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Abstract 

State of the art phrase-based statistical 
machine translation systems typically 
contain two features which estimate 
the “forward” and “backward” 
conditional translation probabilities for 
a given pair of source and target 
phrase. These two  “relative 
frequency” (RF) features are derived 
from three counts: the joint count of 
the source and target phrase and their 
marginal counts. We propose to “un-
pack” these three statistics, making 
them  independent “3-count” features 
instead of two RF features. In our ex-
periments, the 3-count features per-
form better than the RF ones in three 
of four systems we tested. By trans-
forming and generalizing these 3-count 
features slightly, further improvements 
are obtained. Furthermore, under sev-
eral different experimental conditions, 
we compare 3-count and generalized 
3-count features to new features de-
rived from Kneser-Ney smoothing, to 
a new low-frequency penalty feature, 
and to several known smooth-
ing/discounting schemes. Generalized 
3-count performs similarly to or better 
than all of the smoothing methods ex-
cept modified Kneser-Ney. In our ex-
periments, the best phrase table (not 
language model) smoothing yields 
+0.6-1.4 BLEU.  

1 Introduction 

The translation model component of state of the 
art phrase-based statistical machine translation 

(SMT) systems (the “phrase table”) consists of 
conditional probabilities for phrase pairs ob-
served in the training data. However, estimation 
of these probabilities is hindered by data sparse-
ness; thus, phrase table smoothing techniques are 
often applied (Foster et al., 2006). The choice of 
smoothing technique for phrase tables often has a 
larger impact on performance than other aspects 
of a statistical machine translation system.  

This paper is originally motivated by the ob-
servation that there is something strange about 
the way in which the translation model (TM) 
component of phrase-based SMT systems is of-
ten computed. The two translation probabilty 
features are estimated with  “relative frequency” 
(RF) formulas that employ three counts: the joint 
count of the source and target phrase, and the 
marginal counts for the source phrase and the 
target phrase. Why wouldn’t we use the three 
statistics that yield relative frequency estimates 
as  independent features instead of using them to 
derive two RF features? We will call the re-
placement of an SMT feature function with fea-
tures consisting of the statistics from which it is 
derived the “unpacking” of the feature function.  

The second motivation for this paper is the 
comparison of phrase table smoothing tech-
niques. Apart from (Foster et al., 2006), little has 
been published on discounting and smoothing 
applied to phrase tables. System descriptions for 
evaluations like WMT, NIST, or IWSLT often 
mention one smoothing technique that was used 
in a system, but not why it was chosen instead of 
others. In addition to the new techniques de-
scribed in this paper, the invention of the low-
frequency indicator features (Mauser et al., 2007) 
postdated the (Foster et al., 2006) paper; it is of 
interest to compare these new techniques to the 
ones in that paper. Furthermore, today’s state of 
the art phrase-based systems, including the one 
that serves as the baseline in the experiments 
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described here, perform considerably better than 
the one in (Foster et al., 2006); the conclusions 
in that paper might be almost irrelevant to cur-
rent systems. Thus, we think it is time to carry 
out a new experimental comparison of a variety 
of smoothing techniques. 

The remainder of this paper is organized as 
following. Section 2 will introduce some existing 
smoothing techniques. In section 3, we will un-
pack and transform the two RF feature functions 
and Kneser-Ney phrase table smoothing. Section 
4 is the experiments and discussion. Section 5 
ends the paper with conclusion and future work. 

2 Existing Smoothing Techniques 

The phrase table consists of conditional probabil-
ities of co-occurrence for source-language phras-
es s and target-language phrases t.  “Relative 
frequency” (RF) estimates for these probabilities 
are obtained from a phrase pair extraction proce-
dure applied to a bilingual training corpus 
(Koehn et al., 2003). Let c(s) be the count of a 
source phrase s, c(t) the count of a target phrase 
t, and c(s,t) the number of times s and t are 
aligned to form a phrase pair.  

Relative frequency (RF) estimates of “for-
ward” probability PRF(t|s) and “backward” prob-
ability PRF(s|t) are 
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These RF estimates are often combined with 
“lexical weighting” (LW) estimates of the same 
probabilities PLW(t|s) and PLW(s|t), based on co-
occurrence counts of the individual words mak-
ing up s and t. Thus, the TM score is typically of 
this form (Och and Ney, 2002):  

 
STM = 1×log[PRF(t|s)]+ 2×log[PRF(s|t)]+ 
                                                                      (3) 
          3×log[PLW(t|s)]+ 4×log[PLW(s|t)].  

 
The λ’s are often estimated by the minimum er-
ror rate training (MERT) algorithm (Och, 2003).  
    For the following two, the implementation 
details are as in (Foster et al., 2006).   

Good-Turing: observed counts c are modified 
according to the formula (Church and Gale, 
1991): 

ccg nncc /)1( 1+
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where cg is a modified count replacing c in sub-
sequent RF estimates, and nc is the number of 
events having count c.  

Kneser-Ney (modified): an absolute discount-
ing variant with 
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Here, n1+(*,t) is the number of unique source-
language phrases t is aligned with; n1+(s,*) has 
an analogous definition. PKN(t|s) is defined sym-
metrically. Kneser-Ney gives a bonus to phrase 
pairs (s,t) such that s and t have been aligned to 
many different phrases. Modified Kneser-Ney 
defines different discounts D depending on the 
value of c(s,t). We used “KN3”, where D1 is 
used when c(s,t) = 1, D2 when c(s,t) = 2, and D3 
when c(s,t)  3. Di values can be tuned or set by 
formula (we tried both without seeing a differ-
ence).  

Low-Frequency Indicator (LF): (Mauser et 
al., 2007) introduced these low-frequency fea-
tures. Let  
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This feature “punishes” low-frequency phrase 
pairs. In the paper (Mauser et al., 2007), three 
different low-frequency features were used, with 
the three values of τ lying in the interval between 
0.9 and 3.0 (the system in the paper allows frac-
tional values of c(s,t)).  

3 Unpacking and Transforming Fea-
ture Functions 

Taking just the two RF features from Equation 
(3), we have: 
 
SRF = 1×log[PRF(t|s)]+ 2×log[PRF(s|t)] 
 
       = 1×(log[c(s,t)]–log[c(s)])+ 2×(log[c(s,t)]–log[c(t)]) 
 
       = ( 1+ 2)× log[c(s,t)]– 1×log[c(s)]– 2×log[c(t)]. 
 
This is a combination of three terms, with an ad-
ditive constraint. Wouldn’t it be simpler to fit the 
following expression:  

 
SRF = 1×log[c(s,t)]+ 2×log[c(s)]+ 3×log[c(t)]? (7) 
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MERT can still choose λ’s that are equivalent to 
using the two RF estimates. In principle, nothing 
is lost and a degree of freedom, achieved by 
dropping the additive constraint, is gained (but 
this extra degree of freedom may lead to search 
errors). 

The obvious objection is that this “3-count” 
replacement for the two RF features doesn’t 
model probabilities. However, the inclusion of 
PRF(t|s) among features can’t be justified proba-
bilistically either. Originally, the objective func-
tion for SMT was derived via Bayes’s Theorem 
as P(s|t)×P(t) (Brown et al., 1993). The inclusion 
of P(t|s) happened later – it’s a heuristic that de-
fies Bayes’s Theorem (Och and Ney, 2002). 

Once the forward and backward estimates 
have been unpacked into their three constituent 
counts, these counts can be transformed and ge-
neralized slightly by adding or subtracting con-
stants (while ensuring the logarithm is defined). 
Therefore, we have two different log-linear fea-
ture sets obtained from the three basic statistics: 

 
3-count: 
       {log[c(s,t)], log[c(s)], log[c(t)]} 
 
Generalized 3-count:  
       {log[c(s,t)+k1], log[c(s)+k2], log[c(t)+k3]};        
        where k1, k2, k3> -11. 
 
“Generalized 3-count” is related to two different 
forms of simple discounting, absolute discount-
ing (AD) and denominator discounting (DD). 
Discounting is based on removing probability 
mass from observed events to account for events 
that might have been observed, but weren’t. The 
simplest form of AD involves subtracting a fixed 
amount from co-occurrence counts in the RF 
formula: e.g., PAD(s|t) = [c(s,t) – D]/c(t), where 
0<D<1. AD has many variants and a long history 
of being discussed in the literature (Foster et al., 
2006; Chen and Goodman, 1998). 

DD is another simple form of discounting. 
Here, one shrinks the RF fraction by adding a 
constant to the denominator: e.g., PDD(s|t)= 
c(s,t)/[c(t)+E], where E>0. Strangely, we have 
not found any discussion of DD in the literature, 
though it is related to other known techniques. 
E.g., suppose we have a prior f(s|t). To combine 
this with observations c(s,t) and c(t) using the 

                                                        
1 The minimal phrase pair joint or phrase marginal count is 
1 in our system. Therefore, we set k’s > -1 to ensure the 
logarithm is defined. 

maximum a posteriori (MAP) formula (Lee and 
Gauvain, 1993), we have 

 
PMAP(s|t)= [c(s,t)+τ×f(s|t)]/[c(t)+τ]. 

 
A reasonable prior estimate for f(s|t) might be 
1/|s|, 1 over the number of possible source-
language phrases. This is very, very small – near-
ly zero. Thus, we have  
 

PMAP(s|t)  c(s,t)/[c(t) + τ]              (8) 
 

 – the DD estimate.  
AD and DD have different effects on esti-

mated probability distributions. Though both 
reduce estimated probabilities for “seen” events, 
AD has a “sharpening” effect, increasing the es-
timated ratio of the probability of the most likely 
seen events to the probability of the least likely 
ones. DD does not change the ratios between 
estimated probabilities for seen events.  

To get pure AD with generalized 3-count, one 
sets k1 < 0 and k2= k3= 0; to get pure DD, set k1= 
0 and k2, k3> 0. Thus, generalized 3-count is a 
generalization of both forms of discounting. In 
our experiments, to find k1, k2, and k3, we first 
used MERT on the dev set to find the log-linear 
weights for all features, with k1, k2, and k3 set to 
zero. Then we used downhill simplex (as in Zens 
and Ney, 2004) to estimate k1, k2, and k3 with the 
log-linear weights fixed. Finally, we ran MERT 
again to obtain new log-linear weights.2 

Moreover, we explore other transformations of 
phrase statistics: we developed an “unpacked and 
transformed” version of Kneser-Ney phrase table 
smoothing.  

As will be seen in the experimental section, 
modified Kneser-Ney is an extremely effective 
technique. After we had done some initial expe-
riments with it, we were thus highly motivated to 
“unpack” Kneser-Ney. However, the Kneser-Ney 
formula involves a sum of two terms; there is no 
easy way to unpack a log of a sum. We thus de-
cided to try using the statistics that are unique to 
Kneser-Ney (i.e., those statistics that aren’t con-
tained in 3-count) as separate features. We also 
tried generalizing them by adding constants, as 
we did for 3-count. We call n1+(*,t) the number 
of “events” for t, and n1+(s,*) the number of 
“events” for s. Thus we have:  
 
                                                        
2 We can’t prove that it will converge after the second round 
of MERT. We did try to run one more round of downhill 
simplex and MERT in our experiments, but didn’t get fur-
ther improvements. 
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2-event (2EN): 
       {log[n1+(*,t)], log[n1+(s,*)]} 
 
Generalized 2-event (Gen 2EN):  
       {log[n1+(*,t)+k1], log[n1+(s,*)+k2]}; 
       where k1, k2 > -1. 
 
Downhill simplex and MERT are used to learn 
the k’s as was described above for generalized 3-
count. However, note that though in theory sys-
tems with 3-count or generalized 3-count fea-
tures can learn PRF(t|s) and PRF(s|t), even systems 
with both the 3-count features and the 2-event  
features cannot learn the exact Kneser-Ney for-
mula, because of the “log of sum” problem.  

Finally, we devised a new feature that punish-
es low-frequency phrase pairs (as the Mauser et 
al. LF features described above do), but with a 
continuously decreasing penalty; it is a transfor-
mation of c(s,t). 

Enhanced Low-Frequency (ELF): 
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 At the log-linear level, ELF is equivalent to a 
penalty proportional to 1/c(s,t) being subtracted 
from the score. Phrase pairs with low joint 
counts are punished more than those phrase pairs 
with high joint counts. (We also tried on a dev 
set ELF-like features based on 1/c(s) and 1/c(t), 
but they did not yield consistently good results). 

4 Experiments  

4.1 System and lattice MERT details 

We evaluated several new and several known 
techniques with our in-house phrase-based SMT 
system, whose decoder resembles Moses (Koehn 
et al., 2007). In addition to phrase count features, 
all systems had forward and backward lexical 
probabilities, of the type described in (Zens and 
Ney, 2004), and lexicalized and distance-based 
distortion models. The LW estimates employed 
in our experiments are based on (Zens and Ney, 
2004); Foster et al. (2006) found this to be the 
most effective lexical smoothing technique. 

Weights on the feature functions are found by 
lattice MERT (LMERT) (Macherey et al., 2008). 
These authors pruned the lattices output by their 
decoder; they also aggregated lattices over itera-
tions (clarified via personal communication with 
W. Macherey). By contrast, an earlier version of 
LMERT employed by our group (Larkin et al. 
2010) did not involve pruning or aggregation. 

Initially, we followed the Larkin et al. algorithm: 
this provides rapid convergence to reasonable 
optima.  However, we decided that some aggre-
gation should be tried to discourage random walk 
behaviour.  In experiments for this paper, we 
found that without lattice aggregation, adding 
features led to worse optima on dev sets (despite 
the possibility of giving the new features zero or 
negligible weights). 

Aggregation of lattices requires pruning be-
cause without it, successive iterations cause the 
memory requirements for the lattice to grow li-
nearly. The search time will increase at a rate 
worse than quadratic, because the whole lattice 
must be scanned for each linemax operation. We 
implemented pruning ourselves: we kept only 
lattice arcs that were represented in a convex hull 
resulting from some linemax operation in a pre-
vious MERT iteration.  The same answer as be-
fore would be produced if the MERT iteration 
were run with the pruned lattice - except that 
MERT would be much faster.  Not all the convex 
hull is reproducible, but the part of it that was 
actually seen is reproducible.  In practice, this 
form of pruning seems to address the addition-
of-feature problem discussed above. 

Thus, our revised LMERT searches the com-
plete lattices from the latest decoder run com-
bined with the pruned lattices representing the 
seen portions of the convex hull from all past 
iterations. Though the old convex hull may no 
longer be part of the current convex hull because 
of changes to the feature weights, it is a reminder 
of a part of the search space already seen.  This 
solves the memory and speed problems and pro-
vides better performance. 

4.2 Data 

 Results were obtained for Chinese-to-English 
(CE), and French-to-English (FE). There were 
two CE data conditions. The first is the small 
data condition where only the FBIS 3  corpus 
(10.5M target words) is used to train the transla-
tion model. For this condition, we built the 
phrase table using two phrase extractors: the in-
house one extracts phrase pairs from merged 
counts of symmetrized IBM model 2 (Brown et 
al., 1993) and HMM (Vogel et al., 1996) word 
alignments, while the other one extracts phrase 
pairs from GIZA++ (Och and Ney 2003) IBM 
model 4 word alignments (in all other experi-
ments, we only used the in-house extractor). The 
second is the large data condition where the pa-

                                                        
3 LDC2003E14 
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rallel training data are from the NIST4 2009 CE 
evaluation (112.6M target words). We used the 
same two language models (LMs) for both CE 
conditions: a 5-gram LM trained on the target 
side of the large data corpus, and a 6-gram LM 
trained on the English Gigaword v4 corpus.  

We used the same development and test sets 
for the two CE data conditions. The development 
set comprises mainly data from the NIST 2005 
test set, and also some balanced-genre web-text 
from the NIST training material. Evaluation was 
performed on the NIST 2006 and 2008 test sets.  

For FE, we used WMT 20105  FE data sets. 
Parallel Europarl data are used for training (47M 
English words); WMT Newstest 2008 is used as 
the dev set and WMT Newstest 2010 is the eval-
uation set. Two 5-gram LMs are used for FE: one 
is the English side of the parallel data, and the 
other the English side of GigaFrEn.  

Our in-house system is a descendant of the 
(Foster et al., 2006) system, but outperforms it 
by roughly 5 BLEU over a range of MT tasks. 
The main reasons for this are that the current 
version of the system carries out word alignment 
using both IBM 2 and HMM models instead of 
just IBM 2 ones, that it uses both lexicalized and 
distance-based distortion instead of just the lat-
ter, that it uses 5- and 6-grams instead of tri-
grams, and that lattice MERT is used for tuning 
weights instead of N-best MERT.  

4.3 Results 

Tables 1-3 show experimental results, arranged 
by the overall effectiveness of techniques. The 
baseline has the standard forward and backward 
relative frequencies (RF). We tried a combina-
tion of the two RF features with three low-
frequency indicator features (RF+LF3), the two 
RF features with the ELF feature described earli-
er (RF+ELF), Good-Turing (GT), and the 3-
count feature set described earlier (3CT) and its 
generalized form (Gen 3-CT); we also tried mod-
ified Kneser-Ney with three different discounts 
(KN3), and the same version of Kneser-Ney with 
ELF (KN3+ELF). For the small CE condition 
with the in-house extractor, we also tried 2-event 
(2EN) and generalized 2-event (Gen 2EN) (we 
unfortunately ran out of time to test these EN 
features in all conditions). In the tables, after the 
abbreviation for each system, we give in brackets 
                                                        
4 http://www.nist.gov/speech/tests/mt 
(http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_Const
rainedResources.pdf provides the list of resources from 
which large data was drawn).  
5 http://www.statmt.org/wmt10/ 

the number of log-linear plus other weights that 
must be tuned for the non-lexical phrase count 
component of each: e.g., KN3 has two probabili-
ty estimates, with associated log-linear weights 
λ1 and λ2 tuned by MERT, and three discounts 
D1, D2, and D3 (shared by forward and backward 
probabilities), giving (2+3) weights. Following 
(Koehn, 2004), we use the bootstrap-resampling 
test to do significance testing. In Table 1-3, 
Symbols ** or * indicates that the result is sig-
nificant better than the baseline at level p<0.01 
or p<0.05 respectively.  

 
In-house extractor 

system (#wts) 
NIST test  

Mean 
 

ΔΔΔΔ 2006 2008 
RF (2+0) 29.85 23.57 26.71 N/A 

3CT (3+0) 29.48 23.24 26.36 -0.35 
RF+LF3 (5+0) 29.87 23.60 26.74 +0.03 

GT (2+0) 29.91 23.61 26.76 +0.05 
RF+ELF (3+0) 30.46** 24.16** 27.31 +0.60 
Gen3CT (3+3) 30.21 23.62 26.92 +0.21 

        Gen3CT+2EN  
                        (5+3) 

30.47**  23.90* 27.19 +0.48 

Gen3CT+Gen2EN 
(5+5) 

30.52** 24.13** 27.33 +0.62 

KN3 (2+3) 30.76** 24.36** 27.56 +0.85 
KN3+ELF (3+3) 30.91** 24.53** 27.72 +1.01 

 
GIZA++ extractor 

system (#wts) 
NIST test  

Mean 
 

ΔΔΔΔ 2006 2008 
RF (2+0) 30.05 23.48 26.77 N/A 

3CT (3+0) 30.68* 23.63 27.16 +0.39 
RF+LF3 (5+0) 30.42 23.69 27.06 +0.29 

GT (2+0) 30.99** 23.86* 27.43 +0.66 
RF+ELF (3+0) 31.14** 23.92* 27.53 +0.76 
Gen 3CT (3+3) 31.28** 24.05** 27.67 +0.90 

KN3 (2+3) 31.67** 24.46** 28.07 +1.30 
KN3+ELF (3+3) 31.77** 24.59** 28.18 +1.41 

 
Table 1: CE small data (BLEU% scores). In brackets 
the number of log-linear plus other weights that must 
be tuned for the non-lexical phrase count component 
of each system. Symbols ** or * indicates that the 
result is significantly better than the baseline at level 
p<0.01 or p<0.05 respectively. In brackets are the 
number of log-linear plus the number of other weights 
that must be tuned for the non-lexical phrase count 
component of each system. 

 
In-house extractor 

system (#wts) 
NIST test  

Mean 
 

ΔΔΔΔ 2006 2008 
RF (2+0) 33.18 26.76 29.97 N/A 

3CT (3+0) 33.31 26.98 30.15 +0.18 
RF+LF3 (5+0) 33.56* 27.09* 30.33 +0.36 

GT (2+0) 34.00** 27.29* 30.65 +0.68 
RF+ELF (3+0) 33.87* 27.38* 30.63 +0.66 
Gen 3CT (3+3) 34.04** 27.38* 30.71 +0.74 
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KN3 (2+3) 34.38** 27.80** 31.09 +1.12 
KN3+ELF (3+3) 34.49** 27.99** 31.24 +1.27 

 
Table 2: CE large data (BLEU scores) 

 
3CT performs no worse than RF, and perhaps 

better (it has a higher score for three of the four 
systems). 3CT usually doesn’t do quite as well as 
RF+LF3; GT does better than both. Generalized 
3CT and RF+ELF are more or less tied, and both 
are clearly superior to RF, RF+LF3, 3CT, and 
GT. Best of all are the two Kneser-Ney variants, 
with KN3+ELF doing better than KN3. In the 
small CE condition with the in-house extractor, 
Gen 3-CT combined with two EN variants that 
both “unpack” Kneser-Ney, outperforms every-
thing except the variants with exact Kneser-Ney; 
in this case, “unpacking” an estimator (Kneser-
Ney) seems to be a bad idea.  Techniques with 
more tuning weights tend to perform better (the 
best-performing one has 6 weights, while the RF 
baseline has 2), though there are exceptions. 

 
In-house extractor 

system (#wts) 
 

WMT 2010 test 
 

ΔΔΔΔ 
RF (2+0)        26.32    N/A 

3CT (3+0)        26.60* +0.28 
RF+LF3 (5+0)        26.66* +0.34 

GT (2+0)        26.69* +0.37 
RF+ELF (3+0)        26.87** +0.55 
Gen 3CT (3+3)        26.78* +0.46 

KN3 (2+3)        26.88** +0.56 
KN3+ELF (3+3)        26.95** +0.63 

 
Table 3: FE WMT (BLEU scores) 

 

4.4 Discussion  

The results given here give some support to the 
idea of unpacking and transforming the statistics 
that make up probability estimators in phrase-
based SMT systems. In the experiments de-
scribed above, “generalized 3-count”, derived 
from statistics hidden in forward and backward 
conditional probabilities, performs quite well. 
Presumably, this estimator performs better than 
the two conventional RF features because of the 
extra degrees of freedom. ELF – a transformation 
of c(s,t) – also performs very well. Presumably, 
ELF does better than the low-frequency (LF) 
features of Mauser et al. (2007) because it is con-
tinuous rather than discrete.  

On the other hand, modified Kneser-Ney is 
still the most effective standalone technique, as it 
was in (Foster et al., 2006). If one looks at the 
number of tunable weights in brackets after the 

name of each technique in Tables 1-3, one sees 
that the success of modified Kneser-Ney can’t be 
attributed to its having more degrees of freedom 
than competing techniques: e.g., although it only 
has 5 weights, it consistently beats generalized 3-
count, which has 6 weights (and in the topmost 
set of results, it beats a technique that has 8 
weights and another that has 10 weights).   

Disappointingly, unpacking modified Kneser-
Ney did not yield improved performance. This 
may have been because the way in which we un-
packed it was not a true generalization (the sys-
tem cannot reverse the unpacking by learning a 
certain combination of weights, as it can for “3-
count” and “generalized 3-count”).  The best 
combination in all conditions was Kneser-Ney 
with ELF (KN3+ELF).  

Surprisingly, the impact of the techniques we 
tried does not decrease with the amount of train-
ing data. Over the two CE conditions (with in-
house phrase extractor), the gain for all tech-
niques over the RF baseline is bigger in the large 
data condition: e.g., KN3+ELF yields a remarka-
ble 1.27 BLEU improvement over the baseline 
for large data CE. Gains on FE, which has an 
intermediate amount of training data, are only 
moderate. We speculate that these techniques 
become more important as data quality gets 
worse (even if the amount of data increases): a 
high proportion of CE small and of WMT data, 
but a low proportion of CE large data, is of good 
quality. 

5 Conclusion and Future Work 

In this paper, we have shown that the 3-count 
features, an “unpacked” version of the RF fea-
tures, obtained results comparable to or perhaps 
better than those of the RF ones. Moreover, the 
generalized 3-count features achieved further 
improvement. We have also shown that a simple 
feature we call ELF – a transformation of c(s,t) – 
performs well. However, the unpacked and trans-
formed version of Kneser-Ney (KN) smoothing 
did not perform as well as the original KN 
smoothing. 

The comparison of phrase table smoothing 
techniques given here should be of general inter-
est. At a minimum, all SMT practitioners should 
be aware that by implementing a simple tech-
nique like modified Kneser-Ney smoothing of 
phrase tables, they may obtain BLEU gains in 
the range +0.6-1.3.  

In future work, we plan to try “unpacking” 
Good-Turing counts of counts, lexical weights, 
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and lexicalized distortion. The results above 
show that this kind of experimentation can have 
a good payoff, and it is now practical to train 
SMT systems with very many features (Chiang 
et al., 2009). We will also study the interaction 
between families of techniques: those for dis-
counting/smoothing as in this paper, those for 
growing more focused phrase tables (Wuebker et 
al., 2010) and those for pruning phrase tables 
(Johnson et al., 2007). Though these three ap-
proaches partially overlap (all “punish” low-
frequency phrase pairs), a combination may be 
more powerful than any of them alone.   
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