
A Unified and Discriminative Soft Syntactic Constraint Model for 
Hierarchical Phrase-based Translation 

 
Lemao Liu  Tiejun Zhao  Chao Wang  Hailong Cao 

School of Computer Science and Technology 
Harbin Institute of Technology, Harbin, China 

{lmliu,tjzhao,hailong,wangchao}@mtlab.hit.edu.cn 
 
 
 
 

Abstract 

In the last decade, there have been a 
countless number of researches in soft 
syntactic features many of which have led 
to the improved performance for Hiero. 
However, it seems that all the syntactic 
constituent features cannot efficiently work 
together in the Hiero optimized by MERT. 
In this paper, we propose a more general 
soft syntactic constraint model based on 
discriminative classifiers for each 
constituent type and integrate all of them 
into the translation model with a unified 
form. The experimental results show that 
our method significantly improves the 
performance on the NIST05 Chinese-to- 
English translation task. 

1 Introduction 

Hierarchical phrase-based translation model 
(Chiang, 2005) is a compromise of two popular 
translation models: syntax based model and phrase 
based model. It is a formal syntax grammar(Chiang, 
2005; Wu, 1997), which does not take linguistic 
analysis into account when compared with other 
pure syntax systems (Liu et al., 2006;Yamada and 
Knight, 2001;Galley et al., 2006). It promises to 
improve the performance by adding syntax 
information to phrase based as well as formal 
syntax based translation models. 

Chiang (2005) first introduced syntax 
knowledge into the hierarchical phrase based 
model. To make the model sensitive to the syntax 
structure, a constituent feature was integrated into 
the translation model with the soft constraint 
method. It was defined as follows: it gains 1 for 

rules whose source side respect syntactic phrase 
boundary in the parse tree, and 0 otherwise. 
However, it did not achieve statistically significant 
improvement in the experiment. Marton and 
Resnik (2008) thought that different syntactic types 
may play different roles in the translation model. 
However, (Chiang, 2005)’s method did not treat 
them discriminatively. They then defined soft 
constraint features for each constituent type based 
on the observation of this phenomenon. Their 
experiments showed that some constituent features 
significantly improved the performance, but others 
didn’t. It is an interesting question whether all 
these constituent type models can work together 
efficiently. Although (Marton and Resnik 2008) 
did not give the experiments to support the positive 
answer, as presented previously, Chiang (2005) 
provided the evidence that their constituent models 
could not work together. (Chiang et al.,2008) 
thought one of its reasons is the limitation of 
MERT(Och,2003) with many features. We think 
there are two other reasons in addition to their 
suggestion. On the one hand, their models are 
heuristic, and they are not sensitive for other 
features such as boundary word information. 
However, in the previous work (Xiong et al., 2006), 
these features were shown to be helpful for the 
translation model. On the other hand, uniform 
combination of all the constituent models may 
cause a model bias, since some constituent types 
happen more often than others.  

In this paper, we will address the question 
above. First, a discriminative soft constraint model 
is proposed for each syntactic constituent type. The 
model can be integrated with much context 
information. We consider several classifiers with 
different accuracy to construct soft constraint 
models, and our aim is to study the effect of the 

253



accuracy of the classifiers on the translation 
performance. Then, we investigate an efficient 
method to combine all the models to give a unified 
soft constraint model. Instead of uniformly 
combining all the models, we introduce a prior 
distribution for them and combine them with the 
priority.  

The rest of the paper is organized as follows. 
Section 2 presents our baseline model. Section 3 
gives the discriminative classifier based soft 
syntactic models, followed by section 4 in which 
the presentation of a unified soft syntactic model is 
outlined. Section 5 describes training of these 
models. Experiments and results are reported in 
section 6. We review some related work in section 
7 and give our conclusion in section 8. 

2 Hierarchical Phrase-Based Translation 

Hierarchical phrase translation model is based on a 
Probability Synchronous Context-Free Grammar 
(PSCFG). Formally, a PSCFG is a 5-tuple 
< >, where N is the nonterminal set, 

 and  denote the terminal sets in source and 
target side respectively, R is the production rule set, 
and w is a weight function over R. In Hiero, the 
rule set R can be extracted from the bilingual 
corpus automatically.  

Given a source sentence f and a PSCFG G, 
translation is represented as to search a target 
sentence  in the decoding space  such 
that  

 
 

where  consists of all possible translation 
space and it is determined by the grammar G, and 

 is a translation model. Basically,  is 
based on the rule probability distribution w and can 
be represented as follows: 
 

 

 
 denotes the set of synchronous derivation 

trees with (f,e) as their leaves, and d is a derivation 
member in . In decoding step, it is 
intractable to find the extract solution as (1), since 
the number of elements in  is exponential. 
In fact, one can approximate the optimal solution 
via MAP: 

 denotes the derivation set which can induce f 
in the source side and  denotes the target 
translation corresponding to derivation d. In 
hierarchical phrase translation, the rule probability 
can be represented as the log-linear (Och and Ney, 
2002) combination of some feature functions: 
 

, 
 

is a feature function, and  is its feature 
weight and it can be optimized via MERT (Och, 
2003) on the development set. The features (Koehn 
et al.,2003; Chiang, 2005) can be taken as following: 

the phrase translation probability 
; 

the lexical weights ; 

a penalty for hierarchical rules; 

a penalty for glue rules; 

a word penalty; 

language model. 

The decoding process is similar as the monolingual 
CKY parse and it can be considered as the 
transduction of source language into target 
language. 

3 Discriminative Soft Syntactic 
Constraint Models 

3.1 Soft  Syntactic Constraints 

For different syntactic categories (e.g. NP), Marton 
and Resnik (2008) defined some kinds of 
soft-constraint constituency features (e.g. NP=, 
NP+, NP_,etc.) for Hiero rules. For instance, if a 
synchronous rule  is used in a 
derivation, and the span of  is a cross constituent 
“NP+” in the source language parse tree, this rule 
will get an additional value  to the model 
score for the case of “NP+”. In fact, each of these 
features can also be viewed as a discrete model 
with value {0, 1}, i.e. for the case of “NP=” if the 
span of  is exactly “NP”, the rule  
gets a score 1 and 0 otherwise. These constituency 
features don’t discriminate the rules with the same 
span in the source language. In the next subsection, 
we will present more general SSC models which 
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are sensitive to different rules and their context. 
We call these models Soft Syntactic Constraint 
models (SSC).These SSC models proposed by 
Marton and Resnik are heuristic, while our SSC 
models are much more general and based on 
discriminative classifiers.  

In this paper, we further decompose the 
crossing constituent into 3 types to contain more 
syntactic information. For example, similarly as 
(Zollmann and Venugopal, 2006), the crossing 
constituent “NP+”are divided into L\NP, NP/R, 
and L\NP/R, which means a partial syntactic 
category VP missing some category to the left, the 
right and the left and right together, respectively. 
We call them general constituent labels(GCL). 
Figure 1 shows some examples for the GCLs. 

 
Figure 1: The general constituent labels for the 
spans. 

3.2 Discriminative SSC models 

Let r:  be a rule for the hierarchical 
phrase-based translation model,  the 
general constituent label for the span of , and 

 the context of  in the source language . 
For each , its SSC model is represented as 
a binary conditional probability , 
whoseinherent meaning is the context-based 
influence of using the rule  to derive 
a derivation for ,under the . 
 It is a model selection problem to construct a 
proper model for . In our case, the 
training scale is very huge (up to 10M examples). 
This means that the potential models should not be 
time-consuming during training. Previous work 
(Xiong et al., 2006; 2009) proved that MaxEnt 
achieves great performance in machine translation, 
so we will employ it in the paper.  In order to 
evaluate the relationship between the accuracy of 

the SSC classifier and the performance of end to 
end translation, we need two other comparisons: 
one of them with lower accuracy and the other 
with higher accuracy than MaxEnt on the SSC 
classification task. Since with properly choosing 
features the logistic regression (LogReg) is less 
powerful than MaxEnt, we use LogReg for one 
classifier. Instead of trying to find a more powerful 
model on the classification task, we construct a 
model which is based on the combination of the 
MaxEnt and LogReg models. The first 2 SSC 
models are presented as following: 

MaxEnt based SSC model 

 

 

 

 where  denotes a binary feature 
function, and  its weight. 

LogReg based SSC model 

 

 

 

 where  denotes a binary feature 
function 1 , and  its weight in above 
equations. 

Among the many combination methods, the 
linear combination is simple and efficient. In order 
to reduce the number of parameters to be 
optimized, we combine the two component 
classifiers with interpolation weight as follows: 

 

 

                                                           
1Please note that the features used in equation (5) are more than 
those in equation (6), so our MaxEnt based SSC models are 
more general than those based on LogReg. 
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where  and  are defined in 
equations (5) and (6). 
 We employ the toolkit implemented by Zhang 
(2004) to train each MaxEnt based SSC model and 
that implemented by Komarekand Moore (2005) to 
train each LogReg based model. The interpolation 
weight  can be tuned on the development set. 

4 A Unified Soft Syntactic Constraint 
Model 

For different GCL, we have defined different SSC 
models hence giving us many models. Different 
models may have different contributions for 
translation: some of them have significant 
improvements such as VP+ and NP+, while others 
don’t (Marton and Resnik, 2008). Instead of 
running experiments for each model, we define a 
unified SSC model to combine all the SSM 
models. 

There are many methods to integrate all the 
SSC models into the translation model. For 
example, for each rule r, one can represent them as 
a unified feature with the following formula: 

 
. 

 
where  the context of the source side 
for .Then one can easily add the feature into the 
equation (4). Suppose denotes a translation 
derivation and  the log SSC score 
of ,then  is described by the following 
equation: 
 

 

 
We can see that it treats all GCL uniformly, and 
we call this representation uniform combination 
with SSC models. For instance, Turian and 
Melamed (2006) combine uniformly their models 
according to general syntactic labels and so do He 
et al. (2008) when integrating the rule selection 
models with respect to rules.  

Observing that some GCLs are much more 
frequent than others, we consider a prior 
distribution of all GCLs. We define the following 
feature: 

 

 
 

 
where  is a prior probability for GCLs 
and it isestimated by M.L.E. in the training 
examples. The  can be described as 
follows: 
 

 
 

 
It is a Bayes-style combination. 

5 Training SSCModels 

5.1 Training instances 

Unlike training models for ordinary classification 
tasks, our training instances are not available 
obviously because they are latent and by-product 
for machine translation. Cui et al. (2010) presented 
an efficient method to acquire training instances 
for rule selection model. Different from their 
method, ours is based on the derivations of the 
source sentence. Bilingual parsing (Wu, 1997) is a 
very efficient way to get the latent derivation for 
source language. In order to speed up the bilingual 
parsing, we limit the phrase table for each source 
sentence in the training data. When running 
bilingual parser for each source sentence, we just 
use the rules extracted from it and its reference 
during rule extraction step.  

Although our method will prune some 
derivations which can derive the reference, it can 
still get derivations for more than 70% source 
sentences. Even if we can’t get derivations for 
some source sentences, we can still extract the 
training examples for their partial derivations. Our 
method to extract instances is similar as that of 
(Turian et al., 2006), except that ours extracts from 
a derivation forest rather than a derivation tree. 
Due to the space limitation, the details are skipped. 
Figure 1 shows an example of some instances for 
training SSC models. In the rule table Figure 2(b), 
the rule (1) provides a positive instance because it 
is included in the derivations Figure 2(a), but the 
rule (2) provides a negative instance.  
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Figure 2.An example of training instances for SSC models. 

 

5.2 Features 

For a training instance corresponding to a rule 
, inspired by previous work 

(Zollmann and Venugopal, 2006; He et al., 2008; 
Cui et al., 2010), we design the following features 
to train our SSC models; 

Syntactic features, which are the general 
constituent labels defined in section 2.1 for 
the spans of r and the nonterminal symbols 
in the source side. 

Parts-of-speech (POS) features, which 
are the POS of the words immediately to 
the left and right of  and those of the 
boundary words covered by the 
nonterminal symbols in the source side. 

Length features, which are the length of 
sub-phrases covered by the nonterminal 
symbols in the source side.

In fact, our models can be extended to include 
other features, especially those in the target side. In 
order to compare our models with the work of 
Marton and Resnik (2008), we merely introduce 
several features. 

6 Experiments and Results 

We implement a hierarchical phrase-based system 
as our baseline, similar to Hiero (Chiang, 2005), 
and use XP+ (Marton and Resnik, 2008) as our 
comparison system. The features for the baseline 
are mentioned in section 1. We use the default 
setting as Hiero. When integrate our unified model 
into the translation model and then optimize its 

weight as the method in XP+, i.e. by MERT. We 
conduct our experiments on the Chinese-to-English 
translation task. The training data comes from 
FBIS corpus consisting of about 190k sentence 
pairs. The development set is NIST02 evaluation 
data and the test set is NIST05 evaluation data.  
 

GCL Size GCL Size 
IP 0.09M L\IP/R 2.98M 
VP 0.59M L\VP 0.36M 
NP 0.95M L\VP/R 2.31M 
L\IP 1.15M NP/R 0.62M 
IP/R 0.94M L\NP/R 1.06M 

 
Table 1 The distribution of the training examples for 

partial general constituent labels. 
 

We run GIZA++ (Och and Ney, 2000) on the 
training corpus in both directions (Koehn et al., 
2003) to obtain the word alignment for each 
sentence pair. Then, we employ Stanford parser 
(Klein and Manning, 2003) to generate the parse 
tree for the source side of the data. We acquire 
about 15.85M training examples among which are 
6.81M positive and 9.04M negative examples 
respectively. There are 88general constituent labels 
in all. Table 1 shows the distribution of the number 
of training examples for partial GCL labels. We 
employ the open toolkits of MaxEnt and LogReg 
to train SSC models for each GCL, and construct a 
linear combination model with them, where the 
interpolation weight is set to 0.86. We represent 
the translation systems based on LogReg, MaxEnt 
and their combination SSC models as the notations 
LogReg, MaxEnt and combination respectively. 
We train a 4-gram language model on the Xinhua 
portion of the English Gigaword corpus using the 
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SRILM Toolkits (Stolcke, 2002) with modified 
Kneser-Ney smoothing (Chen and Goodman,1998). 
In our experiments the translation performances 
are measured by case-sensitive BLEU4 metric 
(Papineni et al., 2002) and the statistical 
significance in BLEU score differences is tested by 
paired bootstrap re-sampling (Koehn, 2004). 

 
Systems BLEU-4 
Baseline 27.45 

XP+ 27.85* 
LogReg 27.67 
MaxEnt 28.35* 

Combination 28.48* 
 

Table 2 The comparison results of our methods 
with p<0.005 on MT NIST05 test set. 

 
As shown in Table 2, although LogReg does’t 

improve significantly, both the systems MaxEnt 
and Combination significantly outperforms the 
baseline with more than 0.9 bleu scores and 
Combination achieves the best performance, which 
reflects that the discriminative SSC model can 
improve the performance over the baseline. 
Moreover, though LogReg is comparable to XP+, 
MaxEnt and Combination obtain improvements 
with 0.5 and 0.63 bleu scores, which indicate that 
the discriminative models are more superior to 
heuristic model when modeling the sub-task in 
translation. 

 
Classifiers Accuracy 

LogReg 75% 
MaxEnt 83% 

Combination 88% 
 

Table 3 The accuracy of classifiers on training 
examples. 

 
Table 3 reports the accuracy of 3 

discriminative classifiers in the SSC classification 
task. Combination is superior to both MaxEnt and 
LogReg, and followed by MaxEnt. We can see the 
similar rank of the translation results reported in 
Table 2. That empirically gives us the evidence 
that if one wants to achieve better translation 
performance, he/she needs try and construct a 
much superior sub-model.  

In order to explain the effectiveness of our 
strategy to unify all SSC models into the decoder, 

we compare the two different methods mentioned 
in section 4.2 with MaxEnt SSC models. As 
reported in Table 4, there is a method to make the 
SSC models for all GCLs work together efficiently. 
Compared to the baseline, the method of uniformly 
combining SSC models doesn’t obtain significant 
improvement, which is consistent with the result of 
the soft syntactic feature in (Chiang, 2005). 
However, the unified method with priority is much 
better than the uniform one. We believe that the 
most possible reason is that there is a model bias 
problem with the uniform combination of the SSC 
models. For example, some low frequent GCLs 
may have high SSC model score, which makes the 
translation model prone to choose more rules 
covered by those GCL. With the help of prior 
probability of GCLs, the model bias will be 
eliminated. 

 
Methods BLEU-4 

Uniformly 27.70 
With priority 28.35* 

 
Table 4 The translation effect of unifying methods for 

MaxEnt based SSC models on MT NIST05 test set. 

7 Related Work 

There has been much effort to improve performance 
for hierarchical phrase-based machine translation 
by employing linguistic knowledge. Some of the 
work which is closely related with ours is reviewed 
in this section. 
 As presented previously, our work generalizes 
heavily from (Marton and Resnik, 2008). Besides 
exploring the soft syntactic constraints on 
hierarchical phrase model, ours investigates a way 
to make all the SSC models work together 
efficiently. (Stein et al., 2010) focuses on the 
syntactic constraint not only via the constituent 
parse but also via the dependency parse tree of 
source or target sentence. (Chiang et al., 2009; 
Chiang, 2010) similarly define many syntactic 
features including both source and target sides but 
integrated them into translation model by MIRA 
algorithm to optimize their weights. Their work 
proposes the heuristic syntactic features, while 
ours employ the discriminative syntactic models.  

Zollmann and Venugopal (2006) use a 
constituent parse tree of target to provide 
constraints on the synchronous rules. They refine 
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the translation grammar with the syntactic 
constituent types, while ours integrates syntactic 
knowledge as a sub-model. The idea to design the 
labels of our SSC models is bought from their 
work.  

Huang et al. (2010) decorate the syntax 
structure into the non-terminal in hierarchical rules 
as a feature vector. During decoding time, they 
calculate the similarity between the syntax of the 
source side and the rules used to derive translations, 
and then they add the similarity measure to 
translation model as an additional feature. Their 
work differs from ours in that they don’t directly 
use the syntax knowledge to calculate the 
additional feature score, but use it to derive a latent 
syntactic distribution. 

He et al.(2008) and Cui et al.(2010) employ  
the syntax knowledge as some of features to 
construct rule selection models. Our approach 
differs in two ways. First, their models are 
dominated by the rules, while ours are 
implemented by our syntactic labels. Secondly, 
when training discriminative models their training 
examples are derived from the rule extraction 
while ours are from the formal bilingual parsing 
derivation forest of the training data. Despite these 
differences, their strong results reinforce our claim 
that discriminative models are useful to build the 
sub-model in translation. 

8 Conclusion and Future Work 

In this paper we proposed a unified SSC model 
based on discriminative classifiers for hierarchical 
phrase-based translation. Experimental results 
prove the effectiveness of our method on the 
NIST05 Chinese-to-English translation task. 

There are three contributions in this paper. 
Firstly, it shows that the discriminative soft 
syntactic constraint model achieves better result 
over the heuristic model as (Marton and Resnik, 
2008). Secondly, it empirically proves that the 
more accurate classifier can gain better results 
when building a sub-model for the translation 
model. The third and final contribution is that our 
model proposes an efficient method which 
integrates all models with respect to general 
constituent labels into hierarchical phrase 
translation model and improves its performance. 

In the future work we will investigate some 
strategies to selection examples for training 

classifiers, so as to prove our results on a much 
larger training data set. 
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