetdraatlves by taking the
maximal co-occurrence counts:

Pij = max max | Pir N Pji], 7ij = MAX max |Rir N Rl [7]

This ensures that adding more alternatives in the prediatidi increasep;;:s, thus
generally improving recall but degrading precision. Weereto this method as
“CoMMA-B".

We can also derive a measure that directly penalizes for agunomber of alter-
natives. FoiP? andR to be comparable, we cannot expand both the rows and columns
to include the alternative analyses. Instead, we add théyri@the rows:

P(ir)j = max | Pir N Pyl P(ik)j = Max |Rix N Rjil, [8]

where(:k) denotes the index for thieth analysis of the:th word. The numbers of
words with shared morphemes arg = |{j : pir; > 0}] for the predicted analyses



58 TAL. Volume 52 —n° 2/2011

andm;y, = |{j : rix; > 0}| for the reference analyses. Lgt= |{k : n;; > 0}| and
g; = |{k : my, > 0}] be the number of alternative analyses for woid predicted
and reference analyses, respectively. Ngwndv, are defined as, = |{i : 0; > 0}|
andv, = |{i : ¢; > 0}|. The overall precision and recall are

1 min(pix;, it;)
Pre = — > — > d | am x — % 9
” o max Gikl X ;o [9]

P i:0;>0 Ai kx>0 Tik 7P1k1>0 DPikj

Rec = i Z —maX Z Z amlxw, [10]

v i T
r 1:q; >0 g ‘ k:m; >0 Mik Jirik >0 ikj

whereA; is an assignment matrix between predicted and refererematives of the
iith word. That is, we wan}, a;, < 1, >, ai < 1, anda;,; € {0,1} for all 4,

k, andl. The best assignment can be solved using the HungarianthlgoiKuhn,
1955; Munkres, 1957). The cost for assigning thih and thel:th alternative of the
7:th word is set to one minus the F-score for the pair of analyssing the precision
and recall as defined above. This results in the best averagerE. The assignment
is quick regardless of th@(n?) time complexity for then x n matrix, because the
number of alternatives is usually low. We refer to this vensas “CoMMA-S”.

3.1.4. Morpheme Assignment

The evaluations based on morpheme assignment try to find-toeme or one-
to-many assignments between the predicted and referengehernes. One-to-one
matching can be considered as hard isomorphic analysis-t@many (or many-to-
one) matching is often simpler to solve than one-to-one hiadg but as they are
easier to game by providing a low (or high) number of prediatgorphemes, the
evaluation setup becomes more complicated.

In the case of supervision, the assignment is often knowag., EFarowsky and
Wicentowski (2000) study finding the roots of inflected woodnfis, including irreg-
ular inflections. Since the input data consists of a finiteofeandidate roots for the
algorithm, they can directly calculate the proportion ofreot roots.

Creutz and Lagus (2002) and Creutz (2003) use the Viterlaridigm to align
predicted morph segmentation to a linguistic morphemeyaigal To calculate a dis-
tance between a predicted morphand a morpheme labé] they use the measure
d(m,l) = —log ==+ cml  wherec,, ; is the number of word tokens in which the morph
is aligned with the labdlandc,, the total count ofn. As one-to-many mapping from
morphs to labels is accepted, a separate training and testeseeeded to avoid over-
fitting predictions that are undersegmented (i.e., a sipgddicted morph is mapped to
all the labels of the word). The final measure is the alignna&stance in the test set.
A similar cross-validation setting has been applied in treuations of unsupervised
POS tagging (Gao and Johnson, 2008; Christodoulopailak 2010).

Spiegler and Monson (2010) propose an evaluation methodviEMvhich ap-
plies a one-to-one assignment. In EMMA, each predicted e is matched for
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each morpheme in the reference. One-to-one matching atlnest calculation of
precision (how many morphemes in the proposed analysisdteireference anal-
ysis) and recall (how many morphemes in the reference asays in the proposed
analysis) for each word (Equation 1).

The assignment problem can be described using a bipartifghgwhere one set
of vertices correspond to the reference morphemes andemsgh of vertices to the
predicted morphemes. Lét, and P, be the reference and predicted morphemes for
word wy, respectively. An edge(m;, m;) exists between reference morpheme
and predicted morpheme; if they both are in the analysis of at least one same word
wg. The weighte;; of the edge is the number of such words:

cij:|{k:mi€Pk/\mj ERk}|. [ll]

Given morpheme-word graphs for the reference and predstisuch a morpheme
graph can be formed by removing the word vertices and regiapairs of edges
e(m;,wy) ande(m;, wy) by e(m;, m;). For example, if we have the reference analy-
sis corresponding to Figure 1 and segmentataws+ly, app+lie+s applied applica-
tion, application+sexpir+ing expir+ed explain expla+nationexpla+nation+sand
explain+ingfor the same words, the resulting graph is the one in Figure 3.

y
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application

ation_s

expire_V

+PCP1

+PL
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Figure 3. Bipartite morpheme graph for reference (left) and predicfeght) mor-
phemes of English words. An egde between two morphemeatesltbat there is one
(thin lines) or two (thick lines) words that have the left iploeme in reference anal-
ysis and the right morpheme in the predicted analysis. Bliagls show one possible
assignment that maximizes the target criterion in EMMA.
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Matching two morphemes that have an edge increases botkipreand recall, the
more the larger the weight of the edge is. Thus the task idéatssuch an assignment
that maximizes the sum of the weights of the selected edgesthdvhatically, it is
defined as

argénax Z(Cij X b”) S.t. ;bw < 1,;[)” < lybij S {07 ].} [12]

i,

B is a binary assignment matrix, wheljg = 1 indicates that morpheme; in the
predicted analysis is matched to morphemgin the reference analysis. The black
edges in Figure 3 show one assignment that maximizes thegiontfor the example
graph. There are several other assignments that give the sam: for example,
+PAST could be matched ted instead ofapplied This is, however, less likely with
larger data sets for which the weights are more varied.

To permit several alternative analyses per word in EMMA\,is redefined as the
average over all the combinations of the alternative aealyg\fter obtainingB, a
one-to-one mapping between the alternatives is optimized.

While EMMA is a robust measure that correlates well on theiappbn evalua-
tions (Spiegler and Monson, 2010; Kurirebal.,, 2010b), it has one major drawback.
The time complexity of solving the assignment in Equationsl®(n?) for n mor-
phemes using the Hungarian algoritAniso the computation time increases rapidly
with the size of the evaluation set.

We introduce a modified version of the EMMA (referred to as ‘®K-2"), which
solves this problem by replacing the single one-to-onegassent problem with two
many-to-one problems. The idea is that failing to join twlorlorphs (e.g., plural suf-
fixes-s and-esin English) does not need to degrade precision. Thus, whienla&
ing precision, we apply a many-to-one mapping, where sépeedicted morphemes
may be assigned to one reference morpheme. Similarlypdgtiti distinguish between
surface-identical syncretic morphemes (e.g., plusand 3d person singulars in
English) does not need to degrade recall, so one-to-manpim@s applied there. A
potential problem is that the relaxed mappings may fatditmming.

The modified assignment problems in EMMA-2 are
Bpre = arg];naXZ(cij x bi;) st Z bij < 1,b;; € {0,1}, [13]
1,] J
for precision and
BRrec = arg]IBnaX%:(cij X bi;) st ;bij < 1,b; € {0,1}, [14]

5. Spiegler and Monson (2010) use a general integer linear progragrsoftware. Integer
linear programming is a NP-hard problem (Karp, 1972), so the time ity cannot be any
better than with the Hungarian algorithm.
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for recall. In contrast to the assignment problem in EMMAlvBW these problems

is very simple, as the best match for each reference or pegldimorpheme can be
selected independently of the others. For precision, wé;set 1 for certaini only

if j = argmax; ¢;;. For recall, we seb;; = 1 for certainj only if i = arg max; c;;.
This requiresD (nm) time forn predicted andn reference morphemes. Other aspects
of the evaluation (dealing with alternative analyses ardutating precision and re-
call) are done similarly to the original EMMA.

3.1.5. Information-Theoretic Methods

Instead of heuristic evaluations based on co-occurrenalysas or morpheme as-
signment, it would be desirable to have a measure that warédtty tell how much
information is preserved or changed when comparing theigisztlanalyse® to the
reference analyseR. Indeed, Rosenberg and Hirschberg (2007) have proposed an
entropy-based V-measure, which resembles F-measure.thé isarmonic mean of
homogeneityh (analogous to precision) and completene&snalogous to recall):

_I(P,R)  _I(P,R)

"=y T H®)

[15]

whereH is entropy (analogous to the size of the set) A&mdutual information (anal-
ogous to the size of the intersection of the sets). V-measundeother information-
theoretic measures have been applied to unsupervised Bg@8daChristodoulopou-
los et al. (2010) compared several evaluation measures for this task,found V-

measure to be the most stable one.

Why not use information-theoretic measures for evaluatiogpimological analy-
ses? Note that POS tagging is similar to hard clusteringhe®tis only one tag per
word. In this case, the entrop§/ (C) = —Zkﬁl P(Cy)log P(Cy,) of the random
variableC, corresponding to the choice of the clustér amongK clusters, is read-
ily computable (see Meila, 2003). However, in the case of gomalogical analysis,
there are several morpheme labels per word. The randonmblaigthus the binary
vectorM = (by,...,b,), whereb; = 1 if morphemei occurs in the word. If we con-
sider calculating the entropyf (M) = —>",, P(M)log P(M), there are at least
two problems. First, it is hard to estimaf& M ): independence of the morphemes
is not likely to be a good assumption, but there is hardly ghalata to do anything
else. Second, one has to sum of&rchoices ofM, which is impossible in practice
for any morpheme lexicon of a reasonable size.

Although there does not seem to be any simple way to applyrfoenation-
theoretic measures to the evaluation of full analyses, taeystill be useful for sub-
problems of the morphology learning. For example, Chang2@0aluates signatures
based on POS tags using entropy-based measB@S: fragmentatiomeasures the
entropy of the signatures conditioned on the distributibRPOS tags, andignature
impurity measures the entropy of POS tags conditioned on the distribof the suf-
fixes in the signatures.
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3.1.6. Other Direct Evaluations

In some cases, a method for morphology learning is develapedmodel of lan-
guage acquisition (see, e.g., Chan, 2008). Applicatioluatians or evaluations based
on linguistic reference may not be as relevant for this gedbaothers. Lignot al.
(2010b) evaluate their model by applying it to child-diegttdata and manually com-
paring its learning process to the research in child languaguisition. Another
option is to do direct comparison using behavioral studies. example, Limet al.
(2005) study a trie structure for storing Korean words, and fhat the search times
correlate to three properties of words and non-words (&eaqy, length, and non-
words similarity to a correct word) in a similar manner as lamneaction times. In
a recent work, Virpiojeet al. (2011) study how an unsupervised probabilistic model
can predict reaction times for Finnish nouns in a lexicaliglen task. These can be
considered as direct evaluations, although the extere&rence” is not an analysis
by linguists but something measured from human test suhject

3.2. Application Evaluations

The most important NLP application for morphological azels has so far been
information retrieval, where people often want to find doemts including given
words regardless whether they are inflected or parts of campavords. However,
the problem of a huge vocabulary of words in morphologicalth languages con-
cerns directly all applications that need a statistical ehdar the language. Common
examples are speech recognition, which only needs to ddfaltheé surface forms of
the words, and statistical machine translation.

3.2.1. Information Retrieval

A useful comparison of unsupervised morphological analysthods is how well
they perform in an information retrieval task. Morpholagianalysis is needed, since
all matching documents should be retrieved irrespectivehaéh word forms are used
to describe the contents of the documents and the queriesevBtuation is carried out
simply by replacing the inflected words in the corpus and therigs by the suggested
morpheme analyses. The performance of the unsupervisedthigs can be com-
pared to doing no analysis at all or to the performance oflpaksed morphological
analyzers or stemming.

Evaluating unsupervised segmentation algorithms in texin® performance has
been done already by Hafer and Weiss (1974). Segmentatsadlza LSV yielded
similar IR performance for English than stemming. Natyrate effect of different
morphological analysis or stemming strategies have betmsixely studied in the
field of IR, but usually focused only on language specific mdth Alkula (2001)
compared IR performance on Finnish using different morpgichl analyzers and
stemmers. Best performance was achieved by using base.forms
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Algorithms should be compared using multiple languagesabge the importance
of morphological analysis for IR depends on the languagekoRi (2001) presents a
morphological classification of languages from the IR paihtsiew. For morpho-
logically simple languages such as English, simply remgpaffixes (stemming) is
often enough. For morphologically more complex languages$ ss Finnish, mor-
phological analysis is needed to turn word forms to theielfasms (emmatizatiop
and to split compound words into their parteCompounding Successful lemmati-
zation conflates word forms with similar meanings and separanes with different
meanings. Thus lemmatization improves recall withoutihgrprecision. In decom-
pounding, recall is also improved but precision may suffer.

For the algorithms that only segment the words, the IR peréorce depends en-
tirely on how aggressive the segmenting is. If the stem istawt, words that should
remain distinct are conflated. If the stem is too long, wotdg should be merged
together remain distinct. The former is callederstemmingnd causes precision
to drop. The latter is callednderstemmingnd causes recall to drop. Due to non-
concatenative processes such as allomorphy, it is not éemrdtically possible to
always find segment boundaries that avoid under- and ovensiteg issues. For best
IR performance, the unsupervised algorithms should ajstottearn these phenom-
ena.

In the Morpho Challenge series, IR evaluations were intcedun 2007 (Kurimo
et al, 2007) using English, Finnish and German. To accuratelysoreathe effect
of the morphological analysis on IR, the number of otheralags will have to be
minimized. For example, different term weighting appraaeimay give different re-
sults depending on which morpheme segmentation or anahetisod is used. When
TFIDF and Okapi BM25 weighting approaches were tested inpflorChallenge
2007, it was noted that Okapi BM25 suffers greatly if the csrpas a large number
of very frequent terms. Frequent terms are introduced byoastthat separate suffix
morphs. If the suffix morphs were tagged, they could be reghdwat most compared
methods did not tag the morphs. Simply removing terms witlopus frequency
higher than some threshold improved Okapi BM25 results tearky higher level
than TFIDF weighting for all algorithms. With this method g@énerating automatic
morpheme stop lists, all algorithms could be treated eguall

The evaluation criterion for the compared algorithms isath&inedviean Average
Precision(MAP) in the IR task. For each query, the ranked list of docoteeeturned
by the system is compared to the known relevant documentsel(&) equall if the
document at rank is relevant and if it is not. Precision at rank: (Prgk)) is the
proportion of relevant documents among theopmost documents:

k
Pre(k) = %Z rel(k). [16]
i=1
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Let R be the number of relevant documents for a query. AveragedfvadAP) for
the query is the average of precisions at ranks that haveeargldocument:

AP = % zk: Pre(k) rel(k). [17]

MAP is the mean of Average Precisions over all queries.

A complication for analyzing the results is the fact thafitiard to achieve sta-
tistically significant results with the limited number of epies available. This is
a known problem in the field of IR. However, the performanceha algorithms
across languages provides a useful comparison of theiesscdhe results (Kurimo
et al, 2010a) showed that language specific reference methodgtgivbest results,
but the best unsupervised algorithms are almost at par anditferences are not
significant.

3.2.2. Speech Recognition

An essential part of any large vocabulary speech recogrstystem is a language
model that can provide a probabilistic ranking for all woesjsences that the recog-
nizer proposes. In morphologically rich languages, thanedion and use of such
a statistical model is very challenging and sets remarkeddeirements for train-
ing data and computational resources. This problem was btieeanain motiva-
tions to develop the Morfessor Baseline algorithm (Creuntt laagus, 2002) ten years
ago, which enabled the construction of the unlimited votatyudictation system
(Hirsimaki et al,, 2006) with morph-based language models. The completidhisf
system, and a corresponding one in Turkish, made it thenlpegs run the first Mor-
pho Challenge (Kurimet al., 2006), where all submitted algorithms for unsupervised
morphemes could be tested in state-of-the-art speechmiticogtasks.

The Morpho Challenge 2005 evaluation (Kurirabal,, 2006) was successful in
pointing out unsuitable morphemes, but it failed to providatistically significant
differences in recognition error rate for the top algorithnkurthermore, large scale
speech recognition evaluations required a substantialiatad work. For each com-
pared morpheme lexicon, we trained a new language model &lbithe available
text data in that language, re-optimized the whole recagngystem in the develop-
ment data, and recognized the test speech that was longletmpgovide a statisti-
cally meaningful error rate. Thus, these evaluation metniere not computed again
in later Morpho Challenge evaluations, even though speechgnition in morpho-
logically rich languages continues to be one of the mainiagfbns for large-scale
morphological analysis (Hirsiméaki al, 2009).

3.2.3. Machine Translation

Machine learning approaches to morphology are not veryaalefor traditional
rule-based machine translation systems, as they, in arg; cagquire hand-crafted
linguistic rules. The situation is different for statigtianachine translation (SMT),
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for which the ideal situation would be that the same modelskeaa for many lan-
guages. For example, Virpiog al.(2007) proposed using an unsupervised method as
a language-independent tool for morphological prepracgdsefore training phrase-
based SMT systems.

There is a large amount of work for dealing with morphologiaaalysis, de-
composition or stemming in SMT (e.g. NieBen and Ney, 2004gYand Kirch-
hoff, 2006; Oflazer and El-Kahlout, 2007), but the viewpdias been on how the
information provided by a morphological analyzer (or a nimpgically annotated
corpus) should be applied in the SMT framework. Comparidadifeerent methods
for morphological analysis using the same SMT system haarsioefen done only in
the recent Morpho Challenges (Kurinebal,, 2010b; Kurimoet al., 2010c).

The SMT evaluations in Morpho Challenges have included &gd, Finnish to
English and German to English, and the morphological aralygve been applied
only to the source language. The main problem in the evalndtas been that using
just the words provides often the best results. This is lgagdiprising considering
that the SMT models have been designed for word-based ateorsland that the tar-
get sentences contain full words. To avoid that the subomsswith the least amount
of segmentation would get the best results, the evaluatgtupshas included com-
bining the results with those obtained using a plain worskeldamodel. Still, only a
few algorithms have given statistically significant impeavents over the word-based
translation. As morphologically rich languages pose a mpjoblem to the results
of SMT, it is likely that translation systems that can beiteorporate morphological
analyses will be available sooner or later.

4. Experiments

The Morpho Challenge competitions have provided a datatieeconsists of
the results of about fifty algorithms for unsupervised andissupervised learning of
morphology, evaluated for several tasks and languagesheloptimal case, the in-
put data for training the algorithms and the output data uséae evaluations would
have been the same each year, and every algorithm would batieigated in every
task. Unfortunately, that is not the case, and the datalsesemewhat sparse. First,
we excluded the results of Morpho Challenge 2005, where alt@ sets were signif-
icantly different from those in the following Challengesec®nd, we excluded the
Arabic language, which was included in two Challenges (2808 2009), but only
for the linguistic evaluation and using different data sestsh time. For the remaining
languages and tasks, Table 2 shows the number of evaluatibdadse We have no
reference segmentations for German, so boundary evahsatmuld not be applied to
it.



66 TAL. Volume 52 —n° 2/2011

Table 2. The number of methods evaluated in different tasks and kgegs “Seg-
mentation” refers to the methods that could be evaluated dégsuring precision and
recall of the morph boundaries.

Evaluation Number of methods

English  Finnish German Turkish

Linguistic evaluation 49 42 39 45
— Segmentation 20 18 0 20

Information retrieval 36 31 25 0

Statistical machine translation 0 22 13 0

4.1. Linguistic Evaluations

As evaluation methods, we tested the following isomorpkalations: Morpho
Challenge evaluation method from 2009 and 2010 (MC), EMMpi€§ler and Mon-
son, 2010), the modified EMMA using two one-to-many mappiagsiescribed in
section 3.1.4 (EMMA-2), and the new co-occurrence basetiodstdescribed in sec-
tion 3.1.3 (CoMMA). Among these, only EMMA is a hard isomoiplevaluation,
while the rest are soft isomorphic evaluations. As the bamndvaluation described
in section 3.1.2 is a very simple and popular method, we degilit as a baseline. In
order to make it compatible to alternative analyses presdhe data, we used a sim-
ilar approach to CoMMA-S and matched them using the Hungaigorithm to get
maximal average F-score. This method is referred to as “BPa&tile 3 shows a com-
parison of the evaluations, including the type of evalugtimow alternative analyses
are handled, and whether isolated words that have no comnoophemes to other
words in the evaluation set are excluded.

Table 3. Methods for linguistic evaluation: the type of evaluatitreatment of alter-
native analyses, and whether isolated words are included.

Name Evaluation type Alternatives Isolated words
BPR Boundary positions Best match Included

MC Co-occurrence Best single pair  Excluded
EMMA Assignment (1-1) Best match Included
EMMA-2 Assignment (M-1/1-M) Best Pre/Rec Included
CoMMA-BO Co-occurrence Reduced to max Excluded
CoMMA-B1 Co-occurrence Reduced to max Included
CoMMA-S0 Co-occurrence Best match Excluded
CoMMA-S1 Co-occurrence Best match Included

The reference analyses used in the linguistic evaluatiare the same as in the
Morpho Challenges 2007-2010 (Kurinat al, 2008; Kurimoet al,, 2009; Kurimo
et al, 2010c; Kurimoet al, 2010b). The English and German gold standards were
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based on the CELEX database (Baageal, 1995). The Finnish gold standard was
based on the FINTWOL analyzer from Lingsoft, Inc., that &spthe two-level mor-
phology model by Koskenniemi (1983). The English and Finnisference analy-
ses were transformed to segmentations via Hutmegs (Cradtkziadén, 2004). The
Turkish reference analyses, including segmentation, wbtained from a morpho-
logical parser developed at Bazici University.

The Morpho Challenge evaluation differs from the other radthin that it first
requires sampling of the word pairs. We applied the same waidlists as in the
Morpho Challenges. They included 10,000 (English), 200 #nnish), 50,000 (Ger-
man), and 50,000 (Turkish) focus words from the gold statsldfor the other evalu-
ation methods, we collected all the words present in the waidlists, and sampled
ten random subsets of 1,000 word forms. For each evaluatethad and evaluated
algorithm, we calculated precision, recall and F-scoresfeh subset, and then took
the average. The sets of average scores were used for tagupearman’s rank
correlation coefficients to the results of the applicatiealeations.

In addition, to study the computation time and stabilityloé evaluation methods
with respect to the size of the evaluation data, we sampteddts of 100, 300, 1000,
3,000, and 10,000 word forms from the English and Finnishstets. Due to the long
evaluation times with the larger sets, we used these setalizege only one algorithm,
Morfessor Baseline.

4.2. Information Retrieval Tasks

Our information retrieval tasks were the same as in Morphall€hge 2010
(Kurimo et al, 2010b). Three languages were used: English, German amiskin
Test corpora, queries and relevance assessments weredgadw Cross-Language
Evaluation Forum (CLEF) (Agirret al, 2008). To evaluate the algorithms, the IR
tasks were run after replacing all word forms in the corpoiithe queries by the sub-
mitted analyses. Success was measured in terms of Meang&Bracision (MAP).
The evaluations were carried out with the Lemur Toolkit (@giand Callan, 2002)
using Okapi BM25 ranking with default parameter values. &ach submission, a
stop list was generated, since Okapi BM25 suffers if the e®gontains terms that are
very common. Any term that has a collection frequency highan 75,000 (Finnish)
or 150,000 (German and English) was excluded from indexing.

The information retrieval task has been repeated four tim&orpho Challenges
2007-2010. The data, setup and methods for the task havénexiithe same. How-
ever, a number of issues have been detected and fixed oveedng. yin the 2007
challenge, a part of the evaluation corpus for German wasingsmaking the task
easier and thus the results comparably higher. On all lagegjasome fixes were
made to corpus preprocessing and word list generation #thsmall effects on the
results. For this paper, all algorithms from previous yeeese re-evaluated to make
the results comparable to the 2010 results.
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4.3. Statistical Machine Trandlation Tasks

We used the machine translation evaluation from Morphol€hgé 2010 (Kurimo
et al, 2010b). The translation was done from a morphologicallngiex source
language (here Finnish and German) to English. The wordseosturce language
were replaced by their morpheme analyses before trainaganslation models. The
morpheme-based models were combined to a standard woed-baxlel by generat-
ing n-best lists of translation hypotheses from both mqaeild finding the best overall
translation with the Minimum Bayes Risk (MBR) decoding (Kamand Byrne, 2004).
A state-of-the-art phrase-based SMT system, Moses (Ketdly 2007), was used for
training the translation models and generating the n-lgst IAs an evaluation mea-
sure, we used the BLEU metric (Papinetial., 2002).

The Europarl corpus (Koehn, 2005) was used for training asting the SMT
systems. It was divided into three subsets: training setré&ming the models (about
300,000 sentences), development set for tuning the modameders (about 3,000
sentences), and test set for evaluating the translatidrmi{&8,000 sentences). The
word lists given for participants for learning morphologgluded all the word forms
in the Europarl corpus, including the test d&taThe data sets and the evaluation
setting were almost the same as in Morpho Challenge 2009r(idwet al., 2010c¢), but
there was one change in 2010. As the alignment tool usediiiriggthe SMT system
has a limitation of 100 tokens per sentence, all the sensethed had more than 100
letters were discarded. This way, all the systems had the sanount of training
data regardless of the number of morphemes found. To getamile results, we
re-evaluated all the algorithms from the machine trarmtatiompetition of 2009.

4.4. Algorithmsin the Evaluation

In this section, the main algorithms in Morpho Challenge®320010 are de-
scribed very briefly. Including all the variants of theseerthwere more than 50
submissions which are presented in detail in the followinglizations.

Bernhard [1, 2] 2007 (Bernhard, 2008) first extracts a list of the most likely pre-
fixes and suffixes and then generates alternative segnmrgdtr the word forms.
The best ones are selected based on cost functions that faest frequent analysis
and some basic morphotactics.

6. A more realistic setting would be that the model learned on the training daia Wwe applied
to analyze the tuning and test data. However, the practical arrangeimesish a setting would
be more complicated.

7. However, a slight difference remains between the results from 2002@10 algorithms. In
2009, the data set for the SMT competition was separate from the othesadstavhile in 2010
there was one combined data set. The participants of Challenge 2008Negred to use also
other data sets than the SMT set, but some may not have done so.
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Bordag [5, 5a] 2007 (Bordag, 2008) applies iterative letter successor variety
(LSV) and clustering of morphs into morphemes.

Can [1, 2] 2009(Can and Manandhar, 2010) use unsupervised part-of-spagch
ging as an initial step to find morphological paradigms. Tias so far been the only
approach to exploit the context information of the words.

DEAP [MDL-CAT, MDL-NOCAT, PROB-CAT, PROB-NOCAT] 2010
(Spiegleret al, 2010a) is a supervised algorithm using deductive-aberigtarsing
with a context-free grammar. The best hypothesis from abdiyarses is selected
either using a probabilistic or MDL-inspired criterion. iibe NOCAT versions, the
morpheme labels returned by the parsing algorithms wereved) thus returning
only a segmentation, and for the CAT versions, they were. kept

Lignos 2009, 201@Lignoset al, 2010a; Lignos, 2010) is based on the observation
that the derivation of the inflected forms can be modeledaassformations. The best
transformations can be found by optimizing the simplicibddrequency. The sub-
missions in 2010 included three variarBgse Inference Aggressive Compounding
andlterative Compounding.

McNamee [3, 4, 5] 200McNamee and Mayfield, 2007) extracts all the letter
n-grams in the words, and for each word selects the n-gratrottwurred the least
number of times in total. The different versions apply diet n-gram lengths (3, 4,
and 5). This method was intended mainly for the IR task.

MetaMorph 2009 (Tchoukalovet al., 2010) applies multiple sequence analysis
(MSA), which are popular in biological sequence procesdimghe problem of learn-
ing morphology. The approach is problematic for large sétgavd forms, but more
useful for smaller sets of orthographically related words.

Morfessor Baseling(Creutz and Lagus, 2002; Creutz and Lagus, 2005b) is a pub-
lic baseline algorithm based on jointly minimizing the sif¢he morph codebook and
the encoded size of all the word forms using the minimum detson length (MDL)
cost function.

Morfessor Categories-MAP(Creutz and Lagus, 2005a) is a extension of the Mor-
fessor Baseline method, where hidden Markov models are tasedorporate mor-
photactic categories. The structure is optimized usingimam a posteriori (MAP)
estimation.Morfessor Categories-MAP 2007and2008are submissions by Monson
et al. (2008) and Monsoet al. (2009) using the same method.

Allomorfessor 2008, 2009Kohonenet al, 2009; Virpiojaet al, 2010) is an ex-
tension of Morfessor Baseline, where stem allomorphy isetemtiusing string muta-
tions that modify the letters close to the morpheme boundary

Morfessor [U+W, S+W, S+W+L] 2010(Kohonenet al,, 2010a; Kohonert al,,
2010b) are semi-supervised versions of Morfessor Baselir@V uses supervision
only to find a suitable weight for the data likelihood, whex&+W also uses the
known segmentations to guide the search algorithmS+V+L, a hidden Markov
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model is trained to label the segments according to thosseptén the annotated
data.

MorphAcq 2010 (Nicolaset al,, 2010) is an unsupervised approach to find a set
of morphological rules, i.e., transformations that coheestem into a related lexical
form. The method applies several strategies that first firi pd candidate affixes
and then build morphological rules. Special attention i&l ga frequency-related
phenomena.

MorphoNet 2009(Bernhard, 2010) is based on finding community structunefro
a lexical network. The lexical network is constructed byhéag transformation rules
based on graphical similarities between words.

ParaMor 2007-2010(Monsonet al,, 2008; Monsoret al., 2009; Monsoret al,,
2010) applies an unsupervised model for inflection rulessafiikation for the stems
by building linguistically motivated paradigm$?araMor-Morfessor (2007, 2008)
combines ParaMor with Morfessor Categories-MAP by givihg &nalyses of the
both methods as alternativé2araMor-Morfessor Union (2010) combines ParaMor
and Morfessor by taking union of the segmentation poiraraMor Mimic and
ParaMor-Morfessor Mimic (2010) are supervised probabilistic models trained on
the results of the unsupervised algorithms.

Promodes 2009-201@Spiegleret al, 2010b; Spiegleet al, 2010c) presents a
probabilistic generative model that considers morphementaries as hidden vari-
ables and includes probabilities for letter transitionthimimorphemes. In both years,
there were three different versions, one being a combinatiche other two.

RALI-ANA andRALI-COF 2009 (Lavallée and Langlais, 2010) identify trans-
formations between word forms using formal analogy, i.elations of four forms
such asreaderis to doer as readingis to doing RALI-ANA is a pure analogical
approach, while RALI-COF applies related but more genestdator rules instead.

RePortS 2007(Keshava and Pitler, 2006) uses simple LSV-type critersedan
two letter n-gram models that predict forward and backwatore potential prefixes
and suffixes. Combinations of other affixes are pruned franc#éndidate list, and the
final segmentation points determinated using the letteraisod

UNGRADE 2009 (Goléniaet al, 2010a) aggregates two types of information:
stem candidates found using a MDL-type criterion, and affindidates found using
a graph-based, LSV-type approach.

MAGIP 2010 (Goléniaet al,, 2010b) is a supervised approach that creates a mor-
pheme graph similar as in UNGRADE, but trains it on known segtations. Mixed-
integer programming is applied to select the best parse ohaeen word from the set
of parses generated from the graph.

Zeman [1, 3] 2007, 2008Zeman, 2008; Zeman, 2009) uses a heuristic algorithm
to find paradigms assuming that there is only one stem and qeffiword. In 2008,
the method was extended to search also for prefixes usingifi@cetht approaches.
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4.5, Results

The evaluation results for the participating algorithmes aresented in the respec-
tive Morpho Challenge overview articles, so we do not cotrag@ on those in this
article. Table 4 shows selected results for some of the itthges for the Finnish
tasks. The full result tables for all algorithms, languaged evaluations are found
athttp://research.ics.tkk.fi/events/morphochallenge/. The importance
of the analysis of the evaluation metrics is clear from Tabiehe differences in the
evaluations result in different orders for the algorithni$here are at least two rea-
sons for the differences of direct evaluations: some meadifferent things (morph
boundaries or morpheme sets), and some measure the sagduhim a different
manner (using co-occurrences or soft or hard assignment).

Table 4. Selected results for some of the evaluated methods fordfinnT is the
type of the algorithm: semi-supervised (S), unsupervisBddr unsupervised with
supervised parameter tuning (P). #a/w is the average nurobanalyses per word,
#m/w is the the average number of morphemes per word, ands#tbr size of the
morpheme lexicon. The best score for each metric is in bold.

Method T #aw #miw #lex MC EMMA IR SMT
x 1k F F MAP BLEU
Allomorfessor 2009 U 1.00 2.46 70 32.44 58.25 45.686.80
Bernhard 2 2007 U 1.00 3.89 88 52.45 61.149.07 -
Bordag 5a 2007 U 1.00 2.84 515 39.56 58.41 42.83 -
DEAP MDL-CAT S 531 3.23 2,549 61.67 31.66 37.25 25.90

DEAP MDL-NOCAT S 3.29 3.41 1,753 62.52 40.95 41.60 25.62
Lignos Base Inference U 1.00 2.58 560 37.35 65.88 41.51 26.19
Morfessor Baseline U 1.00 2.17 176 24.83 58.44 4235 26.65
Morfessor CatMAP U 1.00 2.88 239 43.16 61.14 4754 26.34
Morfessor S+W S 1.00 4.20 14 56.38 62.08 4750 25.94
Morfessor S+W+L S 1.00 4.27 19 60.76 71.19 4465 25.82
MorphoNet 2009 U 1.00 2.53 985 33.34 56.22 38.75 25.56
ParaMor 2008 U 1.00 2.62 1,124 4293 55.58 38.28 -
ParaMor Mimic P 1.00 3.30 1,149 4357 5546 39.05 25.53
ParaMor-Morf. Mimic P 1.00 4.24 324 48.38 57.69 4446 25.54
ParaMor-Morf. Union P 1.00 4.02 215 49.39 55.79 47.13 25.44
Promodes 2010 P 1.00 5.46 236 44.31 51.18 37.21 25.64
RALI-COF U 1.00 2.39 723 38.81 63.94 - -

4.5.1. Correlation to Application Evaluations

The upper part of Figure 4 shows the correlations betweerethdts of linguistic
evaluation methods and the IR tasks. EMMA provides highatations & 0.7) for
English and Finnish and moderate (.5) for German. EMMA-2 gives slightly lower
correlation for German, but is otherwise close. The MC eatidun is among the worst
both in English and Finnish, but, surprisingly, provides thighest correlation for
German. Among the CoMMA methods, COMMA-S gives higher datrens than
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CoMMA-B. Including isolated words improves correlatiorr fenglish and Finnish,
but decreases for German. For the SMT tasks (lower part afr€ig), only EMMA
shows a positive correlation for both languages, and EMM#r@d CoMMA-B1 for
Finnish, while all the others have negative correlations.

IR/MAP vs. F-score, English IR/MAP vs. F-score, Finnish IR/MAP vs. F-score, German
MC 0.426 1 E 0.212 1t [ To.e09]
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Figure 4. Spearman’s rank correlations between the F-scores of tigrlstic evalu-
ation methods and the scores of information retrieval aadistical machine transla-
tion evaluations.

For co-occurrence based metrics, it was clear that the dadaR-score would
not give the best correlations to the application evalmstias the optimal balance
between precision and recall is likely to depend on the appitin and language. To
study this effect, we calculated the correlations for a $étgscores with different
weights3. The results are plotted in Figure 5. For the CoMMA methodsyall as
MC, the optimals is always below one, emphasizing precision. COMMA-BO and SO
require usually more weighting than B1 and S1 to get as higtetadions. For EMMA
and EMMA-2, the optimap is towards recall with the IR tasks. Peculiarly, the recall
of EMMA gives the highest overall correlation for the GermBn For Finnish SMT,
all methods give the best correlation just for precisiorseéms that the most of the
algorithms in the database made too recall-oriented aesfgs this task.

With weighted i3, EMMA still provides the highest correlations for the IRkas
and EMMA-2 is close, but the best correlations for the codo@nce based metrics
are much closer. For Finnish SMT, MC and CoMMA-B variantsegiigher corre-
lation for the precision than the others, and for German SMThe peaks are very
close. Figure 6 shows a similar plot for the English and BhiR tasks, but including
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Figure 5. Spearman’s rank correlations between the results of thdieon evalu-
ations and weighted f~scores with varying.

only the algorithms that return a segmentation so that thedhary evaluation (BPR)
can be included. Note that for this subset of the algoriththespverall level of corre-
lations is higher. BPR gives the third highest numbers &MMA and EMMA-2 for
both languages.
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Fj vs. IR/IMAP, English Fj vs. IR/MAP, Finnish
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Figure 6. Spearman’s rank correlations between the results of thevd#uations and
weighted Fz-scores with varyings. Only segmentation algorithms are included in the
evaluation.

4.5.2. Correlation to Boundary Evaluation

For languages that have mostly concatenative morphology,useful to know
how well the isomorphic evaluations correlate to boundaahuation. In many cases,
a linguistic reference does notinclude a segmentationrdytonorpheme labels, while
the evaluated algorithm does only segmentation. If theetation is high, it is possible
to substitute the isomorphic evaluation for the boundagiuation. Figure 7 shows
correlations between the F-scores of BPR and the isomoephications. The results
vary over the languages, and only EMMA and EMMA-2 providehhagrrelations in
all of them. CoMMA-B1 and CoMMA-S1 have the best correlagom English, and
MC in Turkish, but all of them have only moderate correlatiofrinnish.

Correlation to BPR, English Correlation to BPR, Finnish Correlation to BPR, Turkish
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Figure 7. Spearman’s rank correlations of the F-scores of the isoriarpvaluation
methods and the BPR boundary evaluation.
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4.5.3. Robustness

To test robustness of the evaluations with respect to gamiegused the tests
introduced by Spiegler and Monson (2010).

Ambiguity hijacking tesaddresses how the evaluation method deals with alter-
natives in the predicted analyses. As some of the words alegaous regarding
their morphological analysis, the evaluation methods khallow the alternatives.
However, providing two alternative analyses for a non-gjubus word should not
give higher score than providing a reasonable combinedysisabr just the better
one. For exampleRaraMor-Morfessor which simply lists the analyses of ParaMor
and Morfessor Categories-MAP as two alternatives, shooleuatperformParaMor-
Morfessor Union which combines the morpheme boundary predictions as desing
analysis. Figure 8 shows that MC and CoMMA-B give higher Brgs to ParaMor-
Morfessor than to ParaMor-Morfessor Union, while COMMA{8IEEMMA-2 are as
robust as EMMA in this respect.

[ Morfessor Categories-MAP 2008 [ ParaMor-Morfessor Union 2009
[ ParaMor 2008 [ ParaMor-Morfessor 2008
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Figure 8. Gaming with ambiguity hijacking on English and Finnish: Bhfor-
Morfessor returns ParaMor and Morfessor Categories-MAPta® alternatives,
whereas ParaMor-Morfessor Union combines the two prediitgiinto a single anal-
ysis. The number above ParaMor-Morfessor 2008 shows thelatlesdifference to
ParaMor-Morfessor Union. CoMMA-BO gives similar resultsB1 and SO similar
results to S1.

Shared morpheme padding testdresses the vulnerability of the evaluations to an
artificial modification of the analysis. A unique bogus mapte is added to each
predicted analysis. For methods based on co-occurrentgsanahis means adding
an additional edge between each word. As expected, thasésdlable 5 show that
the recall scores are clearly increased and precision sde@eased for the MC and
CoMMA methods. For those languages where high recall wasthawbtain (Finnish
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and Turkish), this improves the F-score, while for those nettke recall was initially
high (English and German), the F-score decreases. EMMAalisst as robust as
the original EMMA, showing only small changes in the scores.

Table 5. Gaming with shared morpheme padding: average and standewéhtions
of the ratio of padded to original scores for the evaluatioethods.

Lang. Precision Recall F-score Precision Recall F-score
MC evaluation

English  0.36:0.08 2.02:0.66 0.63:0.10

Finnish  0.5740.08 3.042.46 1.19:0.68

German 0.430.08 2.9t1.45 0.84t0.16

Turkish  0.58:0.09 2.95-1.65 1.19-0.37

EMMA evaluation EMMA-2 evaluation
English  0.73:0.15 1.05:0.08 0.86:0.12 0.76:0.07 1.28:0.10 0.96:0.03
Finnish  0.820.19 1.12-0.10 0.99:0.14 0.86:0.05 1.62-0.25 1.18-0.09
German 0.880.17 1.09:0.08 0.94:0.11 0.79:0.05 1.52-0.22 1.02-0.08
Turkish  0.85:0.08 1.04-0.04 0.94-0.05 0.85-0.05 1.76:0.32 1.29:0.15
CoMMA-BO evaluation CoMMA-B1 evaluation
English  0.150.10 2.24:0.81 0.3%#0.13 0.12:0.04 1.86t0.46 0.23:-0.06
Finnish 0.51%0.14 6.46:7.88 1.76:1.74 0.44:0.11 5.03-4.44 1.34:0.89
German 0.280.12 3.35%:2.91 0.59:0.35 0.2#0.05 3.042.10 0.49:0.24
Turkish  0.48:0.15 5.65-4.51 1.76:1.14 0.43:0.12 5.91%4.58 1.46:0.88
CoMMA-SO0 evaluation CoMMA-S1 evaluation

English  0.15-0.10 2.24:0.81 0.3%#0.13 0.16:0.17 1.79:0.46 0.28-0.16
Finnish  0.51#0.14 6.46:7.88 1.76:1.74 0.46:0.14 4.6743.92 1.34-0.83
German 0.280.12 3.35:2.91 0.59:0.35 0.24:0.16 2.94-2.01 0.52-0.25
Turkish  0.48:0.15 5.65:-4.51 1.76:1.14 0.45:-0.15 4.543.02 1.46:0.74

4.5.4. Interpretability

Interpretability of an evaluation method, as defined by §preand Monson
(2010), concerns how the evaluation results can be useddotifying the strengths
and weaknesses of the predicted analyses. The F-scoréthef discussed evaluation
methods are readily interpretable in the sense that theguneavell-defined proper-
ties of the predicted analyses: EMMA and EMMA-2 measure hai the predicted
morphemes can be matched to reference morphemes, while MIC@MA mea-
sure whether the words have the correct number of sharechamgs in the predicted
analysis. However, the evaluations can also provide aduditiinformation on the
evaluated analyses.

EMMA has the benefit of providing a mapping between the ptediand the
reference morphemes. This is useful especially for humspeiction of the results as
it helps qualitative evaluation. This applies also to EMNAbut as it provides two
many-to-one mappings that often have some obscure mapfungise morphemes
that occur only once, they are not as easy to utilize as in EMMA
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Instead of studying individual morphemes or analyses, §ams a more general
view on the result is more useful. One question is whetheptheision and recall of
the evaluation method can provide useful information. Asl&red in section 3.1.3,
low recall in co-occurrence based metrics should mean thatye missing some co-
occurrences (e.g., not segmenting enough or not joiniegalphs) and low precision
that you have spurious co-occurrences (e.g., segmentngueh or having the same
label for syncretic morphemes). In contrast, one-to-ontchiiag gives neither good
precision nor recall if the number of predicted morphemesrang.

To study this experimentally, we trained the Morfessor Basealgorithm with
different likelihood weights (see Kohone al,, 2010a), thus controlling the amount
of segmentation. Then we calculated precision and recalthi® results using the
different evaluation methods, shown in Figure 9. The pamispper-left corner cor-
respond to models that severely undersegment, and the ambsegmentation in-
creases by each point. All co-occurrence based methodading the CoMMA vari-
ants not in the figure), boundary evaluations, and EMMA-2ehr@call and precision
that consistently decrease and increase, respectivefn wte words are segmented
more. If the evaluated algorithm gets, for example, Pré).45 and Rec= 0.5, it
indicates that the analyses are balanced in that the ambuomssing co-occurrences
and the amount of spurious co-occurrences are about the s&itteEMMA, recall
starts to decrease after a certain point, obstructing this & interpretations.
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Figure 9. Precision-recall curves of the evaluation methods for Mesbr Baseline
models with varying amount of segmentation. The points énugbper-left corner
correspond to models that resulted in fewer segmentations.
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4.5.5. Computation Time

Figure 10 shows the average computation times of the evatuaiethods for eval-
uating Morfessor Baseline using evaluation sets of varging. The MC evaluation is
excluded, as its approach based on random sampling is Viéayedit from the others.
The boundary evaluation (BPR) is very fast, having in pc&ct linear complexity.
All CoMMA variants show polynomial growth of the same ordéngar and same
slope in the log-log scale). For EMMA, 16 GB of memory are nobegh for the
3,000-word sets, so we had to stop at 2,000 words. The grofattieacomputation
time is faster than with CoMMA, potentially exponential. BM-2 was very fast
for the tested evaluation sets, but the super-linear trertdea log-log scale indicates
exponential growth for it, too. The exponential growth in B and EMMA-2 is an
implementation issue, related to using the integer lineag@amming for morpheme
assignment (only in EMMA) and for matching the alternatitiesboth).

Computation times, English Computation times, Finnish
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Figure 10. Computation times of different evaluation methods witpeesto the size
of the evaluation data (100-10,000 words) for English andnish. Both the time
and the number of words are shown in logarithmic scale. Tladueted method is
Morfessor Baseline.

4.5.6. Stability for Evaluation Data Variations

In order to study the stability of the evaluation methodhwispect to the size of
the evaluation data, we calculated precision, recall anddfe for Morfessor Baseline
using the sets from 100 to 10,000 words. The means and sthdduaiations of the
results are plotted in Figure 11. Unsurprisingly, boundargluation is a very stable
method with respect to the size of the data. The MC evaluatiows more variation:
for Finnish, all scores are underestimated with small detis, svhile for English, they
are first overestimated and then underestimated. EMMA antVEA2 give smaller
standard deviations than the other methods, but they gleadrestimate the scores
with small data sets. For CoOMMA, SO and BO as well as S1 and Bé& gimilar
results, so only the formers are included. Variants thaluebecisolated words show a
similar pattern as the MC evaluation, but the changes ardesn(ia particular for the
recall in Finnish). Variants that include isolated word@stimate the scores with
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small data sets, but in contrast to EMMA and EMMA-2, the clemnget smaller as
the data size grows.

— - Pre/English
- Rec/ English

— F/English

g — - Pre/Finnish
- Rec/ Finnish

— F/Finnish

Words
CoMMA-S1
T

L
103 10
Words Words Words

Figure 11. The mean and standard deviation for precision, recall, andcBre of
different evaluation methods with respect to the size oftaduation data (100-10,000
words) for English and Finnish. The evaluated method is k&sdr Baseline.

4.6. Discussion

As finding the/ that gives the highest correlation of; o the application evalu-
ations can be considered as tuning the evaluation metriglesant question is how
general the found value is for given language and applicaiitat is, if 3 optimized
for the task is utilized for evaluating a new set of algorighmill it actually give better
correlations at all?

In order to test this, we used thies optimized for the IR correlations using the
segmentation algorithms (Figure 6 on page 74) to calculateskation using all the
other (non-segmentation) algorithms. For English IR,eéheere 17 segmentation al-
gorithms and 18 non-segmentation algorithms, and for BmiRR, 15 for both. The
obtaineds:s and correlations are shown in Table 6. Using&toptimized for segmen-
tation algorithms often gives higher correlations alsaifmn-segmentation algorithms
than the balanced;Fscore. In the cases that it does nog, &d R are either equal
or very close. Moreover, in half of the cases, the corretatibFs tuned for the non-
segmentation algorithms (shown in last column) is onlytglig(< 0.05) higher than
the one tuned for the segmentation algorithms.
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Table 6. Correlations with iz tuned for segmentation algorithms and tested on non-
segmentation algorithms. For comparison, the fifth colummowss the correlation of
balanced F-score for non-segmentation algorithms and &t tolumn shows the
correlation of the lz-score optimized using the non-segmentation algorithnise T
higher of the correlations for Fand F5 is shown in bold.

Language Method Segmentation Non-segmentation
I} Fs F1 Fs bestFg

English EMMA 125 0.87 0.73 0.71 0.73

English MC 06 0.62 043 056 0.70

English CoMMA-BO 0.6 069 044 060 0.72
English CoMMA-B1 0.9 066 0.69 0.74 0.76
English EMMA-2 1.1 086 0.74 0.74 0.75
English CoMMA-S1 1.0 0.70 0.79 0.79 0.84
English CoMMA-SO 0.6 0.70 0.67 0.65 0.82
Finnish EMMA 1.25 091 059 061 0.76
Finnish MC 03 0.76 035073 0.73
Finnish CoMMA-BO 0.3 065 0.18 047 0.60
Finnish CoMMA-B1 04 071 0.29 052 0.52
Finnish EMMA-2 0.8 0.90 0.55 0.53 0.67
Finnish CoMMA-S1 05 0.76 044062 0.66
Finnish CoMMA-S0 03 0.74 044061 0.69

Note that in the experiment above, the set of algorithmsuioing thes and those
testing it were quite different, as only the second set @mred any non-concatenative
processes at all. Thus, tives optimized for the whole set of algorithms evaluated so
far are likely to provide good correlations also for novetissef algorithms. How-
ever, this certainly does not mean that application eveloatare unnecessary for
future evaluation campaigns. A simple reason is that theuresipervised algorithms
have actually outperformed the grammatically correct ysed for the applications
evaluated in Morpho Challenges (Kurined al., 2008; Kurimoet al., 2009; Kurimo
etal, 2010c; Kurimeet al,, 2010b). In other words, the grammatically correct analysi
is not likely to be the optimal solution for the applications

The optimally correlated § of the soft isomorphic evaluations usually weights
precision over recall, especially for agglutinative laages (Finnish and German).
This indicates that undersegmentation is sometimes ugeftile applications. While
this may originate from some application-specific methaldséloped usually for En-
glish), the phenomenon can also be considered, for exarmptee context of the
psycholinguistic discussion on whether inflected wordsstoeed as full-forms or
inferred from their morphological parts in human mind (sesy., Pinker and Ull-
man, 2002; Baayen, 2007).

Finally, we emphasize that the results are always depemuatetite gold standard
used for reference analyses. In particular, labels thag hawdirect correspondences
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in the surface forms pose a large problem for unsupervisedoaphes. Common
examples are separate part-of-speech labels and null erogsh marking singular
forms of nouns. Such labels are likely to encourage oversatgtion, especially
with co-occurrence based metrics, as happened with theé@eshluations in Morpho
Challenge 2009 (Kurimet al,, 2010c). While the reference analyses used in this study
are clean from most of such labels, some other peculiargi@sin. For example, the
shortened words in the English gold standard have the morps@f the long form
(e.g.,adhasadvertise_Vandment_s a-bombhasatom_Nandbomb_N).

4.7. Summary

We end this section by summarizing the experimental resoiftthe isomorphic
evaluation methods.

MC: the MC evaluation has only weak correlation to applicatieed@ations with
balanced F-score, but a decent one when precision is givea weight than recall.
The evaluation, based on random sampling of morphemergharord pairs, is de-
signed for the case where there is a large number of analyaedbwo compare. The
naive treatment of alternative analyses makes the methioénable to gaming. Al-
gorithms with low recall can be artificially boosted also lolglang shared morphemes.

EMMA: EMMA gives high correlations to application evaluationgewith bal-
anced F-score. Even among-Bcores, the correlations to the results of the IR task
are the highest. EMMA is also robust to gaming both with amibyghijacking and
morpheme padding. In addition, it provides the mapping fitbm predicted to the
reference morphemes that can be used in qualitative ei@uathe main problems
are the computational complexity and the memory requirésnafithe algorithm. The
actual implementation uses integer linear programmingc¢hvbould be replaced by
the Hungarian algorithm, but the complexity will still be leaist cubic with respect
to the number of morphemes. Minor drawbacks are that thegwecand recall do
not have as practical interpretations as in soft isomorptethods, and the measures
results are overestimated for small data sets.

EMMA-2: like EMMA, EMMA-2 provides high correlations to applicati@valu-
ations even with balanced F-score and is robust to gamirgp gimilar to EMMA, it
gives overestimated results with small data sets. Preceiml recall of EMMA-2
behave similarly to those of the co-occurrence metrics aednsore useful than
in EMMA, but the matchings between predicted and referenogphremes are not
as easy to use in qualitative evaluation. The main advarmage EMMA is that
EMMA-2 is very quick to compute.

CoMMA: the SO and S1 versions of CoOMMA show a positive correlatioth&o
IR results with balanced F-score, but the correlation islagly for English. With
weighted F-score, the correlations vary from high (English) to mote(&erman).
B0 and B1 have clearly lower correlations in both cases. Wghnh the isolated words
from the evaluation has mixed effects on correlations: B9tha lowest correlations
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of the variants, but SO is among the best ones. More weigltingually needed to get
as good correlations to the application evaluations. Hewet/provides more stable
results for small evaluation sets, for which the scores #nerwise overestimated.
Similar to MC, the recall of the CoMMA evaluations is vulnbkato gaming with
shared morpheme padding. However, they are more robusiMiawith respect to
ambiguity hijacking, especially COMMA-S which uses a dtratching between the
alternatives. All the variants have reasonable computaines up to 10,000 words.

5. Conclusions

Unsupervised learning of morphology has been an activearelseopic for over
a decade, but there has not been any standard way of evaltiaimlgorithms based
on linguistic reference analyses. While this is partly duthtolack of free and pub-
licly available linguistic references, also the implenaitns and experimental com-
parisons of the evaluation methods have been missing. Thatish has been im-
proved by the yearly Morpho Challenge evaluations and tidigation of the EMMA
method (Spiegler and Monson, 2010). For this article, weeh@rformed the most
extensive meta-evaluation so far, using the large numbartwhissions to the Morpho
Challenge competitions. Based on the experiments, we e@nsgime recommenda-
tions for the usage of the evaluation methods.

While the emphasis of this work was on isomorphic evaluatitims results con-
firm that using boundary evaluation is sensible wheneves &pplicable (i.e., both
predicted analyses and reference analyses are segmes)atla addition to being
robust, simple and intuitive, it provides high correlasdio application evaluations.
In the case that reference segmentations are not availsteorphic evaluations pro-
vide reasonable correlations to the boundary evaluatianweder, it should be kept
in mind that the correlation depends both on the languagehentkeference analysis,
which may require cleaning from, e.g., null morphemes.

Among the isomorphic evaluation methods, EMMA is recomneehdspecially
if either the goal is to get as close to the reference anaésigossible (one-to-one
assignment provides detailed information) or a good catiet of the balanced F-
score to the application evaluations is sought. Howevenpegational complexity of
the assignment prevents using it for large evaluation deta £MMA-2 maintains
the strengths of EMMA, robustness and high correlation fgiegtion evaluations,
while having substantially shorter computation times. Tke of soft (many-to-one)
assignment instead of the hard assignment of EMMA reduceitirpretability of
the morpheme assignments, but increases the interpigtatfiprecision and recall.
The combination of robustness and efficiency makes it a gtcamdidate for any
large-scale experiments and competitions.

CoMMA-S fixes the two main problems in the old MC evaluationirsk it re-
moves the need of sampling and thus is more suitable to useswitll evaluation
sets. Second, it deals with alternative analyses in monestahanner. Compared to
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the assignment based methods, COMMA-S loses in the strafdtie correlations
to application evaluations, in particular with balancedderes and morphologically
rich languages. However, it can still be recommended folliEmgand possibly other
mostly analytic languages), where it works as well as EMMA &WVIMA-2 practi-
cally in all aspects. The advantage of COMMA-SO over EMMA ®MMA-2 is the
stablility with respect to the size of the evaluation setjolhhelps comparing the
results from a small development set to those of the finaktetst

Implementations of the new evaluation methods, as well asréBults for the
individual algorithms submitted to Morpho Challenges,|\w# published ahttp:
//research.ics.tkk.fi/events/morphochallenge/.
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