
Word Alignment Using GIZA++ on Windows 
 
 

Liang Tian 
Department of Computer and 

Information Science 
University of Macau, Macau 

S.A.R, China 
ma96572@umac.mo 

Fai Wong 
Department of Computer and 

Information Science 
University of Macau, Macau 

S.A.R, China  
derekfw@umac.mo 

Sam Chao 
Department of Computer and 

Information Science 
University of Macau, Macau 

S.A.R, China  
lidiasc@umac.mo 

 
 
 

Abstract 

In Linux system environment, it is very 
common and convenient to use the word 
alignment generated from GIZA++ for most 
statistical machine translation (SMT) systems. 
While it is not the story for many researchers 
used to conducting their research under the 
Windows platform. Although either Cygwin 
or Virtual Machine (VM) can be used to 
emulate Linux environment in Windows 
environment, it is not always a good method. 
In this paper, we mainly want to share our 
experiences on how to use GIZA++ on 
Windows. 

1 Introduction 

There are many applications for word alignment in 
natural language processing, and most of them 
depend on the quality of word alignment (Och and 
Ney, 2000; Yarowsky and Wicentowski, 2000). A 
frequently used application system for word 
alignment is the automatic extraction of bilingual 
lexicon and terminology from parallel corpus 
(Smadja et al.,1996; Melamed, 2000). Och and 
Ney (2003) compare various methods for 
computing word alignments using statistical and 
heuristic models and then develop a statistical 
word alignment toolkit, GIZA++, which is the 
mostly used package in statistical machine 
translation (SMT) nowadays.  

GIZA++ is part of the statistical machine 
translation toolkit used to train IBM Model 1 to 
Model 5 (Brown et al., 1993) and the Hidden 
Markov Model (HMM) (Och et al., 2003). It is part 
of the SMT toolkit EGYPT which was developed 
by the SMT team during the summer workshop in 

1999 at the Center for Language and Speech 
Processing at Johns-Hopkins University 
(CLSP/JHU) *.  

With the help of Expectation-Maximization 
(EM) algorithm, final word alignment results can 
be obtained after GIZA++ trains the parallel 
corpus several iterations from two directions 
(source to target language and vice-versa). Various 
heuristics, such as grow-diag-final (Koehn et al., 
2003) can be applied to obtain a better symmetrical 
alignment a from those two directions. Word 
alignment results can be used to build phrase table 
if biphrases (e', f') alone with their alignment a' 
satisfy the following two conditions (Galbrun, 
2009): 
a) e' and f' are consecutive word subsequences in 

the target sentences e and source sentence f 
respectively and neither of them is longer 
than k words. 

b) a' is the alignment between the words of e' and 
f' induced by a, which contains at least one 
link from a. 

Table 1 shows an example of extracting phrases 
(refer to consecutive sequence of words) according 
to the English-Chinese word alignment in Figure 1. 
Here the phrase length k is not more than 7 words. 

Suppose the Chinese word " " in Figure 1 is 
only aligned to "able" and the other alignments are 
the same, as shown in Figure 2. After the phrase 
extraction in line with the two conditions given 
above, biphrase (  ||| I am able to ) can still 
be aligned, while the biphrase (  ||| am able to ) 
cannot. In other words, " " can be correctly 
translated into "I am able to", while " " cannot 

                                                             
*http://www-i6.informatik.rwth-aachen.de/Colleagues/och/soft
ware/GIZA++.html 

369



give the right translation "am able to". That is to 
say better word alignment can obtain a better 
phrase table. Figure 3 illustrates various phrases 
translation process. 
 

  
Figure 1. An example of word alignments 

 
(  ||| I); 
(   ||| I am able to ); 
(    ||| I am able to do); 
(      ||| I am able to do it well); 
(      ||| I am able to do it well .); 
(  ||| am able to ); 
(   ||| am able to do); 
(     ||| am able to do it well); 
(     ||| am able to do it well .); 
(  ||| do); 
(    |||  do it well); 
(     |||  do it well .); 
(  ||| well); 
(   ||| it well); 
(   ||| it well .); 
(  ||| it); 
(   ||| it .); 
( ||| .) 

Table 1. Content of phrase table 
 

 
Figure 2. An alternative alignment of words, where "

" is aligned to "able" instead of "am able to" 

am able to

I am able to

able

√
√

 
Figure 3. Translations driven by alignments in Figure 2 
 

Sometimes some GIZA++ experiment results 

will be dealt in Windows system, however, 
GIZA++ is now compiled in Linux, Irix and Sun 
operating systems. Although Cygwin and Virtual 
Machine can help us to achieve the purpose, it is 
quite complicated to carry out experiments by 
switching the intermediate results between the 
Linux and Windows platforms. As we know, some 
attempts have been made to transfer GIZA++ from 
Linux to Windows with the help of Visual Studio 
2003 and STLport4.6.2. However, some files 
cannot be successfully compiled in our trial. Hence, 
we have a motive to make GIZA++ run in the 
Windows environment. In this paper, we would 
like to share the experience in developing an 
online word alignment system (using the GIZA++) 
that run under the Windows environment. 

In the following sections, main techniques will 
be described in the second part. Conclusion and 
future work will be presented in the third section. 

2 Implementation Details 

In this section, the developing steps will be 
described. To get the GIZA++ executable files, 
some preparation work should be done. Then the 
GIZA++ required parameters should be integrated 
in a batch processing file. Finally, the batch file 
will be called by the ShellExecute() function 
in Visual Studio 2008 (VS 2008).  
 

Software Function 
Cygwin Compile GIZA++ file; 
VS 2008 Dialog-based MFC; 

Call executable files; 
Output the alignment result 

STLport 
4.6.2 

Serve for VS 2003/2008 to compile 
GIZA++ 

Table 2. Software required for the development 

2.1 Preparation Tasks 

The main purpose of this step is to obtain some 
executable files that can be run in Windows. As 
different compilation environment will be used 
between Linux and Windows, files compiled on 
Linux system cannot directly execute in Windows. 
Fortunately, Windows recognizable file (.exe file) 
can be obtained from Cygwin. Besides this method, 
some executable files can also be prepared by 
using VS 2003 and STLport 4.6.2. Table 2 lists the 
software packages that we have applied to the 
implementation the alignment program for run in 

     

I able do it well . 

 

am to 

     

I able do it well . 

 

am to 

370



mkcls.exe -c80 -n10 -pchinese -V pchinese .vcb.classes opt 
mkcls.exe -c80 -n10 -penglish -Venglish.vcb.classes opt 
plain2snt.out  chinese  english 
GIZA++.exe -S chinese.vcb -T english.vcb -C chinese_english.snt 

Table 3. Content of giza.bat 
 
WinExec() 
1) UINT WinExec(LPCSTR lpCmdLine, UINT uCmdShow); 
2) Two parameters and provide only for compatibility with 16-bit Windows. 
ShellExecute() 
1) ShellExecute(HWND hwnd, LPCTSTR lpOperation, LPCTSTR lpFile, LPCTSTR 

lpParameters, LPCTSTR lpDirectory, INT nShowCmd); 
2) Six parameters and easy to use for most cases. 
CreatProcess() 
1) Ten parameters 
2) Creates a new process and its primary thread, most of the time we will not use so many parameters. 

Table 4. Functions used to call executable file 
 
Windows XP and 7 systems. According to our 
experiment, it is quite straight forward to compile 
GIZA++ in Cygwin, while the second method not 
only needs to make some changes of the GIZA++ 
codes, but also cannot compile all the files, such as 
the word classes toolkit mkcls and the word 
counting program plain2snt.out. 

In order to fully use the parameters of GIZA++, 
all of those parameters will be put in a single batch 
file, giza.bat. Table 3 shows an example. Here 
"chinese" and "english" are the file names of 
the bilingual corpora. 

2.2 Calling Executable Files  

Generally speaking, there are three different ways 
for calling the executable files, as shown in Table 
4. Considering the number of parameters and 
simplicity, ShellExecute() is chosen as our 
favor. The following shows an example about how 
the parameters of ShellExecute() are defined 
and used to execute the GIZA++.exe. 

ShellExecute(NULL,"open","GIZA++.exe",Fi
lePath,NULL, SW_HIDE); 

The function will run the GIZA++.exe from 
the location defined in FilePath without 
showing the interface of the program (as disable 
with SW_HIDE). Unfortunately, there is a problem 
that it is unable to keep track of the execution 
status of GIZA++.exe, whether the program has 
finished the process or not. For example, when we 
use the statements provided in Table 5 to read the 

word alignment results from the "chinese.txt" 
generated by GIZA++.exe, there is no way to tell 
whether the alignment results has finished writing 
or not, before the reading process starts. However, 
this can be solved by using a single thread. Table 6 
presents an alternative way to define the parameter 
values for ShellExecute() to monitor the 
execution status of the invoked program. 

2.3 Word Aligner 

Bilingual word alignment, as a first step, is also a 
necessary step in various NLP applications. This is  
 
ShellExecute(NULL,"open","GIZA++.exe", 
"chinese.txt",NULL,SW_HIDE); 
Read each line in "chinese.txt" 
{   
     display the alignment result;  
} 

Table 5. Pseudo code of reading alignment results 
 

SHELLEXECUTEINFO sei;  
memset(&sei,0,sizeof(SHELLEXECUTEIN
FO));  
sei.cbSize=sizeof(SHELLEXECUTEINFO;  
sei.fMask = SEE_MASK_NOCLOSEPROCESS;  
sei.lpVerb = "open"; //open the files 
sei.lpFile = "GIZA++.exe";//call GIZA++ 
sei.nShow = SW_HIDE;  
ShellExecuteEx(&sei); //call executable file 
WaitForSingleObject(sei.hProcess,IN
FINITE); //wait until the execute file stops 
CloseHandle(sei.hProcess); //close thread 

Table 6. Alternative way to monitor program’s status  

371



especially true for the creation of parallel corpus. 
In order to incorporate word alignment module 
into our annotation system, the aligner is proposed 
to deal with two types of input source: pair of 
sentences and parallel texts. To get the alignment 
for parallel texts, this can be easily done with 
GIZA++ as it already supports. For case of taking 
a pair of sentences as input, the aligner is set to 
make use of a basic data as an extra resource in 
addition to the sentences pair to be aligned. The 
idea behind this trick is to provide GIZA++ a 
training (parallel) text with sufficient content to 
produce good alignments of words for bilingual 
sentences. Considering the alignment precision and 
training speed, 5,000 parallel sentences are used as 
the basic data for our experiment. During 
alignment, input bilingual sentences are appended 
to the basic data. After training with GIZA++, we 
can obtain the alignment results for the sentences. 
The basic data is then restored by removing the 
sentences. Figure 4 shows the program interface 
and an example of alignment results for a single 
pair of sentences.  
 

 
 Figure 4. Interface and an example from our system 

3 Conclusion and Future Work 

The use of word alignment in natural language 
processing has increased dramatically in recent 
years, especially in the development of statistical 
machine translation. In this paper, we adapted the 
word alignment model GIZA++ to the 
development of tree annotation system for 
Windows environment. The first contribution of 
this work is to find a way in making GIZA++ run 
under the Windows. While the second one the 
realization of word alignment for a single pair of 
sentences instead of large batch of parallel. In the 

future, we will try to redevelop the aligner and 
give up using the GIZA++ program due to the fact 
that the alignment results are not satisfactory to us 
and, secondly, the current design using GIZA++ is 
not optimal. 

Acknowledgments 
This work is partially supported by the Research 
Committee of University of Macau under grant 
UL019/09-Y2/EEE/LYP01/FST and supported by 
Science and Technology Development Fund of 
Macau under grant 057/2009/A2.  

References  
Brown Peter, Della Pietra S., Della Pietra V., Mercer R. 

1993. The Mathematics of Statistical Machine 
Translation: Parameter Estimation. Computational 
Linguistics, 19(2), pp. 263–311. 

Esther, Galbrun. 2009. Phrase table pruning for 
Statistical Machine Translation. Series of 
Publications C. Report C-2009-22. 

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 
2003. Statistical phrase-based translation. In 
Proceedings of the North American Chapter of the 
Association for Computational Linguistics. 

Liu, Yuan, Qiang Tan, and Kun Xu Shen. 1994. The 
Word Segmentation Rules and Automatic Word 
Segmentation Methods for Chinese Information 
Processing (in Chinese). Qing Hua University Press 
and Guang Xi Science and Technology Press. 

Melamed, I. Dan. 2000. Models of translational 
equivalence among words. Computational 
Linguistics, 26 (2): 221–249. 

Och, Franz J. 2000. Giza++: Training of statistical 
translation models.  

Och, Franz J., Hermann Ney. 2000. A Comparison of 
Alignment Models for Statistical Machine 
Translation. In: Proc. of the 18th Int. Conf. on 
Computational Linguistics. Saarbrucken, Germany, 
pp. 1086–1090. 

Och, Franz J., Hermann Ney. 2003. A Systematic 
Comparison of Various Statistical Alignment Models, 
Computational Linguistics, vol.,29(1)1, pp. 19-51. 

Smadja, Frank, Kathleen R.McKeown, and Vasileios 
Hatzivassiloglou. 1996. Translating collocations for 
bilingual lexicons: A statistical approach. 
Computational Linguistics, 22(1):1–38. 

Yarowsky, David and Richard Wicentowski. 2000. 
Minimally supervised morphological analysis by 
multimodal alignment. In Proceedings of the 38th 
Annual Meeting of the Association for 
Computational Linguistics (ACL), pages 207–216, 
Hong Kong.

372




