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Abstract

This paper explores a tight coupling of Au-
tomatic Speech Recognition (ASR) and Ma-
chine Translation (MT) for speech transla-
tion with information sharing on the phone-
level. Our novel approach allows MT to ac-
cess fine-grained phonetic information from
ASR, as a methodology for facilitating speech
translation.  Specifically, Phrase-based Sta-
tistical MT (PBSMT) models are adapted
to work on source language phones, and
with a configuration of a source-language
phoneme-to-grapheme component, source-
language phones are translated into target-
language words. Furthermore, to take ad-
vantage of source-side phonetic confusion in-
formation from the speech recogniser, phone
confusion networks are constructed from the
phonetic confusion matrix and are used as
SMT inputs to boost translation quality. Ex-
periments are carried out on IWSLT English—
Chinese translation task, and significant im-
provements (1.27 absolute and 4.29% rela-
tively BLEU points) are obtained by using
phone confusion networks over the baseline
PBSMT system.

1 Introduction

With the recent progress of automatic speech recog-
nition (ASR) and machine translation (MT), speech
translation has become an active research domain.
The most commonly used speech translation model
is the cascaded approach, which treats ASR and MT
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as black boxes, and use words as the basic unit for
information sharing between these two components.
In this architecture, source language speech is fed
into an ASR module to obtain recognition results in
1-best, n-best (Zhang et al., 2004), word lattice (Ma-
tusov et al., 2005b), confusion network (Bertoldi et
al., 2008a) formats, then the recognised outputs are
translated with MT modules into a target language.
MT outputs are finally used in a Speech Synthesis
(SS) module for target-side human interaction. This
approach is straight forward and can easily benefit
from the improvements of any of these components.

However, there are still some limitations of this
approach:

e Recognition errors introduced by the ASR
module propagate into the following modules,
and sometimes it is difficult to recover based on
word-level information.

e It is difficult to tune three modules together
since they are built from different corpora, un-
der the assumption that the source-side ASR
vocabulary is coherent with the MT vocabulary.
However, each module is typically trained from
independent, mismatched corpora as not many
have been designed specifically for the speech
translation task.

e Information sharing between the ASR, MT, and
SS modules is weak, as the MT module gen-
erally processes at the word-level, source-side
acoustic details are lost (for example, speech
rhythm, emphasis, or emotion).

Previous studies have focused on the tighter inte-



gration of ASR and MT to solve the aforemen-
tioned problems. The coupling structure proposed
in (Ney, 1999) highlights the importance of infor-
mation sharing between ASR and MT modules and
the following studies (Mathias and Byrne, 2005;
Zhou et al., 2007) evaluate using merged graphs to
achieve optimal translation by integrating, search-
ing, and combining various ASR scores and trans-
lation models. These studies can be classified as
Finite State Transducers (FST)-based approaches
along with the GIATI-based speech translation sys-
tem (Casacuberta and Vidal, 2004; Casacuberta et
al., 2004; Matusov et al., 2005a). In the FST-based
approach, a tighter integration between the ASR and
MT modules is accomplished by using FSTs as the
basic structure to share information. The approach
uses composite decoding to obtain better translation
quality from source-side speech input. In this archi-
tecture source-side speech is fed into FST modules
to obtain target-side translation outputs, and then
the synthesis module is used to produce target-side
speech.

Since the FST-based approach accomplishes a
tighter integration between the ASR and MT mod-
ules, it is easier to recover from recognition errors
since the ASR and MT modules are seamlessly con-
nected. Even though a complex structure is implied
on large models, the FST-based approach can be effi-
ciently implemented with state-of-the-art MT mod-
els (Iglesias et al., 2009), which makes it applicable
to run time applications.

Although speech translation has been extensively
studied, most work uses words as the basic unit of
information sharing. However, not much research
has explored the possibility of using another unit (cf.
phone) for speech translation. The word-level loses
much of the rich information that is embedded in
the phonetic characteristics of speech. There is sub-
stantial source-side phonetic speech information that
could be used in the MT process (cf. disambiguation
and recognition error recovering) but are not.

Motivated by work in (Pérez et al., 2010) that uses
phonetic representations in FST for speech transla-
tion, work in (Bertoldi et al., 2008b) that utilises M T
of phone-to-word translation in speech recogntion
and open vocabulary speech reocogntion in (Bisani
and Ney, 2005), in this paper, we introduce a pho-
netic representation-based approach to tackle the
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ASR-MT integration problem of speech translation.
Instead of using words as a basic unit to carry in-
formation from ASR to MT, we utilise phones to
represent source-side recognised outputs, and con-
struct phone-to-word MT models for speech trans-
lation. Furthermore, to illustrate the potential of
our approach of incorporating rich phonetic infor-
mation from the source-side speech, the input phone
sequences are then enriched by a phonetic confu-
sion matrix (PCM) which is extracted from recog-
nition outputs to represent phonetic similarities and
phone-level recognition error patterns. Specifically,
phone confusion networks (PCN) are included to
carry information introduced by the PCM and used
for the phone-to-word MT module tuning and de-
coding. The ultimate goal and main contribution of
this work is to show the possibility and benefits of
phone-level speech translation.

The remainder of this paper is organised as fol-
lows: in Section 2 we introduce the concept and
architecture of speech translation of phonetic rep-
resentation and the MT part named phone-to-word
MT is illustrated in Section 3. Then the key module
to accomplish word-to-phone conversion, namely
grapheme-to-phoneme (G2P), is detailed in Section
4. In Section 5, we describe the PCM, which is
used to incorporate richer source-side phonetic in-
formation. In Section 6, experiments are conducted
on the IWSLT English—Chinese translation task to
show the effectiveness of our proposed method, and
finally conclusions and future work are then pre-
sented in Section 7.

2 ASR and MT Integration using Phonetic
Representations

The overall structure of our speech translation with
phonetic representation is illustrated in Figure 1. As
shown in the figure, the system structure is similar
to the cascaded model, but the main difference is the
use of phonetic representations for the integration
of ASR and MT module. This structure is looser
than the FST approach as ASR and MT models are
trained and tuned separately. However, since phones
are used to represent ASR outputs, it provides the
following merits to potentially obtain better spoken
language translation outputs:

e MT uses phonetic representation of words for
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Figure 1: Phone-to-word SMT for speech-to-speech translation with phonetic representation.

translation; this contributes to homograph dis-
ambiguation (e.g. “read” has same ortho-
graphic representation for present and past but
is pronounced differently).

e Even with 1-best ASR output, the MT de-
coder can potentially handle recognition error
and OOV words in ASR language models (e.g.
MT phrases help disambiguate recognition er-
ror caused by ASR).

e Domain tuning can focus on the MT side while
general purpose ASR can be kept for different
domains.

Both ASR and MT system are adopted in order to
utilise phonetic information:

e Although the ASR module normally tran-
scribes speech into words, state-of-the-art sys-
tems utilise phone models. Thus it is straight-
forward to either use a phone recogniser to con-
vert speech into phone sequences or to convert
word recognition outputs into phones. The dif-
ference here is the language model applied in
the recognition process which actually affects
the phone recognition rate for the subsequent
MT process. For the first approach, a higher
order phone language model is preferred for a
better phone recognition rate (Bertoldi et al.,
2008b) and will produce results that are less
correlated to the language model used during
recognition; while the second approach poses
more constrains on the results to resemble the
text that is used for language model training.
In this paper, we only examine the second ap-
proach in order to compare with systems that
operate on the word-level, but our method can
be generally applied to any speech recogniser
that outputs phone sequences.
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e Most of the MT systems operates on word-
level because this task is naturally related
to text translation. Unlike the building pro-
cess of phone-to-word MT in a monolingual
task (Bertoldi et al., 2008b), parallel text cor-
pus instead of dictionary is favoured, because
state-of-the-art MT methodologies rely heavily
on training from parallel data, in which word
alignments play a decisive role. It is not wise
to directly perform word alignments on source-
side phones and target-side words since there
are essential differences between them. Thus
we utilise MT models trained from word rep-
resentation of a corpus and convert the source-
side entries into phones. Ideally this process
does not change the inherit merits of MT mod-
els and is ought to produce identical results
with inputs in phonetic representation. How-
ever, the decomposition from word to phones
burdens the search process in MT decoding
which might affect the final outputs.

Therefore, from this point of view, it is not attrac-
tive to operate the whole system on the phone-level,
since theoretically our approach will underperform
when compared to a system that works on the word-
level. However, the merit of our approach is the flex-
ibility to incorporate phonetic information. For ex-
ample, considering the error-prone nature of ASR,
we can provide multiple phone choices to phone-
to-word MT if we have the information on which
phones are closer to others (cf. PCM in Section 5)
based on the recogniser outputs. This information
is easily encoded by phones (e.g. PCN) and can be
well-handled by state-of-the-art MT engines. As il-
lustrated in Figure 1, we can embed useful phonetic
information into phone sequences before they are
passed into the MT module and thus the information
sharing is more convenient based on the phone-level



Source entry [ Target entry ‘
life jacket RAEAR
life jacket REETR 5t
life jacket | RUEK & £
life like on the L
life like on the | & Mk L. /)

Table 1: Source and target entries before G2P.

unit between ASR and MT modules.

Note that in both the conversion of word-level
ASR output into phone sequences and the building
process of phone-to-word MT, the key process is the
transformation from words to phones, namely G2P,
which is introduced in Section 4. This module as-
sures the validity of the whole speech translation
process even when there are OOVs that cannot be
handled a with source-side dictionary.

3 Phone-to-word MT

In this paper, we transform PBSMT models into
phone-to-word models to accept phone sequences
with the following steps:

e Perform word alignment on parallel corpus and
then extract phrase table and lexical reordering
table to obtain a original PBSMT model. At the
same time, train target-side language model on
target-side corpus for further usage.

e For each source-side entry in the phrase table
and lexical reordering table, convert it into a
phonetic representation with a G2P conversion
module (in Section 4) to obtain a phone-to-
word phrase table and lexical reordering table.
Scores are left untouched. Table 1 and 2 illus-
trate the entries in the phrase table and lexical
reordering table before and after G2P respec-
tively. For each row in the first table, there is
a corresponding row in the second table, with
a different source entry after G2P conversion.
For example, the word “life” and “jacket” is
converted into “L. AY F” and “JH AE K IH T”
respectively, then the corresponding source en-
tries are transformed from “life jacket” into “L
AY FJHAEKIHT”.

e Tune the phonetic PBSMT model with phone
sequences. As described in the last section,
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Source entry [ Target entry ‘
LAYFJHAEKIHT R
LAYFJHAEKIHT T HE
LAYFJHAEKIHT RER T E

LAY FL AY KAONDHIY T ik -
LAYFLAYKAONDHIY | LW

Table 2: Source and target entries after G2P.

original word-level development set is trans-
formed into source-side phone sequences with
G2P module, and target side is left untouched.
Then, similar to the original PBSMT build-
ing process, the phonetic PBSMT model is
tuned by MERT (Och, 2003) in terms of the
BLEU (Papineni et al., 2002) metric.

Note that from the previous G2P examples, since
source words are transformed into their phonetic
forms, the average input length is much larger than
the original PBSMT (e.g. one word “jacket” is trans-
formed into five phones “JH AE K IH T”), which im-
plies a greater computational complexity since max-
imum phrase length and distortion limit ought to
be increased proportionally for comparable perfor-
mance. Therefore cube pruning (Chiang, 2007) for
PBSMT is utilised for faster decoding.

Now we use the term “Phone Translation” (PT) to
identify this phonetic MT base system and it can be
enhanced with different source-side phonetic infor-
mation.

4 G2P Conversion

The G2P module plays an essential role to converts
words from the orthographic form (a sequence of let-
ters) to its pronunciation representation (a sequence
of phones). It is utilised to transform word-level
recognition outputs into phone sequences, and to en-
able original PBSMT model works on source phone
sequences.

Because of the irregular correspondence between
spelling and pronunciation, it is a difficult task and
researchers have proposed various statistical ma-
chine learning algorithms (Bisani and Ney, 2008).
Following the work presented in (Zhang and Zhou,
2010), the Phrase-based Loglinear translation model
is used in this paper to accomplish the G2P task
with context independent modeling on the G2P map-



pings. The following steps are carried out to train the
G2P model:

e Tranform a source-language dictionary (e.g.
CMUdict! for English) into a parallel corpus,
which contains the source-side as words and
target-side as their pronunciations in phones.

e Split source-side words into separate letters for
the following processes to capture the align-
ment properties between grapheme and phones.
For example, word “jacket” is transformed into
“j acket’ as the source-side and its corre-
sponding target side is “JH AE K IH T” from
the CMUdict. Different alignment schemes can
then be learnt from these pairs (e.g. 2-to-1
alignments from “c k” to “K”).

e Divide the parallel corpus into training and tun-
ing sets. On the training set, perform word
alignment, PBSMT model and language model
training. Then on the tuning set, MERT is used
to obtain optimal feature weights in terms of
BLEU.

With the trained G2P model, input words can be
transformed into phone sequences by: 1) convert the
word into letters separated by spaces; 2) feed into
the tuned PBSMT model for decoding outputs. The
merit of this process is the ability of handing OOV
words with a limited dictionary size.

5 The Use of Phone Confusion Matrix
(PCM)

As depicted at the end of Section 2, the merit of
the PT system is the ability to incorporate source-
language phonetic information for better speech
translation. In this paper, we illustrate this concept
by allowing the MT module to access PCM informa-
tion, which represents the source-language phonetic
similarities and error-patterns of ASR. Therefore, it
is possible for the MT module to restore the errors
occurred in the ASR stage.

PCM has been used to represent the uncertainty
brought in by the recognition (Bouselmi et al.,
2005), which might because of phonetic similarity
or errors in ASR. It is usually extracted by aligning

"http://www.speech.cs.cmu.edu/cgi-bin/
cmudict
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the recognition outputs with transcriptions (Bertoldi
et al., 2008b; Jiang and Xu, 2009). In this paper,
it is extracted as follows from the word recognition
outputs:

e Convert both word recognition outputs and
their transcriptions into phones with the G2P
module.

e Align the two corresponding phone sequences
by dynamic programming, penalise on inser-
tion, deletion and substitution.

e Calculate the confusion value of phone p with
respect to phone ¢ as in 1:

Mpq

Conf(p,q) =
p

(1

where N, is the total number of phone p in tran-
scriptions, and M, is the times that phone p is
aligned with phone g. Thus, given /N phones,
by iterating phone p and ¢ though the entire
phone set, an N x Nmatrix is created. Note
that deletion of phones is also modeled in the
PCM with a special phone named *E P.S.

e For each phone p, the confusion values with
corresponding phones are then sorted in de-
creasing order to obtain the PCM.

With the generated PCM, input phone sequences
of MT are then enhanced into PCNs. As depicted
in Figure 2, for each of the phone p; in the phone
sequence pj . ..pPi—1PiPi+1 - - - Pn, the phone candi-
dates in PCM are in a vector [q1, g2, - - ., Gm), then
we add extra paths to allow the replacement of
phones in the vector with p;, and each edge is as-
signed with a weight from the confusion value calcu-
lated in equation 1. By iterating through all phones
in the input, we can obtain a PCN encoded with both
the original phone sequence and the PCM knowl-
edge. To adjust the size of the generated PCNs,
which are directly related to the computational com-
plexity, the whole process is controlled by a Confu-
sion Threshold (CT) parameter, which indicates the
lowest relative confusion value obtained in equation
1 of phone candidates compared with the original
phone p;. All phone candidates below CT is pruned
before feeding into the PCN construction process.
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Figure 2: Convert phone sequence into PCNs.

Both the development and test set are transformed
into PCNs, and the original PT system is re-tuned
by MERT with a new feature comes from equation
1, which is store on the edges of PCNs. Here we
call this system “Confusion Matrix Enhanced Phone
Translation” (CMEPT) for comparison.

6 Experiments and Results

6.1 Experimental Setup

Experiments are carried out on the English—Chinese
IWSLT? DIALOG task. The training corpus con-
tains 71,725 parallel sentence pairs, and it is used to
train both translation models and language models.
We choose a development set with 498 sentences
and a test set with 251 sentences from the available
DIALOG development sets, both of which contains
7 references, while the test set comes from 1-best
ASR outputs with a WER of 17.9%.

The baseline system is Moses (Koehn et al., 2007)
that works on word-level, and we presented our
PT and CMEPT systems that work on phone-level
for comparison. The G2P module is trained on
CMUdict and 101,872 entries are used for training
and 3,000 entries are used for tuning. PCM is ex-
tracted from 2,060 1-best outputs and transcriptions
of IWSLT English—Chinese DIALOG development
sets excluding our test set. We utilised various CT
parameters to construct different size of PCNs dur-
ing the experiments to examine the translation qual-
ity.

For our phone-level systems, we used the max-
imum source entry length 57 of converted phrase
table as the max-phrase-length parameter. We also
used a larger distortion limit (50) for the phone-
level systems and tried both stack decoding and cube
pruning in the decoding stage. For comparison, we
also tried different parameter settings for baseline

Mttp://iwslt2010.fbk.eu/
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| System | CT | BLEU | TER |
correct text - 34.86 | 43.52
Baseline PBSMT - 29.60 | 47.11
PT - 28.43 | 48.18
0.01 30.14 | 46.80
0.009 | 30.11 | 46.80
CMEPT 0.008 | 30.87 | 46.54
0.007 | 30.81 | 46.65
0.006 | 30.78 | 46.65

Table 3: Results of PBSMT with correct text, and base-
line PBSMT, PT and CMEPT systems with 1-best.

PBSMT and report the one with the best perfor-
mance .

6.2 Results

The experiments are reported in terms of BLEU and
TER (Snover et al., 2009). Note that the outputs us-
ing correct text for PBSMT is also showed for refer-
ence, and all other system uses 1-best ASR outputs
as the input.

Table 3 compares the performance of the optimal
baseline PBSMT and PT systems with different pa-
rameters, and CMEPT system with different CT val-
ues. As observed from the table, when using the
IWSLT corpus, the CMEPT system with CT value
0.008 accomplishes the best performance both in
terms of BLEU and TER. It outperforms the baseline
by 1.27 absolute (4.29% relatively) BLEU points
and 0.57 absolute (1.21% relative) TER points. It
also outperforms the PT system by 2.44 absolute
(8.58% relative) BLEU points and 1.64 absolute
(3.40% relative) TER points. The experiment re-
sults also show that for CT values from 0.006 to
0.01, the CMEPT system consistently outperform
both the baseline and PT systems. On the other
hand, the PT system performs significantly lower
than the baseline system by 1.17 absolute (3.95%
relative) BLEU points and 1.07 absolute (2.27% rel-
ative) TER points.

6.3 Discussion and Analysis

The results showed that the basic PT system did
not perform as well as the baseline PBSMT sys-
tem. This is as one may expect as the search space is
much larger because the model consists of phonetic
representations. Furthermore, the source vocabulary
contained the source language phone set (i.e. 39
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Figure 3: Example of PCN.

phone labels + 1 for deletions).

The CMEPT system was designed to incorpo-
rate additional phonetic information and its results
showed that it outperformed both the PT and base-
line PBSMT systems. This performance gain was a
direct result of allowing MT to access the phonetic
information on the source-side.

To illustrate how the CMEPT system works bet-
ter than the baseline, we provide an example that
contains a recognition error. For this sentence, the
correct transcription is “could you please speak into
the microphone” and the 1-best output is “could you
please speak to him to the microphone”. The dif-
ference between “into” and “to him to” results in
the translation of baseline to be “i& #| fil & 2%
o, 3T — 5 (lit: please go him microphone closer),
which is incorrect in this case. However, by using
the constructed PCN in Figure 3, which is a sub-
part for “to him to”, the MT decoder choose the path
with red circles to output “iF ¥ & Z X 1§
(lit: please to microphone speak), which is the ideal
translation in this case. This result is because a sub-
part of the graph recovered “into” with the phones
“IHN T AH”. Thus, the PCN allows the MT system
to recover from ASR errors based on phonetic infor-
mation, which is more straight-forward and easy to
integrate than word-level systems.

7 Conclusion and future work

In this paper, we investigate the potential of us-
ing phones as the basic information sharing unit
between ASR and MT for a tighter integration in
speech translation. G2P modules are used to trans-
form an original word-level PBSMT system into
a phone-level system and PCM is encoded in the
phone sequences as PCNss to take into account phone
similarities and ASR error-patterns. The approach
described was evaluated using the data from the
IWSLT English—Chinese DIALOG task.

The system performed significantly better in
translation quality (1.27 absolute BLEU points) than
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the baseline PBSMT system which indicates that
phonetic information can improve speech translation
systems. However, it should be noted that the BLEU
score does not highlight all of the strengths of this
approach, in particular:

1. The system has the potential (with the configu-
ration of phone recogntion on the source-side)
to use only one single language model, avoid-
ing the problems associated with mismatched
ASR and MT models.

2. The MT system can recover from ASR errors,
as opposed to translating an ASR error into a
completely incorrect word.

3. Words that cannot be translated can have their
original phone sequences directly synthesised
using a target language voice.

In the future, we plan to incorporate more fea-
tures into the phone-to-word MT architecture and
an integrated tunning approach for both ASR and
MT on larger data sets. For ASR outputs, we also
plan to investigate the benefits of using phoneme
graphs instead of single best phone sequences. Fur-
thermore, due to the decoding inefficiency implied
in the phone input structure, it is meaningful to take
more consideration with a more effective decoding
algorithm for this task.
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