
Soft String-to-Dependency Hierarchical Machine Translation

Jan-Thorsten Peter, Matthias Huck, and Hermann Ney

Human Language Technology and Pattern Recognition Group
RWTH Aachen University, Aachen, Germany

{peter,huck,ney}@i6.informatik.rwth-aachen.de

Daniel Stein

Fraunhofer IAIS
St. Augustin, Germany

daniel.stein@iais.fraunhofer.de

Abstract

In this paper, we dissect the influence of several target-side
dependency-based extensions to hierarchical machine trans-
lation, including a dependency language model (LM). We
pursue a non-restrictive approach that does not prohibit the
production of hypotheses with malformed dependency struc-
tures. Since many questions remained open from previous
and related work, we offer in-depth analysis of the influ-
ence of the language model order, the impact of dependency-
based restrictions on the search space, and the information to
be gained from dependency tree building during decoding.
The application of a non-restrictive approach together with
an integrated dependency LM scoring is a novel contribution
which yields significant improvements for two large-scale
translation tasks for the language pairs Chinese–English and
German–French.

1. Introduction
String-to-dependency hierarchical machine translation em-
ploys target-side dependency features to capture syntacti-
cally motivated relations between words even across longer
distances. It is based on the hierarchical phrase-based
paradigm [1] and implements enhancements that allow for an
integration of knowledge obtained from dependency parses
of the training material. Dependency trees over translation
hypotheses are built on-the-fly during the decoding process
from information gathered in the training phase and stored
in the phrase table. A dependency language model can be
applied to rate the quality of the constructed tree structures.

In initial publications on the topic [2, 3], a restriction
of the phrase inventory to a subset of phrases which meet
certain validity conditions concerning the dependency rela-
tions is proposed. Phrases with dependency structures that
are not suitable for the construction of a well-formed de-
pendency tree are excluded beforehand. Additional merg-
ing constraints apply during decoding. In later works [4, 5],
heuristics are proposed that enable assembling of malformed
dependency structures as well, thus permitting the utiliza-
tion of the full phrase inventory of the standard hierarchical
approach. Validity and tree well-formedness conditions are
modeled in a soft way as features in the log-linear model.
Here, the dependency language model is however included

in an n-best reranking framework only.
This paper aims at filling the gap by investigating string-

to-dependency hierarchical translation with and without re-
strictions, and by comparing dependency LM reranking
methods with dependency LM scoring integrated into the de-
coder. In particular, we explore the following aspects:

• In an n-best reranking framework, only a limited
amount of fully generated sentences is presented to
the reranking models. We evaluate whether the depen-
dency LM works better in decoding or in reranking.

• The constructed dependency tree is probably erro-
neous, but so is a parse obtained directly with a depen-
dency parser on a grammatically malformed hypothe-
sis. We analyze whether in a dependency LM rerank-
ing framework a direct parsing of the n-best hypothe-
ses performs better than tree building during decoding.

• Restrictions on the phrase table entries as well as on
the allowed combination of phrases during decoding
might prevent possibly beneficial hypotheses. We in-
vestigate whether a soft, i.e. feature-based, approach
yields improvements over a restrictive method that
guarantees tree well-formedness. We analyze which
limitations, if any, are more useful when compared to
a non-restrictive approach.

• In the soft approach, the feature set of the log-
linear model of the baseline hierarchical system is
augmented with additional dependency-based features
that can be categorized in two groups: those associ-
ated with the tree building process and those related to
the dependency LM. We study how dependency tree
building features and dependency LM each perform in
isolation.

• Usually trigrams are used for the dependency language
model. We analyze the typical dependency tree struc-
tures found in our data and, based on the findings, ex-
plore which dependency language model order is ap-
propriate.

Results are presented in BLEU [6] and TER [7] on a NIST
Chinese–English subset and on a German–French corpus.

246

Bills

on

ports

and immigration

were

submitted

by

Senator

Brownback

Figure 1: Dependency tree of an English sentence.

2. Related Work
Besides the authors mentioned in the previous section, sev-
eral other groups have introduced dependency-based exten-
sions to their machine translation frameworks in recent years.

Among them, Galley & Manning [8] perform depen-
dency parsing during decoding by lowering the parsing time
to quadratic complexity. The authors work on the NIST
Chinese–English corpus and show significant improvements
over the baseline. Bach et al. [9] rely on source-side de-
pendency information for reordering information on the tree
structure. Similar to lexicalized reordering models, the tree
sub-structure is used to employ features in a phrase-based
system, for English–Spanish and English–Iraqi. Gao et
al. [10] propose soft reordering constraints based on the
source-side dependency structure in a hierarchical setting
with improvements on the NIST Chinese–English task. Xie
et al. [11] also work with source-side dependencies and store
the reordering information for each head-dependent. They
employ a dependency-to-string translation model and com-
pare its performance to a state-of-the-art hierarchical system,
on the NIST Chinese–English task. Quirk & Menezes [12]
present a treelet translation system with dependency projec-
tion from source to target and tree-based decoding.

3. Dependencies
A dependency models a linguistic relationship between two
words, like e.g. the subject of a sentence that depends on
the verb. Labelled by linguistic experts, large collections of
training material have been used to derive parsers that are
able to automatically label unknown sentences (e.g. [13]).
While losing some accuracy, these parsers often have the op-
tion to allow for only one outgoing dependency relation per
word, so that the dependency mapping within one sentence
results in a dependency tree. See Figure 1 for an example.

3.1. Dependency Structures in Translation

String-to-dependency machine translation demands the cre-
ation of dependency structures over hypotheses produced by
the decoder. Target-side dependency trees are also necessary
for dependency LM scoring. There are various methods pos-
sible on how to obtain these trees. Parsing during decoding as
well as parsing on a fully generated output hypothesis bear
the risk that the accuracy of the tree is very low, since the
output will likely be erroneous.

Bills

X˜1

were

submitted

on

ports

and immigration

Bills

X˜1

submitted

on

ports

and immigration

were?
Figure 2: Example of a well-defined merge (left) and an ill-
defined merge (right).

A different method is to parse the (hopefully grammati-
cally sound) training material, and to carry the dependency
structures over to the translated sentences by augmenting
the entries in the phrase table with dependency information.
However, the dependency structures seen on phrase level dur-
ing phrase extraction are not guaranteed to be applicable for
the assembling of a dependency tree during decoding. In Fig-
ure 2, we present an example with a well-defined merge of
dependency structures during decoding, but also one where
assembling a composed structure from the two parts causes
problems. Many of the extracted phrases may be covered by
structures where some of the dependencies contradict each
other. A standard solution is to restrict the phrase table to
only those entries that possess valid dependency structures,
i.e. structures that comply with certain well-formedness re-
quirements [2]. In an approach without hard restrictions, all
kinds of structures are allowed, but invalid ones are penal-
ized [4]. Merging heuristics allow for building of trees from
malformed dependency structures as well.

3.2. Phrases With Valid Dependency Structures

A fixed on head dependency structure represents a structure
where every word in the phrase depends only on other words
in the same phrase, with the exception of one word which is
defined as head. In a floating with children structure, the head
is allowed to be outside of the phrase, but the dependencies
inside the phrase cannot point to more than one head.

Formally, let depd = r denote the relationship between a
dependent word with index d on a regent word with index r.
A phrase that ranges from word indexes i to j, which has the
dependency structure depi...j , is called fixed on head h, iff

∃h ∈ [i, j], s.t. deph 6∈ [i, j] (1)
∀k ∈ [i, j] s.t. k 6= h, depk ∈ [i, j]

∀k 6∈ [i, j], depk = h ∨ depk 6∈ [i, j]

and floating with children C for a non-empty set C ⊆
{i, . . . , j} iff

∃h 6∈ [i, j], s.t. ∀k ∈ C, depk = h (2)
∀k ∈ [i, j] s.t. k 6∈ C, depk ∈ [i, j]

∀k 6∈ [i, j], depk 6∈ [i, j]

247

boy will

find

boy will

findX
Figure 3: Fixed on head structure (left) and a counterexample
(right).

boy will

find

boy will

findX
Figure 4: Floating with children structure (left) and a coun-
terexample (right).

Note that we apply these dependency structures for hierarchi-
cal phrases as well, i.e. in the decoding step the indexes can
represent terminal words as well as non-terminals. An exam-
ple and a counterexample for each a fixed on head structure
and a floating with children structure are shown in Figure 3
and Figure 4, respectively.

Based on the corpora used, only a small amount of
phrases is marked as fixed on head structure, while the ma-
jority of valid phrases is marked as floating with children
structures. We encounter large differences in the ratio of
valid phrases between the Chinese–English task with 43.5%
valid phrases and the German–French task with 29.3% valid
phrases as shown in Table 1. This differs from the 19.2% for
the Chinese–English task reported by Shen et al. [2]. One
major influence to this discrepancy is probably that our ta-
ble is filtered to contain only phrases from the translation
sets which could cause a distortion of our reported ratios.
Since this basically acts as a filter for very noisy and mal-
formed training material, the dependency structures are in
better shape. Other influences include the alignment and ex-
traction heuristics applied to the training material.

In this work, we opt for keeping even phrases with in-
valid structures in our translation table since they still might
contain valuable information. The number of invalid phrases
used to create the translation is provided as additional feature
function in order to equip the system with a means to control
the tree assembling. We present an experimental comparison
to the approach with hard restrictions in Section 5.1.3. A soft
approach also means that we will not be able to construct a
well-formed tree for all translations and that we have to cope
with merging errors.

3.3. Dependency Tree Building During Decoding

During decoding, the previously extracted dependencies are
used to build a dependency tree for each hypothesis. While
in the optimal case the child phrase merges seamlessly into
the parent phrase, often the dependencies will contradict each
other and we have to devise strategies for these errors. An ex-
ample of an ideal case is shown in Figure 5, and a phrase that

Table 1: Amount of phrases with valid dependency structure
as reported by Shen et al. and as observed in this work. Note
that our phrase tables are filtered to contain phrases from the
translation sets only.

total fixed floating
on head

Chinese–English [Shen et al.] 140 M 27 M

Chinese–English 43 M 1.1 M 17.8 M
German–French 34 M 0.8 M 9.3 M

breaks the previous dependency structure is shown in Fig-
ure 6. As a remedy, whenever the direction of a dependency
within the child phrase points to the opposite direction of the
parent phrase gap, we select the parental direction, but pe-
nalize the merging error via a count feature in the log-linear
model. In a restrictive approach, the problem can be avoided
by requiring the decoder to always obey the dependency di-
rections of the extracted phrases while assembling the depen-
dency tree.

4. Dependency Language Model
Given a dependency tree of the target language, we are able
to introduce language models that span over longer distances
than shallow n-gram language models, via a language model
on the dependency tree levels. More precisely, we compute
several language model scores for a given tree: for each node
as well as for the left and right-hand side dependencies of
each node. The node model PrT (w) is the probability for a
word to be the head of a smaller dependency structure, mod-
eled by a simple unigram language model. The left-hand
side model PrL(wh|whL1,L2,...,Ln

) for a head node wh with
whL1,L2,...,Ln

dependent words that appear in previous sen-
tence positions relative to the head, is computed with a regu-
lar n-gram language model. The right-hand side is modeled
analogous for dependent words that appear in a later sen-
tence position relative to the head. For each of these scores,
we also increment a distinct word count, to be included in the
log-linear model, for a total of six features.

Note that, while in a well-formed tree only one root can
exist, we might end up with a forest rather than a single tree if
several branches cannot be connected properly. In this case,
we compute the scores on each resulting (partial) tree but
treat them as if they were computed on a single tree.

5. Experiments
In this section, we empirically evaluate various aspects
of string-to-dependency hierarchical machine translation,
namely building the dependency tree during decoding, build-
ing it using a parser during reranking, hard restrictions vs.
soft features during dependency tree construction, the de-

248

industry

A∼1 A∼2

textilethe in

China

industry

textilethe in

China

merging

Figure 5: Merging two phrases without merging errors. All
dependency pointers point into the same directions as the
parent-dependencies.

industry

A∼1 A∼2

textilethein

China

industry

the textilein

China

merging

Figure 6: Merging two phrases with one left and two right
merging errors. The dependency pointers point into other
directions as the parent-dependencies.

pendency language model order, and the influence of fea-
tures created during the dependency tree construction. Sig-
nificance levels are annotated with (*) for p < .1 and with
(**) for p < .05.

We employ RWTH’s freely available machine translation
toolkit Jane [14], a hierarchical phrase-based translation sys-
tem comparable to David Chiang’s Hiero [1]. The baseline
setup, which is kept constant for all experiments with the
same language pair, consists of the following features: 4-
gram language model, phrase translation probabilities (tar-
get to source and source to target), word translation lexicons,
word penalty, phrase penalty, binary markers for hierarchical
phrases and generic glue rules. The word alignments have
been computed based on the IBM Models with GIZA++ [15].

5.1. Chinese–English

Large parts of our experiments are carried out on the NIST
Chinese–English task with around 3 million parallel train-
ing sentences and 81 million running words on the target
side. The NIST 2006 evaluation set (nist06) is used as a
development corpus, the NIST 2008 and 2005 sets (nist08,
nist05) and a concatenation of the NIST 2002 and 2004 sets
(nist0204) are used as test sets. We rely on the Stanford De-
pendency Parser [16] to create the dependency trees during
training and reranking. The parser model was trained on the
Wall Street Journal corpus.

5.1.1. Parsing Dependency Tree vs. Building During De-
coding

First, we wanted to check whether dependency tree construc-
tion during decoding is more reliable than obtaining depen-

dency trees by conducting dependency parsing directly on
output hypotheses. We carried out a reranking experiment
on 4000-best lists. While computationally expensive, pars-
ing the entries of n-best lists has the advantage that dealing
with merging errors or invalid phrases is not necessary. How-
ever, the tree obtained from a parse may contain even more
erroneous dependencies since hypotheses are often grammat-
ically unshaped.

We distinguish between the following feature sets:

Parse Tree dependency language model features based on a
dependency tree derived from parsing the n-best hy-
potheses

Constructed Tree dependency language model features
based on a dependency tree built during decoding

Tree Features penalty features for construction errors of the
dependency tree built during decoding

Combinations of these are inspected, too. The results in Ta-
ble 2 suggest that both the dependency tree derived from
parsing the n-best lists as well as the tree built during decod-
ing comparably improve the translation result on nist0204
and nist05, whereas nist08 is not that much affected. While
not significant, it still seems safe to assume that strong re-
sults are achieved for a combination of constructed tree and
tree features, since this can be observed for all test sets.

5.1.2. Dependency Language Model in Reranking vs. Inte-
gration into the Decoder

As the previous experiments relied on reranking only, which
is unsatisfactory since search errors cannot be corrected if
pruned at earlier stages, we implemented dependency LM
scoring during decoding. The improvements of an integrated
dependency LM scoring over 4000-best list reranking are
presented in Table 3.

The BLEU scores improve on all test sets, and are now
significant over the baseline for nist0204. The improvements
in TER are significant for all sets.

5.1.3. Features vs. Restrictions

So far, we penalized invalid phrases but kept them in the
phrase table. Shen et al. report a deterioration when the in-
valid phrases are filtered out of the table, which is however
counteracted by the dependency language model which then
raises the performance well over the baseline.

In this experiment, we analyze in which way a filtering
of invalid dependency structures affects our translation per-
formance. A smaller phrase table promises faster translation
with less memory usage requirements, but possibly worse re-
sults. Table 4 shows the performance of the filtered phrase
table (only valid phrases) in comparison to the unfiltered ta-
ble (all phrases) and the baseline. Restricting the translation
to use only valid phrases resulted in a decoding speed-up of
roughly 30%, but a slightly worse performance in terms of

249

Table 2: Building dependency tree during decoding vs. parsing the hypotheses, on the Chinese–English task (truecase). In this
experiment, the dependency LM is applied in an n-best reranking framework.

Setting nist06 (dev) nist0204 nist05 nist08
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 32.6 62.5 34.0 61.8 32.0 62.8 25.5 67.5

parse tree 33.0 62.2 34.4 61.6 32.6 62.2 25.2 67.2
constructed tree 33.0 62.5 34.1 61.9 32.4 62.6 25.5 67.5
constructed tree + parse tree 33.1 62.2 34.1 61.7 32.2 62.5 25.3 67.3

tree features 33.3 62.1 34.1 61.8 32.3 62.8 25.5 67.4
tree features + parse tree 33.1 62.3 34.2 61.9 32.6 62.8 25.1 67.7
tree features + constructed tree 33.3 61.7** 34.6 60.9** 32.6 62.0* 25.6 66.7**
tree features + constructed tree + parse tree 33.1 62.0 34.4 61.5* 32.4 62.6 25.4 67.2

Table 3: Dependency LM applied in reranking vs. integrated into decoding, on the Chinese–English task (truecase). Reranking
is done using the constructed tree with tree features.

Setting nist06 (dev) nist0204 nist05 nist08
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 32.6 62.5 34.0 61.8 32.0 62.8 25.5 67.5
reranking LM 33.3 61.7** 34.6 60.9** 32.6 62.0* 25.6 66.7**
integrated LM 33.5** 60.8** 34.9** 60.3** 32.9 61.1** 26.0 65.7**

Table 4: Hard restrictions vs. features, on the Chinese–English task (truecase).

Setting nist06 (dev) nist0204 nist05 nist08
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 32.6 62.5 34.0 61.8 32.0 62.8 25.5 67.5

only valid phrases 32.8 62.0* 34.5 61.2 32.4 62.0* 25.4 67.1**
no merging errors 32.5 61.5** 33.8 60.9** 31.7 62.3 25.5 66.4**

all phrases 33.5** 60.8** 34.9** 60.3** 32.9 61.1** 26.0 65.7**

Table 5: Separate effect of dependency tree building features and dependency LM, on the Chinese–English task (truecase).

Setting nist06 (dev) nist0204 nist05 nist08
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 32.6 62.5 34.0 61.8 32.0 62.8 25.5 67.5

tree features 32.7 61.4** 34.7** 60.7** 32.5 61.5** 25.5 66.6**
dependency lm 32.9 62.3 34.4 61.4* 32.4 62.6 25.4 67.2

tree features + dependency lm 33.5** 60.8** 34.9** 60.3** 32.9 61.1** 26.0 65.7**

250

Table 6: Effect of dependency LM order, on the Chinese–English task (truecase).

Setting nist06 (dev) nist0204 nist05 nist08
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 32.6 62.5 34.0 61.8 32.0 62.8 25.5 67.5

tree features, no dependency lm 32.7 61.4** 34.7** 60.7** 32.5 61.5** 25.5 66.6**

2-gram dependency lm 33.4* 61.0** 34.8** 60.4** 32.8 61.3** 25.9 66.2**
3-gram dependency lm 33.5** 60.8** 34.9** 60.3** 32.9 61.1** 26.0 65.7**
4-gram dependency lm 33.5* 61.2** 34.9** 60.3** 33.1** 61.2** 25.9 66.2**

Table 7: Experimental results with dependency features and dependency LM, on the German–French task (truecase).

Setting dev test eval10
BLEU TER BLEU TER BLEU TER

baseline 20.8 67.6 21.0 67.3 36.2 53.1
rescoring tree features + dependency lm 21.1 67.0* 21.2 66.8 36.2 52.9
tree features + rescoring dependency lm 21.0 67.0* 21.3 66.6* 36.3 52.6
tree features + dependency lm 21.2 66.7** 21.6* 66.1** 36.3 52.3

BLEU and TER compared to the unrestricted translation. The
restricted system still outperforms the baseline.

We also examine whether penalizing merging errors is
better than completely forbidding them (no merging errors).
The results show a drop in translation performance, as well.
It seems that the benefits of an enforced well-formedness of
constructed dependency trees do not outweigh the negative
effect of restricting the decoder.

5.1.4. Effect of Tree Building Features

We now wanted to separate the effect of the dependency tree
building features from the effect of the dependency language
model. The results of this experiment are given in Table 5.

Both of the feature sets show improvements over the
baseline for all test sets except nist08 when applied in isola-
tion. Using the combination of dependency language model
and dependency tree building features results in the best per-
formance, which indicates that they complement one another.

5.1.5. Dependency Language Model Order

We employed trigram language models for the left-hand side
and the right-hand side dependency levels in all previous ex-
periments. If we look into the dependency trees on the train-
ing data, we realize that few words conjoin more than 2-3
dependencies on either side (see Table 8). In the training
process for a dependency LM of higher order, n-grams with
n ≥ 4 would thus rarely be encountered.

We decided to experimentally affirm our assumption that
a trigram is a good choice. In the experiment presented in
Table 6, we compare the baseline with no language model

Table 8: Elements per dependency layer for the English side
of the Chinese–English task.

1 element 2 elements 3 elements ≥ 4 elements

left 20 602 300 9 329 134 5 967 009 2 101 633
right 24 654 584 5 273 208 1 941 730 840 557

scores and an enhanced baseline using only tree building fea-
tures with setups employing bigram, trigram and 4-gram de-
pendency LMs. The performance differences between the
various language model orders seem to be negligible, except
for a small increase moving from a bigram language model
to a trigram language model.

5.2. German–French

It is perhaps no coincidence that many syntactically mo-
tivated papers focus on a Chinese–English task since the
grammar structure is quite different and additional linguis-
tic knowledge often helps the system to improve over the
baseline. To examine if we can also obtain improvements on
other language pairs, we tested the setup that proved best on
the NIST Chinese–English task also on the German–French
language pair.

We work on the German–French translation task as de-
fined within the Quaero project. Our parallel training corpus
consists of 2 million sentences. Since the Stanford depen-
dency parser does not provide a pre-trained model to parse
French, we used the Berkeley dependency parser [17] in-

251

stead.
The translation results are presented in Table 7. While

the methods show little impact on the eval set of 2010, the
translation quality on the other test set significantly improves
in both BLEU and TER when applying tree building features
and dependency LM directly in decoding. Even though the
performance is not improved on all test sets for the German–
French task, we still consider string-to-dependency exten-
sions to be a valuable addition to hierarchical systems even
for closer-related language pairs.

6. Conclusion
We have shown that information derived from dependen-
cies can significantly improve the translation performance on
both a Chinese–English and a German–French task. By fo-
cussing on the individual aspects of the dependency features,
we were able to dissect the influences that contribute to this
improvement. It seems that parsing the output as compared
to constructing dependency trees from structures extracted
from parsed training material yields no positive impact on
the result. Utilizing a dependency language model during
decoding produces better results than when employed in a
reranking step. Additionally, in a non-restrictive dependency
tree construction process, tree building features give valu-
able information that can guide the translation to a grammat-
ically more sound direction. The n-gram order of the depen-
dency language model seems to have only a marginal influ-
ence. More interestingly, the translation performance is bet-
ter whenever the decoder search space is not restricted. Even
if merging errors are to be expected, it seems to be more im-
portant to offer these informations as soft features rather than
to exclude certain phrases.

7. Acknowledgments
This work was partly achieved as part of the Quaero Pro-
gramme, funded by OSEO, French State agency for innova-
tion, and partly funded by the European Union under the FP7
project T4ME Net, Contract No. 249119.

8. References
[1] D. Chiang, “Hierarchical Phrase-Based Translation,”

Computational Linguistics, vol. 33, no. 2, pp. 201–228,
June 2007.

[2] L. Shen, J. Xu, and R. Weischedel, “A New String-
to-Dependency Machine Translation Algorithm with a
Target Dependency Language Model,” in Proc. of the
ACL/HLT, Columbus, Ohio, June 2008, pp. 577–585.

[3] ——, “String-to-Dependency Statistical Machine
Translation,” Computational Linguistics, vol. 36, no. 4,
pp. 649–671, Dec. 2010.

[4] D. Stein, S. Peitz, D. Vilar, and H. Ney, “A Cock-
tail of Deep Syntactic Features for Hierarchical Ma-

chine Translation,” in Proc. of the AMTA, Denver, CO,
Oct./Nov. 2010.

[5] M. Huck, J. Wuebker, C. Schmidt, M. Freitag, S. Peitz,
D. Stein, A. Dagnelies, S. Mansour, G. Leusch, and
H. Ney, “The RWTH Aachen Machine Translation Sys-
tem for WMT 2011,” in Proc. of the EMNLP/WMT, Ed-
inburgh, UK, July 2011, pp. 405–412.

[6] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
a Method for Automatic Evaluation of Machine Trans-
lation,” in Proc. of the ACL, Philadelphia, PA, July
2002, pp. 311–318.

[7] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and
J. Makhoul, “A Study of Translation Edit Rate with
Targeted Human Annotation,” in Proc. of the AMTA,
Cambridge, MA, Aug. 2006, pp. 223–231.

[8] M. Galley and C. D. Manning, “Quadratic-time Depen-
dency Parsing for Machine Translation,” in Proc. of the
ACL/AFNLP, vol. 2, 2009, pp. 773–781.

[9] N. Bach, Q. Gao, and S. Vogel, “Source-side Depen-
dency Tree Reordering Models with Subtree Move-
ments and Constraints,” in Proc. of the MTSummit-XII,
Ottawa, Canada, August 2009.

[10] Y. Gao, P. Koehn, and A. Birch, “Soft Dependency
Constraints for Reordering in Hierarchical Phrase-
Based Translation,” in Proc. of the EMNLP, Edinburgh,
Scotland, UK., July 2011, pp. 857–868.

[11] J. Xie, H. Mi, and Q. Liu, “A Novel Dependency-to-
string Model for Statistical Machine Translation,” in
Proc. of the EMNLP, Edinburgh, Scotland, UK., July
2011, pp. 216–226.

[12] C. Quirk and A. Menezes, “Dependency treelet transla-
tion: the convergence of statistical and example-based
machine-translation?” Machine Translation, vol. 20,
no. 1, pp. 43–65, 2006.

[13] M.-C. de Marnee and C. D. Manning, “Stanford typed
dependencies manual,” 2008.

[14] D. Vilar, D. Stein, M. Huck, and H. Ney, “Jane:
Open Source Hierarchical Translation, Extended with
Reordering and Lexicon Models,” in Proc. of the
ACL/WMT, Uppsala, Sweden, July 2010, pp. 262–270.

[15] F. J. Och and H. Ney, “A Systematic Comparison of
Various Statistical Alignment Models,” Computational
Linguistics, vol. 29, no. 1, pp. 19–51, Mar. 2003.

[16] D. Klein and C. D. Manning, “Accurate Unlexicalized
Parsing,” in Proc. of the ACL, Sapporo, Japan, July
2003, pp. 423–430.

252

[17] S. Petrov, L. Barrett, R. Thibaux, and D. Klein, “Learn-
ing Accurate, Compact, and Interpretable Tree Annota-
tion,” in Proc. of the ACL, Sydney, Australia, July 2006,
pp. 433–440.

253

