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Abstract

Tree-to-tree translation model is widely stud-
ied in statistical machine translation (SMT) 
and is believed to be much potential to 
achieve promising translation quality. How-
ever, the existing models still suffer from the 
unsatisfactory performance due to the limita-
tions both in rule extraction and decoding pro-
cedure. According to our analysis and 
experiments, we have found that tree-to-tree 
model is severely hampered by several rigid 
syntactic constraints: the both-side subtree 
constraint in rule extraction, the node con-
straint and the exact matching constraint in 
decoding. In this paper we propose two simple 
but effective approaches to overcome the con-
straints: utilizing fuzzy matching and category 
translating to integrate bilingual phrases and 
using head-out binarization to binarize the bi-
lingual parsing trees. Our experiments show 
that the proposed approaches can significantly 
improve the performance of tree-to-tree sys-
tem and outperform the state-of-the-art 
phrase-based system Moses. 

1 Introduction 

In recent years, syntax-based translation models 
have shown promising progress in improving 
translation quality. These models include string-to-
tree models (Galley et al., 2006; Marcu et al., 2006; 
Shen et al., 2008; Chiang et al., 2009), tree-to-
string models (Quirk et al., 2005; Liu et al., 2006; 
Huang et al., 2006; Mi et al.,2008), and tree-to-tree 
models (Eisner, 2003; Ding and Palmer, 2005; 
Cowan et al., 2006; Zhang et al., 2008; Liu et al., 
2009). With the ability to incorporate both source 
and target syntactic information, tree-to-tree mod-
els are believed to be much potential to achieve 
promising translation quality. However, the con-

ventional tree-to-tree based translation systems 
haven’t shown superiority in empirical evaluations.  

To explore the reasons why tree-to-tree model is 
so unsatisfactory, this paper makes a deep analysis 
of the limitations on its rule extraction and decod-
ing procedure respectively.  

Towards rule extraction, we found that in our 
training corpus the bilingual phrases that tree-to-
tree model can cover only account for 8.45% of all 
phrases due to the both-side subtree constraint.
This low proportion definitely causes a severe poor 
rule coverage problem and leads to a bad transla-
tion quality.  

What’s more, in decoding phase, the decoding 
space is severely limited by the node constraint
and the exact matching constraint, which makes 
the search space too narrow to get a promising re-
sult.

Obviously, tree-to-tree model is profoundly af-
fected by the rigid syntactic constraints. In order to 
resolve the constraints, two simple but very effec-
tive approaches are proposed straightforwardly in 
this paper: 1) integrating bilingual phrases to im-
prove the rule coverage problem; 2) binarizing the 
bilingual parsing trees to relieve the rigid syntactic 
constraints.

The paper is structured as follows. Section 2 
carefully analyzes the limitations of tree-to-tree 
model and introduces the currently existing im-
provements on tree-to-tree model. Section 3 elabo-
rates the proposed approaches in more details. In 
Section 4, we evaluate the effectiveness of our ap-
proaches and finally conclude with a summary and 
our future work in Section 5.   

2 Analysis on Tree-to-tree Model

Given a word-aligned tree pair 1( )IT f  and 1( )JT e
as shown in Fig.1, a tree-to-tree rule r is a pair of 
aligned subtrees derived from the tree pair:  
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1 2[ , ]i i  in 1( )IT f ; 2
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jST e is a target subtree, cover-

ing span 1 2[ , ]j j  in 1( )JT e ; A is the alignment be-
tween leaf nodes of the two subtrees, satisfying the 
constraints: 1 2 1 2( , ) :i j A i i i j j j∀ ∈ ≤ ≤ ↔ ≤ ≤ . The 
leaf nodes of a subtree can be either non-terminal 
symbols (grammar categories) or terminal symbols 
(lexical words). Fig.2 shows two example rules 
extracted from the tree pair in Fig.1.  

Figure 1. An example of Chinese-English tree pair. 

2.1 Limitations on Tree-to-tree Rule Extrac-
tion

To extract all valid tree-to-tree rules, (Liu et al., 
2009) extends the famous tree-to-string rule extrac-
tion algorithm GHKM (Galley et al., 2004) to their 
forest-based tree-to-tree model. However, only 
with GHKM rules, the rule coverage is very low1.
As SPMT rules (Marcu et al., 2006) have proven to 
be a good complement to GHKM (DeNeefe et al., 
2007), we also extract full lexicalized SPMT rules 
to improve the rule coverage. 

                                                          
1 (Liu et al., 2009) investigate how many phrase pairs can be 
captured by full lexicalized tree-to-tree rules. They set the 
maximal length of phrase pairs to 10 and the maximal node 
count of tree-to-tree rule was set to 10. For the tree-to-tree 
model, the coverage was below 8%. Even with packed forest, 
the coverage was only 9.7%.  

Figure 2: Two examples of tree-to-tree rule. 

The tree-to-tree style SPMT algorithm used in 
our experiments can be described as follows: for 
each phrase pair, traverse the source and target 
parsing tree bottom up until it finds a node that 
subsumes the corresponding phrase respectively, 
then we can extract a rule whose roots are the 
nodes just found and the leaf nodes are the phrases. 

However, even with GHKM and SPMT rules, 
the rule coverage is still very low since tree-to-tree 
model requires that both source side and target side 
of its rule must be a subtree of the parsing tree. 
With this hard constraint (Liu et al., 2009; Chiang, 
2010), the model would lose a large amount of bi-
lingual phrases which are very useful to the trans-
lation process (DeNeefe et al., 2007). 

Eng
Chn

tree non-tree total 

tree 1.24M (8.45%) 
(t2t, s2t, t2s,pb) 

3.19M (21.75%)
(t2s, pb) 

4.43M
(30.2%)

non-tree 1.5M (10.24%) 
(s2t, pb) 

8.74M (59.56%)
(pb) 

10.24M
(69.8%)

total 2.74M(18.69%) 11.93M(81.31%) 14.67M
Table 1: Distribution of the bilingual phrases in Chi-
nese-to-English FBIS corpus (LDC2003E14). In each 
cell, the first line represents the number of the bilingual 
phrases and the percentage it accounts for. The second 
line lists all models that can get the corresponding bilin-
gual phrases as rules2.

Table 1 shows the distribution of the bilingual 
phrases in Chinese-English FBIS corpus. The max 
length of the bilingual phrases is constrained to 7. 
In the table, rows and columns denote whether the 
source (Chinese) phrase and target (English) 
phrase correspond to subtree respectively. From 
the table, we can easily conclude that phrase-based 
model can extract all useful phrase pairs, while 
string-to-tree and tree-to-string model can only 
extract part of them because of the one-side subtree 
constraint. Further, with the rigid both-side subtree 
constraint, rule space of tree-to-tree model is the 
narrowest one which can only account for at most 
                                                          
2 The abbreviations correspond to different translation models: 
t2t: tree-to-tree model; t2s: tree-to-string model; s2t: string-to-
tree model; pb: phrase-base model. 
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8.45% of all phrase pairs. Hence, how to learn 
from other models to enlarge the rule coverage is a 
big problem for tree-to-tree model.  

2.2 Limitations on Tree-to-tree Decoding

In the decoding procedure, tree-to-tree model trav-
erses the source parsing tree bottom up and tries to 
translate the subtree rooted at the current node. If 
the employed rule is full lexicalized, candidate 
translations3 are generated directly, otherwise new 
candidate translations are created by combining 
target terminals of the rule and candidate transla-
tions of the corresponding descendant nodes of the 
current node. Root node of the parsing tree will be 
the last visited node and the final best translation 
can be got from its candidate translations. 

Broadly, tree-to-tree based decoding is node-
based, i.e., only the source spans governed by tree 
nodes can be translated as a unit. We call these 
spans translation spans. For example, in Fig.1, 
span “ ” is a translation span because it is 
governed by node PP, while span “

” is not a translation span since none subtree 
corresponds to it. During decoding, translation 
spans are used for translation, while other spans 
are ignored completely even if they include better 
translations. Thus this rigid constraint (we call it 
node constriant) will exclude many good transla-
tions.

         Figure 3. Mismatch because of parsing errors. 

If we take the Chinese part of the abovemen-
tioned FBIS corpus as a test set, the source (Chi-
nese) phrase that has a counterpart phrase on the 
target (English) side in terms of the word align-
ment can serve as an effective translation span of 
the current sentence because it has effective trans-
lations. In our statistics, there are in total of 
14.68M effective translation spans in the corpus. 
However, only 44.6% (6.54M spans) of them are 
governed by tree nodes. This low proportion would 
definitely lead to a really narrow search space for 

                                                          
3 A candidate translation is a target subtree with some real 
property values for decoding, e.g. language mode. 

tree-to-tree model and further a poor translation 
quality. 

In addition, the model is also heavily affected by 
the exact matching constraint which means only 
the rules completely matching part of the source 
tree structure can be used for decoding. Fig.3 
shows an example of this constraint. In Fig.3, there 
is a parsing error on the tree structure of phrase “

” which leads to a mismatch between the 
rule and tree structure of the test sentence. Since 
the parsing error is very common with automatic 
parsers, the mismatch cannot be a rare phenome-
non.  Moreover, the large and flat structures which 
have a close relation with reordering are also hard 
to match exactly. Thus with such constraint, many 
rules cannot be employed during decoding even if 
they are extracted by the model and the search 
space would necessarily be decreased.  Hence, how 
to find a good way to extend the search space is 
another big problem for tree-to-tree model. 

2.3 Related Work to Improve Tree-to-tree 
Model

Two main directions have been emerged to over-
come the limitations discussed above.  

One is to loose the syntactic constraints. (Zhang 
et al., 2008) proposes a tree-sequence based tree-
to-tree model that represents rules with tree se-
quences and takes all spans as translation spans. 
This method resolves the both-side subtree con-
straint and the node constraint thoroughly, but it 
neglects the bad influence of the exact matching 
constraint. Furthermore, it is obviously that each 
bilingual phrase would multiply into many tree 
sequence rules with different structures, which def-
initely leads to serious rule expansion to increase 
the decoding burden.    

In the other direction, more information is intro-
duced into the model. (Liu et al., 2009) substitutes 
1-best tree with packed forest for tree-to-tree 
model which can compactly encode many parses 
and successfully relieve the constraints, but even 
with packed forest, the rule coverage is still very 
low4.

The two directions have proven to outperform 
their conventional counterparts significantly. How-
ever,no matter tree sequence or packed forest, they 
are all complicated to deal with in decoding stage, 

                                                          
4 Please refer to footnote 1.  
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and furthermore, they both need to modify the 
conventional tree-to-tree model, thus the original 
decoding algorithm must be immensely adjusted to 
cater for the corresponding changes. 

3 Our Approaches 

Different with the existing related work, aiming at 
resolving the rigid syntactic constraints more di-
rectly and essentially, we propose simple but very 
effective approaches to improve the conventional 
tree-to-tree model: integrating bilingual phrases 
and binarizing the bilingual parsing trees. 

3.1 Integrating Bilingual Phrases

Inspired by (Liu et al., 2006) and (Mi et al., 2008) 
on utilizing bilingual phrases to improve tree-to-
string and forest-to-string model, we integrate bi-
lingual phrases into tree-to-tree model to resolve 
the problem of poor coverage of rules, which is 
more difficult since we have to provide syntactic 
structures for both the source and target phrases to 
serve the decoding process of the model. Here we 
present two simple approaches to transform the 
source and target phrases into tree-to-tree style 
rules respectively. After that, all bilingual phrases 
are integrated into the model easily.

3.1.1 Source Phrase Transformation 

In traditional tree-to-tree based decoding, source 
side of the rule is employed to match the source 
parsing tree exactly. Thus if we want to use a 
source phrase, theoretically, we must decorate it 
with the corresponding syntax structure like tree-
sequence based model. However, our analysis has 
shown that exact match would do harm to the 
translation quality. Thus instead of syntax struc-
tures, we decorate the source phrases with proper 
syntactic categories which have been proven to be 
necessary and effective for translation (Zhang et al., 
2011b). When decoding with these source phrases, 
we ignore the internal structure of the subtree for 
translation and only match the rule’s category with 
root node of the subtree along with the matching 
between leaf nodes, just as shown in Fig.4.  

Here we utilize the SAMT grammar (Zollmann 
and Venugopal, 2006), with which each phrase can 
be associated with a corresponding syntactic cate-
gory. For example, in Fig.1 the source span “

” does not correspond to a subtree, 

but we can annotate an SAMT category PP*VP5

for it and generate rule(c). The annotation method 
is taken from (Zhang et al., 2011b).  The details are 
ignored due to the space limitation of the paper. 

Figure 4. Rule(c) is an example of source phrase after 
transformation. When translating the tree structure, 
match the rule’s category with the head node and match 
the rule’s words with the terminal nodes of the structure. 
In the figure, if we do exact match between categories, 
rule(c) cannot be used yet. 

Normally, if we do exact match, rule(c) in Fig.4 
will not be employed due to the mismatch between 
categories of rule and tree structure. Hence, to 
maximize the capacities of the source phrases, we 
utilize fuzzy matching method which has been 
successfully employed in hierarchical phrase-based 
model (Huang et al., 2010) and string-to-tree 
model (Zhang et al., 2011b) to match categories.  

With fuzzy matching method, we represent each 
SAMT-style syntactic category with a real-valued 
vector ( )F c  using latent syntactic distribution. Due 
to the space limitation, here we ignore the details 
as we just follow the work of (Huang et al., 2010; 
Zhang et al., 2011b). Then the degree of syntactic 
similarity between two categories can be simply 
computed by dot-product: 

( ) ( ) ( ) ( )
1

' 'i i
i n

F c F c f c f c
≤ ≤

⋅ =                   (2) 

which yields a similarity score ranging from 0 (to-
tally syntactic different) to 1 (totally syntactic 
identical).

That is to say, we transform an original source 
phrase by decorating it with a SAMT-style syntac-
tic category and a corresponding real-valued vector. 
During decoding, we consider all possible source 
phrases and compute the similarity scores between 
categories of phrases and head nodes of the current 
translated structure. Then the similarity score will 
serve as a good feature (we call it similarity score 
feature) incorporated into the model and let it learn 
how to respect the source phrases. 

                                                          
5 Where * is just a conjunction mark. 
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Figure 5. To combine target rules to create translation. 
In the figure, source side rules are discarded. The com-
bination process is only related to the head node and 
leaf nodes of the rule, but has nothing to do with the 
internal structure. Thus, during decoding, rule(e) and 
rule(f) are equal.

3.1.2 Target Phrase Transformation 

In decoding phase, target sides of rules are com-
bined successively to create a syntax tree of the 
translation. Fig.5 shows the process of combination: 
the non-terminal leaf node of rule(d) (i.e. NP) is 
identical to the head node of rule(e), so we can 
combine the two rules to form a larger structure. In 
the whole process, the internal structures contrib-
ute nothing to combination. Thus just like source 
phrase, we can transform the target phrases into 
tree-to-tree style rules naturally only by assigning 
them proper syntactic categories for combination.  

It is natural to assign the head node category for 
a target phrase if it corresponds to a subtree, but 
which category is proper for the phrase that does 
not correspond to a subtree? The easiest way is to 
assign all categories to the phrase and let the de-
coder choose the best one. But without enough in-
formation, the decoder will be confused with the 
choices.

As categories of the phrases are only used for 
further combination during decoding, we can cer-
tainly postpone the category assigning work to the 
decoder at the time when we obtain the informa-
tion of current source node. Here, we take category
translation probability ( | )p TC SC  as our basis to 
choose categories which means the probability to 
translate source category SC into target category 
TC:

( )( | )
( )

count SC TCp TC SC
count SC

−=                         (3) 

In the formula, count(SC) are counts of SC in 
corpus and count(SC-TC) denotes the counts when 
SC-TC is a translation pair which requires the two 
nodes must be head nodes of one tree-to-tree rule 

(GHKM or SPMT) at least. For example, in Fig.1, 
PP-PP and IP-S are translation pairs.  

Fig.6: Transform target phrases for decoding. We assign 
categories by translating the category of the source node 
into one or many proper target categories during decod-
ing and form one or more rules. In the figure, the cate-
gory translation probability P(NP|NP) = 0.7 and 
P(NN|NP) = 0.3. So we can transform the original rule 
into rule(g) and rule(h) and the probability will serve as 
a feature incorporated into the model. Noting that rule(g) 
and rule(h) are only temporary rules, and if the original 
rules are employed when dealing with a different struc-
ture, many different rules might be generated.  

As illustrated in Fig.6, in rule extraction process, 
we label target phrases6 with a general category, 
Such as X, as a placeholder. When decoding with 
target phrases, assign categories to target phrases 
on-line for further combination according to the 
source node and category translation probability.
We integrate all possible categories to avoid rigid 
choice and introduce the category translation prob-
ability into the model as a feature (we call it cate-
gory translation feature) to punish categories with 
low probabilities.  

3.2 Tree Binarization 

Tree binarization methods have been successfully 
adopted to improve string-to-tree models (Wang et 
al.,2007, 2010) and tree-to-string models (Zhang et 
al., 2011a). We believe it can also deliver a prom-
ising improvement for tree-to-tree model since the 
syntactic constraints on tree-to-tree model are more 
rigid than string-to-tree and tree-to-string model. 

Tree binarization means to convert the parsing 
trees into binary trees by introducing new tree 
nodes. The approach we take here is the head-out 
binarization (Wang et al., 2007). The children to 
the left of the head word are binarized in one direc-
tion, and the children to the right are binarized in 
the other direction. We label the newly created 
node with its original father node category plus a 
flag (e.g. VP-COMP) as illustrated in Fig.7. 
                                                          
6 If the target phrase corresponds to a subtree, we will not do 
transformation, but annotate it with the head node category 
because we believe it is relatively more accurate and effective. 
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Fig.7: An example of binarization from the aligned tree 
pair in Fig.1.  

There are three aspects for binarization to dis-
play its advantages in tree-to-tree model. 

First, by introducing new nodes, it helps to 
overcome the problem of poor rule coverage. In 
our training corpus, the percentage of the bilingual 
phrases that tree-to-tree model can cover are in-
creased from 8.45% (tree-tree cell in Table 1) to 
11.39% after binarization, which results in a better 
rule coverage. As an example, in Fig.7, with the 
new node VP-COMP, the source span “

” can correspond to a subtree, and its 
counterpart at the target side is a subtree in Fig.1, 
thus we can extract a rule to translate “

” into “discuss the matter with them”.
Second, the node constraint on decoding is also 

resolved by the newly created nodes. In NIST 
MT04 and MT05 test data, 7.94 and 7.75 nodes are 
created by tree binarization for each sentence in 
average. Compared to 59.01 and 58.39 nodes per 
tree on average before binarization, the numbers of 
nodes as translation spans are increased by 13.46% 
and 13.27% respectively, which leads to a larger 
decoding space. 

Third, it helps to alleviate the exact matching 
constraint by converting the flat and large struc-
tures into binary structures. For example, if we 
want to look for a rule for root node VP in Fig.7, 
compared to the tri-structure in tree(a), obviously, 
matching the binary structure of tree(b) is much 
simpler, which can provide more matched rules 
and a larger search space. 

4 Experiments

4.1 Experimental Setup 

The experiments are conducted on Chinese-to-
English translation; the training data is FBIS cor-
pus containing about 7.1 million Chinese words 
and 9.2 million English words. We perform bidi-

rectional word alignment using GIZA++, and em-
ploy grow-diag-final-and strategy to generate the 
symmetric word alignment. We parsed both sides 
of the parallel corpus with the Berkeley parser (Pe-
trov et al., 2006) and trained a 5-gram language 
model with the Xinhua portion of English Giga-
word corpus. 

For tuning and testing, we use NIST MT evalua-
tion data for Chinese-to-English from 2003 to 2005 
(MT03 to MT05). The development data set comes 
from MT03 in which sentences with more than 20 
words are removed to speed up MERT (Och, 2003). 
The test set includes MT04 and MT05. 

The baseline tree-to-tree system is implemented 
by ourselves according to (Liu et al., 2009; Zhang 
et al., 2009). We extract GHKM-style rules and 
restrict that both source and target trees of tree-to-
tree rule can contain at most 10 nodes. We further 
extract SPMT-style full lexicalized rules whose 
max length of phrase is constrained to 7 on both 
sides. Same to SPMT, the bilingual phrases are 
also constrained to be less than 7 words. The final 
translation quality is evaluated in terms of case-
insensitive BLEU-4 with shortest length penalty. 
The statistical significant test is performed using 
re-sampling approach (Koehn, 2004). 

4.2 Experimental Results and Analysis

We conducted several contrast experiments to 
demonstrate the effectiveness of bilingual phrase 
rules. Here we define source phrase rule (SPR for 
short) as the rule converted from the bilingual 
phrase whose target side corresponds to a subtree, 
i.e., we can get a tree-to-tree style rule only by 
source phrase transformation method. Similarly, 
target phrase rule (TPR for short) is defined as the 
rule whose source side corresponds to a subtree.  

System S-trans T-trans MT04 MT05
t2t 0 0 30.41 27.68 

+TPR 0 2.63 31.12* 28.82*
+SPR 13.08 0 31.90* 28.67*

+SPR+TPR 10.50 2.13 32.10* 28.91*
Table 2. Results (BLEU score) after integrating bilin-
gual phrases. S-trans or T-trans denotes the average 
number of phrase rules generated by source and target 
phrase transformation method used in the best transla-
tion per sentence in MT04 respectively. The star ‘*’ 
denotes significantly better than t2t system (p< 0.01). 

The results are shown in Table 2. We can clearly 
see, either TPR or SPR can help to significantly 
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improve the t2t system on the test sets (+0.71 and 
+1.49 BLEU points for MT04, +1.14 and +0.99 
BLEU points for MT05) by effectively exploiting 
the corresponding bilingual phrases (13.08 source 
phrase rules and 2.63 target phrase rules on aver-
age for the best translation). When we introduce 
both SPR and TPR into the system, the numbers of 
the used phrases are slightly decreased, but the 
BLEU points on MT04 and MT05 continue to go 
up to 32.10 and 28.91. We have also conducted 
experiments with all the bilingual phrase rules, but 
the results are not very stable. We conjecture that 
this unstable performance is due to the phrase pairs 
that do not correspond to subtrees on both sides 
which are syntax unreasonable and might harm the 
translation quality. Future work will investigate the 
reason more fully. 

System B-node U-node MT04 MT05
t2t 0 2990 30.41 27.68 

+SPR+TPR 0 2422 32.10* 28.91*
+TB 3.82(7.94) 2487(49) 33.57* 30.10*

+TB+SPR+TPR 3.12(7.94) 1957(45) 34.50* 31.37*
Table 3: Results (BLEU score) after tree binarization. 
The meanings of abbreviations are the same with those 
in Table 2. In addition, TB denotes tree binarization. B-
node denotes the average number of new nodes created 
by binarization used in the best translation on MT04. 
The numbers in brackets correspond to average number 
of new nodes created by binarizaiton in each parsing 
tree. U-node denotes the number of unmatchable nodes 
in MT04. The numbers in brackets correspond to the 
number of unmatchable nodes created by binarization. 

Table 3 shows the results of systems using bi-
nary trees. We can see from the table that only 
with tree binarization we can significantly improve 
t2t model by +3.16 and +2.42 BLEU points on 
MT04 and MT05 respectively. If we further inte-
grate bilingual phrases into the system, the BLEU 
points on MT04 and MT05 can go up to 34.50 and 
31.37, which demonstrates the effectiveness of 
both bilingual phrases and tree binarization.  

Column “B-node” of Table 3 shows the usage of 
the new nodes created by binarization. With 7.94 
new nodes on average for each input parsing tree, 
almost half of them (3.82 and 3.12 per tree on av-
erage) are employed for generating the best trans-
lation, which indicates the high efficiency and 
availability of tree binarization by introducing ad-
ditional useful translation spans for translation.

Column “U-node” of Table 3 shows the number 
of unmatchable nodes (means none rule can match 

the subtrees rooted at these nodes) in decoding. By 
integrating bilingual phrases, the number of un-
matchable nodes is reduced from 2990 to 2422. 
This is the contribution of fuzzy matching method 
of source phrase rules. With tree binarization, 
many unmatchable nodes are eliminated, as we can 
see, from 2990 to 2487, among which only 49 
nodes are created by binarization. When we com-
bine the two approaches, the number of unmatch-
able nodes decreases further (1957 unmatchable 
nodes), indicating that both bilingual phrases and 
binarization can help to alleviate the exact match-
ing constraint and enlarge the search space.  

4.3 Tree-to-tree vs. State-of-the-art Systems 

We also ran Moses (Koehn et al., 2007) with its 
default settings using the same data and obtained 
BLEU score of 32.35 and 30.03 on MT04 and 
MT05 respectively. Our best results are 34.50 and 
31.37 on the two test sets which are significant 
better than Moses. 

5 Conclusion and Future Work

To overcome the limitations in rule extraction and 
decoding procedure of tree-to-tree model, this pa-
per proposed two simple but effective approaches 
to integrate bilingual phrases and binarize the bi-
lingual parsing trees. The experiments have shown 
that the approaches yield dramatic improvements 
over conventional tree-to-tree systems. Further-
more, our improved tree-to-tree model can statisti-
cally significantly outperform state-of-the-art 
phrase-based model Moses.  

In future work, we plan to investigate the rea-
sons why the results are unstable after integrating 
all bilingual phrases. We also plan to use more in-
formation to guide the binarization process as the 
head-out binarization binarizes trees only based on 
the headword, which is too arbitrary for translation. 
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