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Abstract

In SMT, the instability of MERT, the com-
monly used optimizer, is an acknowledged
problem. This paper presents two methods
for smoothing the MERT instability. Both
exploit a set of different realizations of the
same system obtained by running the opti-
mization stage multiple times. One method
averages the sets of different optimal weights;
the other combines the translations generated
by the various realizations. Experiments con-
ducted on two different sized tasks involving
four different language pairs show that both
methods are effective in smoothing instability,
but also that the average system well competes
with the more expensive system combination.

1 Introduction

Statistical machine translation (SMT) systems fea-
ture a log-linear interpolation of models. Interpola-
tion weights are typically computed by means of it-
erative procedures which aim at maximizing a given
scoring function. Unfortunately, such a function is
definitely non-convex; hence, only local optima can
be reached. Moreover, it has been observed that the
commonly used optimization procedure, the N-best
minimum error rate training (simply MERT here-
after) (Och, 2003), is quite unstable. In the last
years, many efforts have been devoted for making
the procedure or its results more reliable. Recently,
a deep investigation of the optimizer instability has
been presented by Clark et al. (2011). In that work,
experimental evidence of the instability problems af-
fecting optimizers is shown; then, statistical tools

are selected for making possible both a quantita-
tive evaluation of the optimization process of sin-
gle systems and a fair comparison of two systems,
somehow independent from the optimization pro-
cess. The work ends with some recommendations:
for instance, run optimization at least three times;
use additional held-out test sets for manual analysis
of translations in order to select the best optimiza-
tion (better: “more reliable”) among those available.

By taking that investigation as a starting point, we
wondered whether it is possible to define a recipe for
handling the MERT instability. This paper presents
two simple but effective methods for smoothing that
instability, both exploiting a set of SMT systems re-
sulting from different optimization runs: (i) aver-
age system, which uses the means of the weights of
the available systems; and (ii) system combination,
where multiple translations of the test set are first
generated by the systems and then somehow com-
bined into a single hypothesis. Experiments show
that both methods are able to provide stable per-
formance. As expected, system combination yields
high translation quality at the cost of a significant
computational overload, as multiple translations of
the input are needed. On the other side, the average
system well competes with the system combination,
without any computational additional cost.

2 Related Work

Since its first appearance, the MERT procedure
(Och, 2003) has been recognized as unstable. The
author analyzed the problem and proposed a way for
smoothing the objective function to be optimized.
Thereafter, many works tried to handle and reduce
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instability of the MERT procedure, following differ-
ent approaches including regularization/smoothing
of the objective error surface (e.g. Zens et al. (2007),
Cer et al. (2008)), improvement in the optimization
algorithms – Simplex, Powell, Coordinate Descent,
etc. – (e.g. Cettolo and Federico (2004), Cer et al.
(2008)), usage of online learning techniques – Per-
ceptron, MIRA – (e.g. Collins (2002), Chiang et
al. (2008), Haddow et al. (2011)), better choice of
the random starting points (e.g. Moore and Quirk
(2008), Foster and Kuhn (2009)).

Also system combination has been already ap-
plied to SMT. One research line takes n-best trans-
lations of single systems, and produces the final out-
put by means of either sentence-level combination,
i.e. a direct selection from original outputs of single
SMT systems (Sim et al. (2007), Hildebrand and Vo-
gel (2008)), or phrase- or word-level combination,
i.e. the synthesis of a (possibly) new output joining
portions of the original outputs (Bangalore (2001),
Jayaraman and Lavie (2005), Matusov et al. (2006),
Rosti et al. (2007a), Rosti et al. (2007b), Ayan et al.
(2008), He et al. (2008), Rosti et al. (2008)). These
works focus on the combination of multiple machine
translation systems based on different models and
paradigms.

Investigation similar to ours has been done by
Macherey and Och (2007), and Duh and Kirchhoff
(2008).

Macherey and Och (2007) analyzed the combina-
tion of multiple outputs obtained by using one de-
coding engine with different models, trained on dif-
ferent conditions. Instead, we employ the same en-
gine and the same models; the variable part of the
combined systems is the set of interpolation weights.

BoostedMERT (Duh and Kirchhoff, 2008) uses
one single set of models, with different sets of inter-
polation weights. Each log-linear model is treated as
a “weak learner”, and boosting is used to combine
such weak learners for N-best re-ranking. On the
contrary, we either produce a new log-linear model
averaging the available sets of weights or decode a
new output combining the outputs of the available
systems.

A sort of averaging of the weights is commonly
included in the online learning methods, like MIRA,
but these algorithms strongly differ from the N-best
MERT we are investigating in this work.

Finally, Utiyama et al. (2009) proposes exactly
the same our approach, but we think that our exper-
imental investigation is a bit deeper.

As already stated, the work presented here is
rooted in the investigation provided by Clark et al.
(2011). Here we make a small step further by
proposing a recipe for making an SMT system re-
liable despite the instability of the optimization pro-
cess. This way, one is not only able to assess the re-
liability of the SMT system through the Clark’s sta-
tistical tool, but also to release a configuration which
is stable and provides performance very close to the
expected value.

3 Smoothing Methods

Figure 1 taken from Clark et al. (2011) shows the
distributions of the %BLEU score on the same test
set of two systems A and B over the space of pos-
sible optimizations, which are referred to as “opti-
mizer samples” hereafter.

Figure 1: Distributions of the %BLEU score of two
systems over the space of possible optimizations (figure
taken from Clark et al. (2011)).

The distributions of systems A and B are centered
at 48.4 and 49.9, respectively, showing that the for-
mer is clearly worse than the latter. In fact, in both
cases most optimizer samples are close to the aver-
age, and it is unlikely that the worst system outper-
forms the best one, by randomly selecting a sample
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for each system. Nevertheless, this possibility ex-
ists, with a probability proportional to the size of the
“non-trivial region of overlap”. Our goal is to design
a way for bringing a system to work at its expected
quality, that is in correspondence of the mean of its
optimization distribution, and to reduce or vanish the
region of overlap.

In the following, two methods for smoothing op-
timization instability are described, both assuming
the availability of a number of different optimizer
samples.

Average system (avg) The first solution is to use
the centroid of the available optimizer samples, i.e.
to average their weights (Utiyama et al., 2009). This
is meaningful because the models log-linearly inter-
polated by the various systems are the same.

Each optimizer sample corresponds to a particu-
lar local optimum; nevertheless, we expect that the
whole region fenced by such optima corresponds to
(relatively) high values of the development set score
function, and hopefully also to high values of the
test set score function. The centroid should then fall
inside that region both for the development and for
the test set, increasing the chance of stabilizing the
performance on the test set.

It is worth noticing that this approach requires ad-
ditional computation effort only in tuning stage, as
multiple optimization runs have to be performed.

System combination (sysComb) System combi-
nation is the second solution we propose for smooth-
ing the outputs of various optimizer samples.

For combining the outputs of the available
systems, we used the software1 developed at
CMU (Heafield and Lavie, 2010). It works at the
word level and smartly allows “the synthesis of
new word orderings”. The scheme includes sev-
eral stages. Hypotheses are aligned in pairs us-
ing the publicly available METEOR (Banerjee and
Lavie, 2005) aligner. Then, on these alignments a
search space is defined, which is explored by a beam
search decoding. Hypotheses are scored using a lin-
ear interpolation of features, including the LM score,
the hypothesis length and the average n-gram length
found in the LM. Interpolation weights are tuned us-
ing Z-MERT (Zaidan, 2009).

1Available at http://kheafield.com/code/mt/

This approach requires the translation of the test
set by each optimizer sample to be combined, be-
sides the computational cost of the combination of
translations itself.

4 Experiments

The SMT systems are built upon the open-source
MT toolkit Moses2 (Koehn et al., 2007). The trans-
lation and the lexicalized reordering models have
been trained on parallel data. The LMs have been
estimated via the IRSTLM toolkit (Federico et al.,
2008) either on the monolingual data, when avail-
able, or on the target side of the parallel data; they
are smoothed through the improved Kneser-Ney
technique (Chen and Goodman, 1999). The weights
of the log-linear interpolation model have been opti-
mized on the development sets by means of the stan-
dard MERT procedure provided within the Moses
toolkit: different realizations of tuned systems (opti-
mizer samples) have been obtained by multiple run-
ning of MERT with different random restarts at each
iteration. The same development sets have also been
used for tuning the interpolation weights of system
combination.

4.1 Data

Experiments were performed on two tasks: BTEC,
as defined by the IWSLT 2010 evaluation cam-
paign,3 which is a small sized task involving the
translation from Arabic and Turkish to English
of tourism-related sentences; and the “Context in
Translation” Challenge,4 which is a medium sized
task involving the English–to–Finnish and Greek–
to–French translations of legislative texts, from the
JRC-ACQUIS Multilingual Parallel Corpus.5

A detailed presentation of the BTEC task can be
found in (Paul et al., 2010). For our experiments,
we re-used the two systems developed for the eval-
uation campaign, which are thoroughly described
in (Bisazza et al., 2010). Table 1 reports some quan-
titative measure on the text employed.

Concerning the ACQUIS task, parallel and mono-
lingual texts are provided by the organizers of the
Challenge, together with a quite large development

2www.statmt.org/moses/
3iwslt2010.fbk.eu
4www.cis.hut.fi/icann11/con-txt-mt11/
5optima.jrc.it/Acquis/
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text #sent.
Arabic English

|W | |V | |W | |V |
parallel 21.5k 186.6k 14.6k 193.7k 8.5k

dev 506 3.4k 1.1k 4.1k 1.0k
test 507 3.5k 1.1k 4.1k 1.0k

text #sent.
Turkish English

|W | |V | |W | |V |
parallel 20.0k 168.1k 10.5k 168.1k 8.3k

dev 506 3.5k 1.0k 4.1k 1.0k
test 500 3.5k 1.0k 4.1k 1.0k

Table 1: Statistics on data used in experiments for the
BTEC task. |W | stands for “running words”, |V | for “vo-
cabulary size”. Values on target side of dev/test sets are
averaged on the 16 references.

set. We split it randomly in two parts, one used
for development (dev), one for testing purposes
(test). Table 2 shows some statistics of employed
data.

text #sent.
English Finnish

|W | |V | |W | |V |
parallel 796k 15.3M 181k 11.7M 385k
mono 1.9M - - 34.9M 1.0M
dev 3.7k 78.6k 5.0k 55.6k 10.4k
test 3.7k 79.8k 5.1k 56.5k 10.3k

text #sent.
Greek French

|W | |V | |W | |V |
parallel 754k 13.6M 214k 14.6M 165k
mono 1.9M - - 52.4M 507k
dev 3.8k 71.5k 7.8k 75.6k 5.5k
test 3.8k 72.8k 7.7k 77.2k 5.4k

Table 2: Statistics on data used in experiments for the
ACQUIS task. |W | stands for “running words”, |V | for
“vocabulary size”.

4.2 Results

Experiments relied on a number of optimizer sam-
ples obtained for each task by running MERT with
different random restarts at each iteration. For the
two BTEC tasks, 300 optimizer samples were gen-
erated; 13 for the ACQUIS tasks. In Tables 3
and 4, the rows optSample report the mean of the
BLEU% score computed on the test sets, its standard
deviation and the range of observed values.

For the smaller task, we combined N (6,12,20,30)

randomly chosen (without replacement) basic sys-
tems by means of the two methods presented in Sec-
tion 3. For making statistically comparable the ob-
served values, 300 of such combinations were per-
formed. Rows avgN and sysCombN of Table 3
refer to the combination of N optimizer samples by
means of avg and sysComb methods, respectively.

ar–en BLEU% stdev [min,max]
optSample 55.87 0.305 [54.90,56.68]
avg6 56.17 0.192 [55.35,56.78]
avg12 56.17 0.157 [55.64,56.55]
avg20 56.19 0.159 [55.61,56.70]
avg30 56.18 0.153 [55.46,56.80]
sysComb6 56.00 0.295 [55.13,56.90]
sysComb12 56.02 0.253 [55.24,56.67]
sysComb20 56.04 0.226 [55.11,56.51]
sysComb30 56.04 0.205 [55.36,56.69]

tr–en BLEU% stdev [min,max]
optSample 60.06 0.462 [58.53,61.39]
avg6 60.59 0.327 [59.75,61.54]
avg12 60.61 0.317 [59.91,61.57]
avg20 60.63 0.331 [59.75,61.40]
avg30 60.65 0.296 [59.84,61.35]
sysComb6 60.93 0.454 [59.60,62.01]
sysComb12 61.12 0.345 [60.14,61.95]
sysComb20 61.11 0.365 [59.99,62.17]
sysComb30 61.13 0.364 [60.16,62.22]

Table 3: Results for the BTEC task on the test.

The first thing to note is that the standard devia-
tions of the optSample are quite high in both cases
(0.305 on ar–en and 0.462 on tr–en), showing that
the quality of the translation can differ a lot from the
“expected” one (55.87 and 60.06): in fact the BLEU
scores can vary by almost 2 and 3 points, respec-
tively. This is a further evidence that the standard
practice of running the optimization just once can
lead to unexpected low performance.

Remarkably, on both language pairs the avg
method is able to reduce a lot the standard devia-
tion of the BLEU score: it drops from 0.305 and
0.462 to 0.153 and 0.296 respectively, when the
weights of 30 systems are averaged; but even with
fewer systems, the reduction is significant. More-
over, whatever the number of systems combined, the
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means (56.17-56.19 and 60.59-60.65) remain above
the optSample mean (55.87 and 60.06). Finally,
looking at the range of observed BLEU scores, it
results that even in the worst cases, the avg perfor-
mance are indeed very close to the expected value of
the basic systems: for example, averaging 30 sets of
weights, the worst systems perform only 0.41 (55.46
vs. 55.87) and 0.22 (59.84 vs. 60.06) BLEU points
below the expected scores. This means that the avg
method is effective in reducing the left tail of the dis-
tributions of Figure 1, that is the size of the overlap
region.

Concerning the sysComb method, it is as well
effective in reducing the variability (standard devia-
tion) of the observed performance, keeping even in
the worst case performance not too far fom the ex-
pected values: for example, by combining the trans-
lations from 30 optimizer samples, the worst sys-
tems get a BLEU score of 55.36 and 60.16, only 0.51
below and 0.10 above the respective optimizer sam-
ple means. On the other side, the sysComb does
not clearly outperform the cheaper avg method.

For the ACQUIS tasks, we repeatedly combined
N = 6 randomly chosen (without replacement) ba-
sic systems. Observed values are reported in Table 4.

en–fi BLEU% stdev [min,max]
optSample 35.95 0.080 [35.83,36.07]
avg6 35.97 0.023 [35.93,36.01]
sysComb6 36.34 0.106 [36.21,36.50]

el–fr BLEU% stdev [min,max]
optSample 58.22 0.104 [58.01,58.33]
avg6 58.09 0.043 [58.02,58.15]
sysComb6 58.92 0.114 [58.71,59.08]

Table 4: Results for the ACQUIS task on the test set.

Firstly, it is worth noting that the variability of
optSample is much lower than in the BTEC tasks:
this is due to the use of larger development sets for
tuning the weights. Nevertheless, the avg method is
able to further reduce such low variability, while the
sysComb method clearly performs even better: in
fact, even if its standard deviation is relatively large,
the range of BLEU scores is definitely preferable,
as the worst cases (36.21 and 58.71) outperform not
only the expected values but even the best systems

of both optSample (36.07 and 58.33) and avg
(36.01 and 58.15).

4.3 Deeper insights

Figure 2 shows scatter plots of the basic, avg, and
sysComb systems. Each point corresponds to the
performance (BLEU%) achieved by a given realiza-
tion of a system on the development and test sets of
the ar–en BTEC task. The three clouds consist of
300 points each.
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Figure 2: Scatter plots of optSample, avg30 and
sysComb30 for the ar–en BTEC task.

The figure clearly highlights the problems of the
MERT procedure.

Looking first at each single cloud, it results that
there is no correlation between the optimal perfor-
mance on the development set and that achieved on
the test set; a linear correlation would be indeed de-
sirable, showed by a tiny cloud along a straight line
with positive slope. On the contrary, the shape of
clouds shows that the test set performance cannot be
predicted from that on the dev set: not only the best
test set performance can be obtained from an opti-
mizer sample corresponding to a relatively low dev
set performance (see for example optimizer sample
“A”) and vice-versa (“B”), but also configurations
for which performance on the dev set are close can
yield to very different performance on the test set
(compare for example samples “A” and “C”).

Second, compare now the three clouds: although
the three systems got quite different scores on the
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development set (in fact, the three clouds are clearly
separated along the x-axis), their performance on the
test set are very similar (the means on the y-axis
of the three clouds are very close: from Table 3,
55.87, 56.18, 56.04). Actually, on the development
set the avg is penalized because both the other two
methods include a MERT/Z-MERT tuning stage per-
formed just on it; anyway, such experimental out-
comes further prove that it is difficult to predict the
behavior of a model tuned through MERT.

On the other side, the figure also puts in evi-
dence the effectiveness of the proposed methods.
The y-axis width of each cloud corresponds to the
[min,max] intervals reported in Table 3: the plots
show better than the crude figures that the scores on
the test sets are much more dense around the mean
for the avg30 than for the sysComb30, which in
its turn is definitely less scattered than the cloud of
optSample. In other words, both methods are ef-
fective in reducing the instability of MERT, but the
avg30 performs surprisingly well.

It would remain to explain why the two methods
are effective. It is known that sysComb is power-
ful in combining multiple MT outputs in such a way
that the quality of the synthetic translation is higher
than the single components. In our framework, this
means that the range of possible scores of system
combination is shifted towards better quality with
respect to optimizer samples, achieving the goal of
reducing the size of the overlap region in Figure 1.

Concerning the avgmethod, look at Figure 3: the
curves in the upper part refer to the BLEU% score
on the development set of six optimizer samples of
the BTEC ar–en task by varying just the LM weight,
keeping the other weights to the optimal values. In
other words, the curves are the sections along one
axis, that of the LM weight, of the multivariate score
function to be optimized by means of MERT.

The curves have a pronounced peak at the optimal
value of the LM weight, showing that MERT tends
to overfit the development set. The variability of
test set scores is due to the fact that the score func-
tion of the test set is not overlapped to the curve of
the development set, hence the peak of the latter can
fall on a sloping zone of the former and vice-versa.
By averaging the weights, likely the resulting value
will not fall on the (sloping) borders of the test set
curve, but on a (flatter) central zone. This is just
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Figure 3: Sections along the LM weight axis of score
functions of six different optimizer samples and of the
avg6 system.

what happened at the avg6 curve in the bottom part
of the Figure 3: it is the section along the LM weight
axis of the test set score function of the ar–en avg6
system; it can be noted that the mean of the x-values
of the 6 peaks (LMwavg) falls on a quite central/flat
portion of the avg6 curve, fact that can be assumed
as paradigmatic of the virtuous behavior of the aver-
aging method.

5 Conclusions

In SMT, the instability of the MERT is a well-known
but still open problem. It originates from the non-
convexity of the score function to be optimized and
the consequent existence of local optima. By look-
ing at the distribution of performance over the set of
all possible local optima, it results that most scores
are centered around the mean, but the tails exist and
can affect a lot experimental outcomes if a proper
practice is not adopted.

It is well known that running the optimization
stage just once can be harmful. Nevertheless, also
the standard practice of running it a number of times
and then picking up one configuration according to
some criteria can fail. This paper proposes and com-
pare two methods for bringing SMT systems to work
at the center of the optimizer distribution, in a sta-
ble way. They both rely on a relatively small num-

37



ber of optimizer samples and are empirically proved
to be effective. System combination yields perfor-
mance that even in the worst case are at least close
to the average quality expected by the basic system,
but on the downside it is expensive from a compu-
tational viewpoint. The alternative method, consist-
ing in just averaging the weights of optimizer sam-
ples, performs surprisingly well without any addi-
tional computational cost.
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