
LetsMT!: Cloud-Based Platform for Building User Tailored Machine
Translation Engines

Andrejs Vasiļjevs Raivis Skadiņš Jörg Tiedemann
Tilde Tilde Uppsala University

Vienibas gatve 75a, Riga Vienibas gatve 75a, Riga Box 635, Uppsala
LV1004, LATVIA LV1004, LATVIA SE-75126, SWEDEN

andrejs@tilde.com raivis.skadins@tilde.com jorg.tiedemann@
lingfil.uu.se

Abstract

To fully exploit the huge potential of existing
open SMT technologies and user-provided
content, we have created an innovative online
platform for data sharing and MT building.
This platform is being developed in the EU
collaboration project LetsMT!. This paper
presents motivation in developing this plat-
form, its architecture and main features.

1 Introduction

The goal of the LetsMT! project is to facilitate the
use of open source SMT toolkits and to involve
users in the collection of training data. This will
result in populating and enhancing the currently
most progressive MT technology and making it
available and accessible for all categories of users
in the form of sharing MT training data and build-
ing tailored MT systems for different languages on
the basis of the online LetsMT! platform. The
LetsMT! project extends the use of existing state-
of-the-art SMT methods enabling users to partici-
pate in data collection and MT customization to
increase quality, scope and language coverage of
MT. Currently LetsMT! is creating a cloud-based
platform that gathers public and user-provided MT
training data and generates multiple MT systems
by combining and prioritizing this data.

The LetsMT! Consortium includes the project
coordinator Tilde, the Universities of Edinburgh,
Zagreb, Copenhagen and Uppsala, the localization
company Moravia and the semantic technology
company SemLab. The project started in March

2010 and should achieve its goals till September
2012.

2 Applying user-provided data for SMT
training

The number of open source parallel resources is
limited and this is an essential problem for SMT,
since translation systems trained on data from a
particular domain, e.g. parliamentary proceedings,
will perform poorly when used to translate texts
from a different domain, e.g. news articles. At the
same time, a huge amount of parallel texts and
translated documents are at the users’ disposal and
they can be used for SMT system training. There-
fore, the LetsMT! online platform provides all cat-
egories of users (public organizations, private
companies, individuals) with an opportunity to up-
load their proprietary resources to the repository
and to receive a tailored SMT system trained on
these resources. The latter can be shared with other
users who can exploit them further on. Data and
SMT model sharing can be managed by the users.
In LetsMT! we emphasize data integrity and secu-
rity that makes it possible to work with proprietary
collections as well as public sources.

As opposed to the data sharing approach by
TAUS Data Association1, LetsMT! allows only to
upload data and use it for the training of MT en-
gines. It does not allow to download stored data.

The motivation of users to get involved in shar-
ing their resources is based on the following fac-
tors:

 participate and contribute in a reciprocal manner
with a community of professionals and its goals;

1 http://www.tausdata.org/

507

 achieve better MT quality for user specific texts;
 build tailored and domain specific translation

services;
 enhance reputation for individuals and business-

es;
 ensure compliance with the requirement set forth

by EU Directive to provide usability of public
information in a convenient way for public insti-
tutions;

 deliver a ready resource for study and teaching
purposes for academic institutions.

The LetsMT! project is advancing the concept of
data sharing, which implies the practice of making
data used in one activity available to other users.

LetsMT! platform provides the following key
features:

 Uploading of parallel texts for users that will
contribute their content;

 Directory of web and offline resources gathered
by LetsMT! users;

 Automated training of SMT systems from speci-
fied collections of training data;

 Custom building of MT engines from selected
pools of training data;

 Custom building of MT engines from proprietary
non-public data;

 MT evaluation facilities.

3 Architecture overview

Figure 1 illustrates the general architecture of the
LetsMT! platform. Its components for SMT train-
ing, parallel data collection and data processing are
described further down in this paper. The devel-
opment of the system was particularly facilitated
by the open-source alignment tool GIZA++ (Och
et al. 2002) and the MT training and decoding tool
Moses (Koehn et al 2007).

LetsMT! translation services can be used in sev-
eral ways: through the web portal, through a widg-
et provided for free inclusion in a web-page,
through browser plug-ins, and through integration
in computer-assisted translation (CAT) tools and
different online and offline applications. Localisa-
tion and translation businesses as well as other pro-
fessional translation can use the LetsMT! platform
for uploading their parallel corpora in the LetsMT!
website, building custom SMT solutions from the
specified collections of training data, and accessing
these solutions in their productivity environments
(typically, various CAT tools).

Interface Layer

Web Page UI Public API

Application Logic Layer

Resource Repository
Adapter

SMT
training

Data Storage Layer
(Resource Repository)

High-performance Computing
(HPC) Cluster

SGE

Widget ...CAT
tools
CAT
tools

CAT
tools

Browser
plug-ins

ht
tp

s
R

E
S

T

ht
tp

s
R

E
S

T

ht
tp

s
R

E
S

T,
S

O
A

P
, .

..
TC

P
/IP

ht
tp

R
E

S
T/

S
O

A
P

CPUCPU

CPU CPU

CPU CPU

ht
tp

R
E

S
T/

S
O

A
P

Translation

R
E

S
T

RR API

SVN

File Share

Web
Browsers

HPC
frontendREST

ht
tp

/h
ttp

s
ht

m
l

Database

Figure 1. The LetsMT! system architecture

The LetsMT! system has a multitier architecture.
It has (i) an interface layer implementing the user
interface and APIs with external systems; (ii) an
application logic layer for the system logic and (iii)
a data storage layer consisting of file and database
storage. The LetsMT! system is performing vari-
ous time and resource consuming tasks; these tasks
are defined by the application logic and the data
storage and are sent to a High Performance Com-
puting (HPC) Cluster for execution.

The Interface layer provides interfaces between
the LetsMT! system and external users. The system
has both human and machine users. Human users
can access the system through web browsers by
using the LetsMT! web page interface. External
systems such as CAT tools and browser plug-ins
can access the LetsMT! system through a public
API. The public API is available through both
REST/JSON and SOAP protocol web services.
Some CAT tools or other external systems may
require different interfaces; they might be intro-
duced if necessary. A HTTPS protocol is used to
ensure secure user authentication and secure data
transfer.

The application logic layer contains a set of
modules responsible for the main functionality or
logic of the systems. It receives queries and com-

508

mands from the interface layer and prepares an-
swers or performs tasks using the data storage and
the HPC cluster. This layer contains several mod-
ules such as the Resource Repository Manager, the
User Manager, the SMT Training Manager etc.
The interface layer accesses the application logic
layer through both REST/JSON and SOAP proto-
col web services. The same protocols are used for
communication between modules in the applica-
tion logic layer.

As a data sharing and MT platform the LetsMT!
system is able to store large amounts of SMT train-
ing data (parallel and monolingual corpora) as well
as trained models of SMT systems. The data is
stored in one central Resource Repository (RR).
The RR is also used to store various tools neces-
sary for data processing and SMT training. As
training data may change (for example, grow), the
resource repository is based on a version-
controlled file system (currently we use SVN as
the backend system). A key-value store is used to
keep metadata and statistics about training data and
trained SMT systems. Modules from the applica-
tion logic layer and HPC cluster access RR through
a REST-based web service interface. Although
LetsMT! platform is in beta version now, it is al-
ready populated with initial SMT training data.
Currently it contains almost 500 million parallel
sentences in more than 90 languages.

A High Performance Computing Cluster is used
to execute many different data processing tasks,
training and running SMT systems. Modules from
the application logic and data storage layers create
jobs and send them to HPC cluster to execute. HPC
cluster is responsible for accepting, scheduling,
dispatching, and managing the remote and distrib-
uted execution of large numbers of standalone,
parallel or interactive jobs. It also manages and
schedules the allocation of distributed resources
such as processors, memory and disk space. The
LetsMT! HPC cluster is based on the Oracle Grid
Engine (SGE). The HPC cluster accesses data
stored in the data storage layer using the RR API.

The hardware infrastructure of the LetsMT!
platform is heterogeneous. The majority of ser-
vices run on Linux platforms (Giza++, Moses, Re-
source Repository, data processing tools). The
Web server and application logic services run on a
Microsoft Windows platform.
The system hardware architecture is designed to be
highly sizable. The LetsMT! platform contains

several machines with both continuous and on-
demand availability:
 Continuous availability – the core frontend and

backend services that guarantee LetsMT!
webpage and external API availability;

 On-demand availability – training, translation
and data import services (HPC cluster nodes);
Additional frontend and backend server in-
stances to increase availability.

To ensure scalability of the system whole
LetsMT! system including HPC cluster is hosted in
Amazon Web Services infrastructure which pro-
vides easy access to on demand computing re-
sources.

4 Application of the Moses SMT toolkit

A significant breakthrough in SMT was achieved
by the EuroMatrix project. The project objectives
included the creation of translation systems for all
pairs of EU languages and the development of
open source MT technology including research
tools, software and data collections. Its result is the
improved open source SMT toolkit Moses devel-
oped by the University of Edinburgh. The Moses
SMT toolkit is a complete statistical translation
system distributed under the Lesser General Public
License (LGPL). Moses includes all the compo-
nents needed to pre-process data and to train lan-
guage and translation models (Koehn et al. 2007).
Moses is widely used in the research community
and has also reached the commercial sector. While
the use of the software is not closely monitored
(there is no need to sign a license agreement), Mo-
ses is known to be in commercial use by compa-
nies such as Systran (Dugast et al. 2009), Asia
Online2, Autodesk (Plitt and Masselot, 2010), Ma-
trixware 3 , Adobe, Pangeanic, Logrus (Joscelyne
2010). The LetsMT! project coordinator Tilde ba-
ses its free online Latvian MT system on the Mo-
ses platform.
LetsMT! uses Moses as a language independent
SMT solution and integrates it as a cloud-based
service into the LetsMT! online platform. One of

2 Asia Online. Wikipedia. 2011-08-22.
http://en.wikipedia.org/wiki/Asia_Online. (Archived by
WebCite® at http://www.webcitation.org/617phHvgD)
3 Machine Translation at Matrixware. 2011-08-22. http://ir-
facility.net/downloads/mxw_factsheet_smt_200910.pdf.
(Archived by WebCite® at
http://www.webcitation.org/617gTPMb4)

509

the important achievements of the LetsMT! project
will be the adaptation of the Moses toolkit to fit
into the rapid training, updating, and interactive
access environment of the LetsMT! platform. The
SMT training pipeline implemented in Moses cur-
rently involves a number of steps that each require
a separate program to run. In the framework of
LetsMT! this process will be streamlined and made
automatically configurable given a set of user-
specified variables (training corpora, language
model data, dictionaries, tuning sets).

Additional important improvements of Moses
that are being implemented by the University of
Edinburgh as part of LetsMT!, are the incremental
training of MT models, randomised language mod-
els (Levenberg et al. 2009), and separate language
and translation model servers. We expect some
users to add relatively small amounts of additional
training data in frequent intervals. The incremental
training will benefit from the addition of these data
without re-running the entire training pipeline from
scratch.

5 LetsMT! Resource repository

Figure 2 illustrates the general architecture of the
resource repository and its integration into the
LetsMT! platform. The LetsMT! resource reposito-
ry has a web API that is implemented as a REST
service with HTTP requests. The Web API gives
access to the LetsMT! resource repository which
consists mainly of a revision control system (Sub-
version), a database (TokyoCabinet) and a batch-
queuing system (SGE, Oracle Grid Engine). The
purpose of the Web API is to enable the interaction
with the repository system for uploading and

downloading data, requesting and searching infor-
mation and triggering batch processes. The
LetsMT! resource repository system is implement-
ed in Perl and uses the Apache server and
mod_perl to handle the requests and responses to
and from the client system.

All data sets of the LetsMT! platform are stored
in a revision control system. In the current imple-
mentation, we use Subversion (SVN). However,
the software is modular and another version con-
trol system may replace SVN or even work side-
by-side with other storage backends.

Revision control systems are designed for dy-
namic repositories of textual data in multi-user en-
vironments. They typically store all repository
modifications and provide tools for tracking the
file history for any item in the repository. Further-
more, they naturally support data sharing and pos-
sibilities to revert to specific versions.
Modifications are stored efficiently by keeping
track of changes only. All of this makes them well
suited for our needs in which growing resources
may be accessed by multiple users.

An important design goal for developing the re-
pository software was to allow arbitrary metadata
in terms of key-value pairs stored together with
resources in the repository. The focus was set on
flexibility in a way that new fields and data sets in
various formats can easily be added to the database
during development. It has to be possible to store
appropriate metadata to any resource at any loca-
tion in the repository. Another important feature is
that this database should still be powerful enough
to allow complex search queries over the entire
repository which reflects a hierarchical file struc-
ture. At the same time, the system has to respect

permissions set to individual
resources in order to avoid
that restricted material can
be found. Standard relation-
al database management
systems do not support this
degree of flexibility as they
rely on pre-defined relations
(tables) with fixed data
types and operations over
them. A recent trend is,
therefore, to move from re-
lational database with SQL-
like queries to schema-less
key-value stores that do not Figure 2. Resource repository overview

510

require a fixed data model.
A key-value store basically stores arbitrary data

(values) by use of a single key. This conceptually
simple strategy allows a lot of flexibility in terms
of data storage without pre-defined schemas and
data models. In relation to the resource repository
we like to store arbitrary key-value pairs to any
resource in the repository. Various kinds of infor-
mation shall be stored in this way ranging from
descriptive data (textual domain, ownership, lan-
guage, size etc.) to status information (im-
port/conversion status, etc.), and internal
information used by the LetsMT! frontend or re-
pository backend. Furthermore, we also need the
support of repeated keys, or better, keys that may
contain several values.

Important here is that the database is not re-
stricted to a list of pre-defined keys. In our system,
arbitrary keys can be added containing arbitrary
values. Furthermore, values can also be interpreted
as unordered lists, for example, in the case of lan-
guage. Using these data sets we are able to ask
complex queries such as:

 Give me all public parallel data with English
as either source or target language,

 Give me all monolingual data sets from the
news domain that are larger than 500 sen-
tences.

Our key-value store is able to process such que-
ries and to return matching resources and their as-
sociated metadata entries. Furthermore, we store
permission information together with all data rec-
ords to filter the data according to access re-
strictions. The backend system we use is based on
TokyoCabinet (https://fallabs/tokyocabinet) a
freely available software package that implements
an efficient database management system with all
the flexibility required by our platform.

Another important feature of the Resource Re-
pository software is the support of data import,
validation and conversion. Users may upload their
data sources in a variety of formats that will auto-
matically be processed by our validation and con-
version tools. The software also includes a
sentence alignment module that makes it possible
to create new parallel resources for SMT training
from scratch.

In the current implementation we support the
following data formats with dedicated import han-
dlers: aligned parallel data in TMX, XLIFF and
Moses formats, monolingual text documents in

PDF, Text and DOC formats, compressed data and
archives in gzip, zip and tar formats. Support for
additional formats may be added in future releases.

6 Conclusions

Current development of SMT tools and techniques
has reached the level where they can be imple-
mented in practical applications addressing the
needs of large user groups in a variety of applica-
tion scenarios. The work in progress that is de-
scribed in this paper promises important advances
in the application of SMT by integrating available
tools and technologies into an easy-to-use cloud-
based platform (https://www.letsmt.eu) for data
sharing and generation of customized MT.

The successful implementation of the project
will enable wider use and greater impact of availa-
ble open-source SMT technologies, facilitate di-
versification of free MT by tailoring it to specific
domains and user requirements.

References
L. Dugast, J. Senellart, P. Koehn. 2009. Selective addi-

tion of corpus-extracted phrasal lexical rules to a
rule-based machine translation system, in Proceed-
ings of MT Summit XII

A. Joscelyne. 2010. TDA Members doing business with
Moses. TAUS DA blog on October 7, 2010. URL:
http://www.tausdata.org/blog/2010/10/doing-
business-with-moses-open-source-translation/.
(Archived by WebCite® at
http://www.webcitation.org/617g6iKGN)

P. Koehn, M. Federico, B. Cowan, R. Zens, C. Duer, O.
Bojar, A. Constantin, E. Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation, in
Proceedings of the ACL 2007 Demo and Poster Ses-
sions, pages 177-180, Prague.

A. Levenberg, M. Osborne. 2009. Stream-based Ran-
domised Language Models for SMT, in Proceedings
of the 2009 Conference on Empirical Methods in
Natural Language Processing.

F.J. Och, H. Ney. 2003. A Systematic Comparison of
Various Statistical Alignment Models. Computational
Linguistics, (29)1: 19-51.

M. Plitt, F. Masselot. 2010. A Productivity Test of Sta-
tistical Machine Translation Post-Editing in a Typi-
cal Localisation Context. The Prague Bulletin of
Mathematical Linguistics, 93(January 2010): 7–16

511

