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Abstract

In this paper, we introduce a novel translation 
system combination framework using a text-
to-text generation technique. We are moti-
vated by the observation that for many transla-
tion sentences, some of their constituents may 
be poorly translated, while others may be well 
translated. Moreover, it is often the case that 
other systems can provide good alternatives to 
problematic constituents. In our approach, the 
system constructs paraphrase lattices repre-
senting all possible hypotheses for the same 
source sentence. We then use a text-to-text 
generator operating on those lattices to gener-
ate those hypotheses. We filter ungrammatical 
combinations using a feature-based lexical-
ized tree adjoining grammars (FB-LTAG) and 
then use a TER-based metric to compute a 
consensus score function to select the best 
translation among grammatical hypotheses. 
The system combination gains 1.38 BLEU 
points over the best individual system. 

1 Introduction 

Recently many MT combination approaches have 
been presented. Consensus network (CN) decoding 
(Matusov et al., 2006; Rosti et al., 2007; He et al. 
2008; Rosti et al. 2010; Leusch and Ney, 2010) is 
one of the most successful approaches, in which 
the words in all hypotheses are aligned with a 
backbone hypothesis. A word-based lattice is then 
formed with word alternatives, including nulls, 
each with associated scores from voting or other 
confidence scores. Then, the combined translation 
sentence(s) can be produced with the same word 
order as the backbone by selecting the path with 
the highest score(s) along the lattice.  

In this paper, rather than use the CN decoding 
framework, we borrow the idea of text-to-text gen-
eration, which has been used successfully for sen-
tence fusion as part of text summarization 
(Barzilay and McKeown 2005; Marsi and Krahmer 
2005; Fillapova and Strube 2008), to do our trans-
lation combination. In text-to-text generation, a 
sentence fusion is produced from many input sen-
tences by selecting phrases that appear in the ma-
jority of input sentences; it is typically used in 
summarization and questions answering. To main-
tain the syntactic quality of the fused sentence, 
syntactic constraints are applied when aligning 
constituents during the construction of the fusion 
lattice. Our motivation for using this strategy is 
based on the observation that for many translation 
sentences, even though some of their constituents 
are poorly translated, other constituents are well 
translated. Furthermore, frequently other systems 
can provide good alternatives for problematic con-
stituents. We propose replacing those problematic 
phrases with good translations, while retaining the 
same overall syntactic structure for the sentence. 
Table 1 provides an example from our experiment 
to illustrate the approach. 

We use a phrase-based lattice structure to which 
text to text generation can be applied. Here the 
definition of “phrase” is word, linguistic constitu-
ent or clause. We call the lattice a paraphrase lat-
tice because each arc represents paraphrases of a 
target phrase. In order to maintain a well-formed 
syntactic structure of the generation result, we re-
quire the paraphrases in the lattice to be linguistic 
constituents with the same phrase type. This syn-
tactic constraint takes into account that even if 
paraphrases have the same meaning, the substitu-
tion of one for another is nonetheless inappropriate 
when their original syntactic contexts are different. 
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This results in a well-formed syntactic structure. In 
addition, to ensure the grammatical correctness of 
generated hypotheses, for our work on the lan-
guage pair of Chinese-English, we also propose a 
grammatical error detector for English based on 
feature-based lexicalized tree adjoining grammars 
(FB-LTAG) to filter out ungrammatical generated 
hypotheses. In our experiment, 14% generated hy-
potheses are detected to have grammatical errors 
and thus are filtered out.  

3. For all linguistic constituents of each backbone, 
collect their corresponding paraphrases from other 
backbones. Note that every single word is also re-
garded as a linguistic constituent/phrase in this 
work. Using Fig 1 as the example, “instead of rice” 
is the paraphrase of “other than rice”. 

 

4. Construct a paraphrase lattice for each backbone 
in the form of a target-to-target phrase table based 
on the collected paraphrases, such as Fig 2, the 
paraphrase lattice for the sys1 translation in Fig1. 

Given a pool of syntactically valid generated 
hypotheses, our goal is to select the best translation 
among them. We use a translation edit rate (TER)-
based metric that measures consensus between the 
hypothesis and all system outputs to select the best 
translation among valid generated hypotheses.  

 

5. Decode those paraphrase lattices using a stan-
dard decoder to generate all possible target lan-
guage realizations.  
 

6. Filter out ungrammatical generated hypotheses 
using a grammatical error detector. We then place 
every backbone’s valid generated hypotheses in a 
single hypothesis pool. 2 An Example of  Generated Hypothesis 

 

7.  From the pool, select the best translation using a 
scoring function. In this work, we tried a TER-
based score metric, as well as TER in combination 
with a language model. 

Source Sentence: 
,

, , ,

Reference Sentence: 
The Taliban in Afghanistan have kidnapped 23 South Ko-
rean hostages and fixed sunset today as the deadline, de-
manding that South Korea withdraw its troops from 
Afghanistan or they would kill the hostages . 

 
In the following sections, we describe steps 3-7. 

4 Paraphrase Extraction
A system translation  
Afghanistan 's Taliban group abducted 23 South Korean 
hostages , and set the deadline today , calling for the with-
drawal of troops from South Korea , otherwise they will 
kill the hostages . 

Given a backbone linguistic phrase, b, our aim is to 
extract every valid paraphrase-pair (b,h), in which 
h is a linguistic paraphrase of b, drawn from other 
backbones. There are several conditions for (b,h): One generated hypothesis  

Afghanistan 's Taliban group abducted 23 South Korean 
hostages , and set the deadline today , calling for South 
Korea to withdraw its troops from Afghanistan , other-
wise they will kill the hostages . 

 

 Because of the consideration of efficiency based 
on the amount of generated hypotheses, we limit 
the maximum word length of b and h to be 15 
words. Table 1.  An example of generated hypothesis. The gener-

ated hypothesis is the system translation except  that the entire 
VP (bold part) of that system translation is replaced with an-
other, better, VP provided by another system (not shown here). 

 

 b and h individually satisfy the standard defini-
tion of bilingual word alignments (Och and Ney 
2004); that is for a b or h, there exists a source 
phrase f such that the phrase pair (b,f) or (h,f) is 
consistent with the word alignment points. In other 
words, using e to represent b or h, there exists a 
phrase pair (e,f) which satisfies the following con-
straints:    

3 System Overview 

Our text-to-text generation procedure for the trans-
lation combination involves the following steps: 

 
1. Collect the hypotheses from multiple systems 
for an input source sentence. In this work, the 
source-to-target word alignments are available 
from the individual systems. For a given sentence, 
every system’s translation is labeled as one back-
bone. 

 fxAxeee ii ),(:
and  eyAfyff jj ),(:
and   Afeffee jiji ),(:,

where e  is a word within e, fi j is a word within f 
and A is a set of word alignment points. The heu-
ristic allows unaligned words to be included at the 
boundaries of the source or target phrases. 

 

2. Use a syntactic parser to parse all backbones.  
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b and h align to the same source phrase f, which What      I      ate      is      noodles      other      than      rice
means there exists an f such that both (b,f) and (h,f) 
are consistent with the word alignment points. 

   other than rice 
What I ate

   instead of rice  

b and h have the same phrase type, such as VP, 
NP, PP, or other categories. 

Fig 2 Paraphrase lattice of sys2 translation 
 

Note that in this phrase table, only the last entry is 
generated by step 3. The remaining entries were 
generated by step 4. 

 

h must use different words than the backbone 
phrase b. Note that not all backbone phrases have a 
paraphrase; the other system translations may use 
the same phrase. 6 Realization of the Paraphrase Lattice  

5 Paraphrase Lattice Construction  Any standard decoder could be used to generate all 
fused hypotheses. The generated hypotheses from 
sys1 translation (backbone) are The lattice is represented by a target-to-target 

phrase table consisting of paraphrases and the 
backbone word order. Given phrase-table format, a 
standard decoder is able to decode the lattice. 
Given the backbone and all of its paraphrases, a 
target-to-target phrase table is constructed using 
the following steps: 

 
What I ate is noodles other than rice. 
What I ate is noodles instead of rice. 
 
The generated hypotheses from the sys2 translation 
(backbone) are 
 

 I ate noodles other than rice. 
1. Annotate each word in the backbone with its 

word position information. Using sys1 in Fig 1 
as an example, the backbone B is modified, re-
sulting in B’ - “What_1 I_2 ate_3 is_4 noo-
dles_5 other_6 than_7 rice_8”. This modified 
backbone is our decoder input. 

I ate noodles instead of rice. 
 
Because paraphrases have the same phrase type, 
the parse of each realization can be obtained by 
modifying the backbone’s parse: replacing the 
parses of backbone’s phrases with the parses of the 
corresponding paraphrases. 

 

2. For each phrase b of the backbone, annotate 
every word in b with word position information, 
resulting in b’, such as “other_6 than_7 rice_8”. 7 Grammatical Error Filtering  

 

3. For each phrase b of the backbone, we collect 
every paraphrase h of it to add (b’, h) as an entry 
to our target-to-target phrase table.  

Even though syntactic constraints are applied dur-
ing paraphrase construction, it is still possible that 
we generate ungrammatical hypotheses, including 
sentences with agreement or verb mode errors. For 
example, 

 

4. For each phrase b of the backbone, we add (b’, b) 
as an entry to our target-to-target phrase table.  
  

sys1:  The young student plays basketball 

I      ate      noodles      instead      of      rice 

What      I      ate      is      noodles      other      than     rice

(I) (is)  (eat)  (noodle)  (and)  (is not)  (rice)

sys1: 

sys2: 

source: sys2: Many young students play basketball          
 
Assuming “student” and “plays basketball” are 
paraphrases of “students” and “play basketball”, 
respectively, our generator could provide the fol-
lowing fused hypothesis:  

Fig 1. Word alignment of a source sentence and its two hy-
potheses 
 

Taking the example shown in Fig. 1, the text-to-
text phrase table for sys1 translation (backbone) is 
shown as follows: 

 

fused hyp: Many young student play basketball 
 

The fused hypothesis then has the agreement prob-
lem between “Many”, “student” and “play”.  

(What_1,What) (I_2,I) (ate_3,ate) 
7.1 Background(I_2 ate_3, I ate) (What_1 I_2 ate_3, What I ate) 

(is_4,  is) (noodles_5, noodles) (other_6, other) 
We briefly introduce the FB-LTAG formalism and 
XTAG English grammar in this section. 

(than_7, than) (rice_8, rice)    
(other_6 than_7 rice_8, other than rice) 
(other_6 than_7 rice_8, instead of rice) 
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7.1.1 Feature-Based Lexicalized Tree Adjoin-
ing Grammars 

ciated with at least one AVM. For example, Fig. 5 
shows the simplified elementary trees of “asked”. 
We can see that “asked” specifies its role to be a 
verb in an indicative sentence (ind), and it should 
be followed by one indirect object (an NP) and one 
direct object (a VP) in order. In addition, the direct 
VP object is restricted to be an infinitive verb 
phrase (inf). 

FB-LTAG is based on tree adjoining grammar 
(TAG)  (Joshi et al., 1975). The TAG formalism is 
a formal tree rewriting system, which consists of a 
set of elementary trees, corresponding to minimal 
linguistic structures that localize the dependencies, 
such as specifying the predicate-argument structure 
of a lexeme. Elementary trees are divided into ini-
tial and auxiliary trees. Initial trees are those for 
which all non-terminal nodes on the frontier are 
substitutable, marked with “ ”. Auxiliary trees are 
defined as initial trees, except that exactly one 
frontier, non-terminal node must be a foot node, 
marked with “*”, with the same label with the root 
node. Two operations - substitution and adjunction 
are provided in TAG to adjoin elementary trees. 
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Fig 5 Elementary trees for “asked” 

FB-LTAG has two important characteristics: 
First, it is a lexicalized TAG. Thus each elemen-
tary tree is associated with at least one lexical item. 
Second, it is a feature-based TAG (Vijay-Shanker 
and Joshi 1988). Each node in an elementary tree is 
constrained by two sets of feature-value pairs 
which are represented by attribute value matri-
ces(AVMs). One AVM (top AVM) defines the 
relation of the node to its super-tree, and the other 
AVM (bottom AVM) defines the relation of the 
node to its descendants. Because of the limited 
space, we use Fig3 and Fig4 to illustrate the substi-
tution and adjunction operations within the unifica-
tion framework respectively. 

7.2 Grammatical Error Detection

Our procedure for syntactic error detection in-
volves decomposing each sentence hypothesis 
parse tree into elementary trees, associating each 
elementary tree with AVMs through look-up in the 
XTAG grammar, and reconstructing the original 
parse tree out of the elementary trees using substi-
tution and adjunction operations along with unifi-
cation of associated AVMs.    

When unification of the AVMs fails, a gram-
matical error has been detected and its error type is 
identified by the corresponding feature in the 
AVM.  
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7.2.1 Decomposing to Elementary trees

Given a translation sentence parse, we decompose 
it to multiple elementary trees using Chen and 
Vijay-Shanker’s (2000) tree extraction procedure. 
After that, each lexical item in the sentence will be 
assigned one elementary tree.  

 
 
Fig 3 Substitution  of FB-LTAG  Fig 4 Adjunction of FB-LTAG 

7.1.2 XTAG English grammar 

XTAG English grammar (XTAG-group 2001) is 
designed using the FB-LTAG formalism, released 7.2.2 Associating AVMs with Elementary 

trees
1 

by UPENN in 2001. The range of syntactic phe-
nomena that can be handled is large. It defines 57 
major elementary trees (tree families) and 50 fea-
ture types, such as agreement, case, mode (mood), 
tense, passive, etc, for its 20,027 lexical entries. 
Each lexical entry is associated with at least one 
elementary tree, and each elementary tree is asso-

One elementary tree can have multiple possible 
AVMs associated with it. For example, for the 
verb “are”, one of its elementary trees is associated 
with three different AVMs, one for 2nd person sin-
gular, one for 2nd person plural, and one for 3rd 
person plural. Unless we can reference the context 
for “are” (e.g., its subject) we are not sure which                                                            

1 http://www.cis.upenn.edu/~xtag/gramrelease.html 
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AVM should be used in the reconstruction. So we 
postpone this decision until later in the reconstruc-
tion process. At this point, we associate and record 
every possible AVM association. Taking the sen-
tence – “Many young student play basketball” as 
an example, one set of AVM associations for the 
sentence’s extracted elementary trees is as follows: 

sN

j
ij

i
s EETERE

1
),(minarg    

iN
ShiftSubDelIns

ij EETER ),(  

Where Ei and Ej are two different system transla-
tions, Ni is the length of Ei, Ns is the number of 
systems. In our text-to-text framework, every sys-
tem translation is regarded as a backbone so it is 
not necessary to do the backbone selection. How-
ever, their idea of using TER as consensus scoring 
function motivates us to use it to select the best 
generated hypothesis among our hypothesis pool. 
In addition, we slightly modify the TER computa-
tion as  

NP

many NP*
pl{many}:agr_num

NP

young NP*

1:agr_num
1:agr_num
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2:agr_num

2:agr_num
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S
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6:mode
5:agr_num

5:agr_num
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7:agr_num

7:agr_num
tball}sing{baske:agr_num

nt}sing{stude:agr_num

pl{many}:agr_num
pl{many}:agr_num

N
ShiftSubDelIns

ij EETER ),(
 where N can be any fixed number larger than the 

maximum length of hypotheses in the pool, making 
the value of TER to be less than 1. The modifica-
tion is based on the consideration that while calcu-
lating a hypothesis’s consensus, the traditional 
TER would slightly benefit the longer hypotheses 
and harm the shorter ones. Through this modifica-
tion, the consensus degree is based only on the 
number of translation edits, which fairly treat hy-
potheses with different lengths. 

 
Fig 6 “Many young student play basketball”’s elementary trees with 
one possible AVMs association. (simplified version) 

7.2.3 Reconstruction Framework

Once the elementary trees are associated with 
AVMs, they will be used to reconstruct the original 
parse tree through substitution and adjunction op-
erations, illustrated via the dotted lines in Fig 6, to 
decide if there is any conflict between their AVMs 
values. It is during this reconstruction process that 
we detect errors. When a conflict occurs, it will 
cause an AVM unification failure, reflecting a spe-
cific grammatical error.  

Incorporating system weights, the resulting con-
sensus score function is as follows: 

sN

j
ijji EETERWEConsScore

1

)),(1()(  

 )(maxarg i
i

s EConsScoreEAs we stated in Section 7.2.2, sometimes we are 
not sure which AVMs for an elementary tree 
should be used in the reconstruction. So our strat-
egy is to try every possible AVM in order to get 
the AVM that cause the minimal number of gram-
matical errors. 

where Ns is the number of systems; Ej is a system 
translation; Ei is a generated hypothesis, and Es is 
our selection of the best translation. Wj are system 
weights, which can be tuned through MERT algo-
rithm. In our experiment, we also tried incorporat-
ing with the language model and 
word penalty of . Their weights are tuned using 
MERT algorithm. 

In our experiment, 14% generated hypotheses 
were detected as having grammatical errors and 
were thus filtered out. 

)( iEConsScore

iE

8 Hypothesis Selection  
9 Experiment

The TER metric is widely used in the backbone 
selection among system outputs (Rosti et al., 2007; 
Rosti et al. 2010). In Rosti et al (2007)’s backbone 
selection, the system translation resulting in the 
lowest average TER score when aligned against all 
other system translations is selected as the back-
bone Es as follows: 

2Six systems from the DARPA GALE 2008  
evaluation were used in the experiments to demon-
                                                           
2 The six systems are A: NRC(phrase-based), B: RWTH-
PBT(phrase-based), C: RWTH-PBT-AML(phrase-
based+source reordering), D: RWTH-PBT-JX(phrase-
based+Chinese word segmentation), E: RWTH-PBT-
SH(phrase-based+source reordering+rescoring) and F: SRI-
HPBT(hiero) 
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strate the performance of our combination on Chi-
nese-to-English MT tasks. We used a tune dataset 
and test dataset for our experiment, each of which 
is composed of 422 newswire sentences. Every 
source sentence is provided along with four target 
references. 

In this work, we use Stanford’s syntactic parser3 
to parse system translations. Our English language 
model was trained from 2 billion words. (1-gram# 
=374165, 2-gram#=9331078, 3-gram#=48944615) 
The experimental results are shown in Table 3. 
TTG_filter and TTG_nofilter individually repre-
sent the text-to-text generation model with and 
without grammatical filtering as described in Sec-
tion 7. TER represents using TER-based consensus 
score function described in Section 8 to select the 
best generated hypothesis. TTG_filter+TER+LM 
represents text-to-text generation with grammatical 
filtering used with TER and the language model 
with word penalty to select the best generated hy-
pothesis from the pool. 
 

 tune dataset test dataset 
 BLEU TER BLEU TER 
System A 33.97 59.97 32.99 59.31 
System B 31.77 64.63 27.95 58.13 
System C 34.74 58.99 34.40 58.09 
System D 33.49 62.17 32.96 62.04 
System E 35.33 59.91 34.64 58.67 
System F 34.15 59.20 34.13 58.97 
TTG_nofilter -TER 36.73 57.33 36.07 56.63 
TTG_filter -TER 36.70 57.34 36.02 56.70 
TTG_filter -TER +LM 36.50 57.84 35.71 57.20 

Table 3 Experimental results 
 

Observing results for test in table 3, for TTG_filter 
-TER, the BLEU score is higher than the best sin-
gle system by 1.38 points while its WER score is 
lower than the best single system by 1.39 points, 
which is a comparable performance with many 
state-of-the-art CN decoding-based variations in 
the combination. 

We found the performances of TTG_filter-TER 
and TTG_nofilter-TER are almost the same for 
both BLEU and TER, but we wondered whether 
BLEU or TER can really reflect the difference in 
their translation quality; ungrammatical problems 
are usually caused by very few words but some-
times they can result in misunderstanding of the 
entire sentence, especially when those mistakes are 
caused by verbs. Therefore we carried out a human 
evaluation task on Amazon Mechanical Turk 

                                                           
3 http://nlp.stanford.edu/software/lex-parser.shtml 

(AMT) to compare the translation sentences pro-
duced by TTG_filter-TER and TTG_nofilter-TER. 

32 sentences out of 422 sentences of the tune 
dataset and 37 sentences out of 422 sentences of 
the test dataset produced by TTG_filter-TER and 
TTG_nofilter-TER are different. So we asked na-
tive English speakers on AMT to compare only 
those translation pairs. The judgment is based on 
two dimensions separately: fluency and ade-
quacy. The fluency evaluation asked Turk users 
to judge which translation between the two is more 
fluent, regardless of the correct meaning of the 
source, while the adequacy evaluation measures 
which translation between the two conveys the 
more correct meaning in the source sentence, even 
if the translation is not fully fluent. For adequacy, 
each comparison (hit) consists of one correct 
translation reference and the translation pair. For 
fluency, only the translation pair is provided. 
Each comparison for either adequacy or flu-
ency task is done by 5 different native English 
speakers and the translation with more votes wins.  

 
 tune dataset test dataset 
 better  

flu 
Better 
ade 

better 
flu 

better 
ade 

TTG_nofilter-TER 47% 41% 38% 41% 
TTG_filter-TER 53% 59% 62% 59% 

Table 4 Experimental results of human evaluation 
 
The results in Table 4 show that the perform-

ance of TTG_filter-TER is better than 
TTG_nofilter–TER from both the adequacy and 
the fluency perspectives. 

It is interesting that integration with the lan-
guage model (TTG_filter-TER+LM) performs 
worse than TTG_filter-TER. We suspect that our 
text-to-text generation framework has already con-
sidered syntactic constraints and thus, taken ac-
count of grammatical correctness. The fact that the 
weight of our language model tuned using MERT 
algorithm is negative could support this suspicion. 

In our experiment (six translation systems), 
85% of the realizations for a given backbone’s 
paraphrase lattice will generate less than 300 fused 
hypotheses. So we set 300 as a threshold for the 
generation of hypotheses and generate up to 300 
for each original system backbone. We found, for 
our data, that the average number of generated hy-
potheses for one backbone is around 69. After fil-
tering ungrammatical hypotheses, as described in 
Section 7, there are, on average, 59 generated hy-

551



potheses remaining for one backbone, which 
means for a given source sentence, around 352 hy-
potheses are generated. How to improve efficiency 
is our next step for future work.  

10 Analyses of Generated Hypotheses 

In this section, we highlight some commonalities 
and differences between a CN approach and our 
generation work by taking a closer look at the fol-
lowing two examples. Assume A, B, A*, B*, C are 
five different phrases and A* and B* are the para-
phrases of A and B respectively. 
 
Example1.    
sys1:  A   B       sys2:  A* C B* 
All eight generated hypotheses would be as follows with 
the top line generated using the backbone- sys1 and the 
bottom generated using another backbone- sys2. 
A   B,               A  B*,         B*  A,        A*  B*,   
A* C   B*,       A* C  B,      A  C  B*,   A   C   B   
 
Example2.    
sys1:  A   B       sys2:  B* C  A*              
All eight generated hypotheses would be 
A   B,               A  B*,        B* A,        A* B*,  
B* C   A*,       B* C  A,      B  C  A*,     B   C   A 
                   

Under the assumption that every word within a 
phrase is aligned one-to-one with a word within the 
corresponding paraphrase, for example 1, the CN 
will also contain the same eight hypotheses. Ob-
serving sys1- “A  B” and the fused hypothesis- “A   
C   B”, we see that  C has been inserted between A 
and B. This is reasonable, because from sys2- “A* 
C  B*”, we know C can be inserted between A* 
and B* and from this, can infer that C can be in-
serted into A and B in that order. 
    But, for example 2, in addition to the eight gen-
erated hypotheses, the CN will contain one of the 
hypotheses- “C  A  B”, “A  C  B” and “A B C”. 
This is unreasonable because C is only inserted 
between B* and A* and thus we can only infer that 
C can be inserted into B and A in that order. A CN 
allows this possibility and relies on the language 
model to avoid generating these types of sentences. 
In contrast, our paraphrase lattice directly avoids 
the possibility during its construction. Consider an 
English example where C = “of”. We can say “the 
President of the United States” and “The United 
States President”, but we cannot say “The United 
States of President”.  

CN decoding can be regarded as a word-based 
text-to-text generation framework while ours is a 
linguistic, phrased-based text-to-text generation 
framework. CN’s large search space enables it to 
have a higher chance to include the best translation 
possibility; but, on the other hand, the large search 
space also raises the risk of generating poor-
syntactic hypotheses. The syntactic quality of its 
realizations mainly relies on the large N-gram lan-
guage model. Our proposed paraphrase lattice with 
syntactic constraints has a smaller search space, 
which could lower the chance to select the really 
best translation possibility, but the syntactic quality 
of all realizations within the search space is rela-
tively higher.  

11 Related Work

Recently there are also a few phrase-based combi-
nation approaches, which can be roughly classified 
into two types: 1. The phrase lattice is built in the 
form of a phrase table by aligning phrases of all 
hypotheses with the source phrases (Rosti et al., 
2007; Huang and Papineni 2007), for further re-
decoding the source sentence or 2. The phrase lat-
tice is built by aligning phrases of all hypotheses 
with the phrases of the backbone sentence hy-
pothesis, such as in (Feng et al., 2009) and our 
work in this paper. Feng et al., (2009) adopt a 
strategy of extending the traditional confusion 
network to be a phrase-based lattice and then de-
coding the lattice to obtain the combination result.  
The lattice is constructed by incrementally adding 
alignment hypotheses pairs, which are obtained 
through a phrase-pair alignment procedure consid-
ering several conditions of inserting null words. 
The main differences between our work and Feng 
et al., (2009)’s work are that we define our phrases 
to be linguistic phrases, we apply syntactic con-
straints in the phrase-pair extraction procedure in 
order to preserve the syntactic structure of the 
backbone and we do not insert null words during 
the lattice construction; critically, we take account 
of grammatical quality by filtering out ungram-
matical generated hypotheses. And finally, our se-
lection of the best hypothesis is postponed to the 
time after realization in order to use a TER-based 
metric as the consensus score function, in contrast 
to their selection during the lattice decoding.  
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12 Conclusion

Our text-to-text generation approach for system 
combination features the construction of a para-
phrase lattice representing paraphrases of linguistic 
phrases from a backbone hypothesis sentence. 
Through the decoding of the paraphrase lattice, we 
produce all possible hypotheses. A new FB-
LTAG-based English grammatical error detector 
further filters out ungrammatical hypotheses, and a 
TER-based consensus scoring against all system 
translations is then used to select the best hypothe-
sis from the pool. Our performance shows the text-
to-text generation strategy is a promising and com-
petitive direction for translation combination. 

13 Future Work 

Improving the efficiency of our approach is one 
topic for future work. Leusch and Ney (2010) gen-
erate 200-best list for advanced re-ranking in their 
CN framework. It motivates us to investigate the 
possibility of utilizing an N-best list approach: by 
attaching each phrase with a simpler consensus 
score, translation probability or paraphrase prob-
ability (Bannard and Callison-Burch 2005) in the 
paraphrase lattice, one can generate N best hy-
potheses for later TER-based selection. 

Relative to the efficiency issue, on the other 
hand, our text-to-text generation approach provides 
the parse of every grammatical generated hypothe-
sis. This enables further advanced rescoring proc-
esses, such as checking if the word dependency 
relations in the source sentence are preserved in 
each generated hypothesis. This is another direc-
tion for future work. 
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