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Abstract
In this work, we propose a novel method for vocabulary se-
lection which enables simultaneous speech recognition sys-
tems for lectures to automatically adapt to the diverse topics
that occur in educational and scientific lectures. Utilizing
materials that are available before the lecture begins, such as
lecture slides, our proposed framework iteratively searches
for related documents on the World Wide Web and gener-
ates a lecture-specific vocabulary and language model based
on the resulting documents. In this paper, we introduce a
novel method for vocabulary selection where we rank vo-
cabulary that occurs in the collected documents based on
a relevance score which is calculated using a combination
of word features. Vocabulary selection is a critical compo-
nent for topic adaptation that has typically been overlooked
in prior works. On the interACT German-English simulta-
neous lecture translation system our proposed approach sig-
nificantly improved vocabulary coverage, reducing the out-
of-vocabulary rate on average by 57.0% and up to 84.9%,
compared to a lecture-independent baseline. Furthermore,
our approach reduced the word error rate by up to 25.3% (on
average 13.2% across all lectures), compared to a lecture-
independent baseline.

1. Introduction
Education is increasingly becoming a global activity. Lec-
tures and research presentations can be broadcasted live
across educational institutes around the world enabling stu-
dents access to exceptional educational content no matter
their physical location. However, although physical barriers
are reduced using these technologies, language barriers re-
main. Lectures may be given in a language different from the
student’s native tongue and often the students that could ben-
efit the most from this content may not have sufficient lan-
guage skills to understand the lecture unaided. Interpreters
are not a practical solution in many cases as the costs in-
volved are prohibitively high. Recent works have thus inves-
tigated the use of speech-translation technologies to translate
lectures in real-time [1]. The biggest downfall of these sys-
tems however is portability. Current systems only perform
well if topic-specific models trained from similar lectures are
available. For each new topic, significant effort and cost is re-
quired to manually transcribe and translate similar lectures,

without which the system will generally perform poorly. In
this work, we propose to overcome this limitation by intro-
ducing approaches to automatically adapt speech translation
systems to the diverse topics that occur in educational lec-
tures. Utilizing materials that are available before the lecture
begins, such as lecture slides, our proposed framework iter-
atively searches for related documents on the World Wide
Web and generates lecture-specific models and vocabularies
based on these documents.

In modern simultaneous speech translation systems such
as the interACT simultaneous lecture translation system de-
scribed in [1], speech recognition is performed by applying
search across three models, an acoustic model, which mod-
els the phonetic units in the input language, a language model
(LM), which models the likelihood of word sequences, and
a recognition vocabulary, which models the pronunciation of
individual words. To allow real-time processing, the size of
the recognition vocabulary must be limited, typically in the
range of 30k-60k words. Words not present in active system
vocabulary will not be be recognized correctly and will often
lead to additional errors to the surrounding content. When
the mismatch between the training data used to build the ASR
system and the topic of the lecture is severe, vocabulary cov-
erage is poor leading to a high number of out-of-vocabulary
(OOV) words, low recognition accuracy and low intelligibil-
ity in the resulting transcript. To ensure high intelligibility
and faster than real-time processing, the selection of an ap-
propriate vocabulary for simultaneous speech translation is
critical.

To determine the importance of vocabulary selection for
this task, we performed a set of exploratory experiments in
which we limited the recognition vocabulary applied dur-
ing speech recognition to only those words uttered during
a specific lecture. These ”oracle” vocabularies significantly
improved both speech recognition accuracy and processing
speed. On average word error rate (WER) was reduced by 9.7
points (30.2% relative reduction) compared to an unadapted
system and decoding time was more than halved. Interest-
ingly, the difference in vocabulary between individual lec-
tures was large. Only 5% of vocabulary (on average 47%
of the spoken words per lecture) was common across all six
lectures we evaluated on. Although vocabulary selection is
a key component for effective adaptation, it has often been
overlooked by prior works.
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There have been a number of recent works that have
proposed methods to deal with the diversity of topics en-
countered in lecture speech. In [1], a system for trans-
lating German lectures into English was introduced. They
selected the system vocabulary based on word occurrence
counts in both in-domain (lecture transcriptions, presenta-
tion slides, and web data) and out-of-domain corpora, and
built lecture-independent models for speech recognition and
machine translation using these corpora. The development
of lecture-independent models was the goal of this work and
no lecture-specific adaptation was performed. Munteanu et
al. [2] introduced an approach for language model adap-
tation which leveraged documents available on the World
Wide Web to aid the archiving and search of lectures. Their
method collected PDF documents from the WWW based
on search queries extracted from the original lecture slides.
This approach improved transcription accuracy compared to
a lecture-independent baseline but vocabulary adaptation was
not considered thus limiting the usefulness of their approach.
An approach for joint vocabulary and language model adap-
tation was introduced in [3] in which words from the lec-
ture slides were first added to the active system vocabulary
and then language model adaptation was performed using
an approach similar to that described in [2]. A similar ap-
proach was applied for automatic subtitling of lectures for
the hearing impaired in [4] with an additional step in which
language model adaptation was performed independently for
each slide, resulting in an adaptive language model which
followed the course of the ongoing lecture. Within the MIT
Spoken Lecture Processing Project [5] a lecture-specific vo-
cabulary was extracted from supplemental text provided by
the lecturer, including lecture slides, journal articles, and
book chapters, which were made available prior to the lec-
ture.

Although the adaptation approaches described above
were effective for language model adaptation they did not
significantly improve vocabulary coverage. Even when all
words that occurred in the lecture slides were added to the
active vocabulary, the out-of-vocabulary rate remained high
compared to using topic-specific vocabularies. In this work,
we propose a novel approach to improve vocabulary cover-
age based on a feature-based vocabulary ranking scheme ap-
plied on documents automatically collected from the WWW.
Our proposed approach improves vocabulary coverage, LM
perplexity, and speech recognition accuracy compared to a
lecture-independent system and further improves the effec-
tiveness of other adaptation approaches including both lan-
guage model adaptation for speech recognition [2] and pos-
sibly the adaptation of machine translation using comparable
corpora [6].

2. The interACT Simultaneous Lecture
Translation System

The interACT Simultaneous Lecture Translation System [1]
is a real-time lecture translation system developed at the In-

  

Figure 1: The interACT Lecture Translation System.

Source	
  Language	
   Target	
  Language	
  

Speech	
  
Recogni2on	
  

Machine	
  
Transla2on	
  

Speech	
  
Synthesis	
  

Acous2c	
  
Model	
  

Language	
  
Model	
  Vocabulary	
   Language	
  

Model	
  
Transla3on	
  
Model	
   Voice	
  

Web-­‐based	
  Topic	
  Adapta3on	
  

Text	
  

Figure 2: Components of the Lecture Translation System

ternational Center for Advanced Communication Technolo-
gies (interACT) at Karlsruhe Institute of Technology (Ger-
many) and Carnegie Mellon University (USA). This sys-
tem, illustrated in Figure 1, simultaneously translates lec-
tures in real-time from the speaker’s language into multiple
languages required by the audience. To minimize the distrac-
tion to the audience, our system delivers translation as either
text or speech output. The translated text is displayed either
on screens in the lecture room, on a website accessible on
mobile devices or on heads-up displays. These technologies
are especially useful for listeners who have partial knowledge
of the speaker’s language and want to have supplemental lan-
guage assistance. Spoken translation output can be listened
to either via headphones or targeted audio speakers, which
make it possible to send the translated audio only to a small
group of people while the other listeners are not disturbed.

Figure 2 illustrates the three main components of our
lecture translation system: Automatic speech recognition
(ASR), machine translation (MT), and speech synthesis
(Text-to-Speech, TTS). Input speech from the lecturer is rec-
ognized by the ASR component [7] and the resulting output
is segmented into sentence-like units which are then passed
to MT. The resulting segments are then translated into one
or more target languages via our statistical machine trans-
lation (SMT) engine STTK [8]. The translated text is ei-
ther directly displayed to attendees or optionally converted
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Figure 3: Unsupervised Vocabulary Selection and Language
Model Adaptation

into speech output using a TTS engine. For each lecture the
speech recognition vocabulary, translation model, and both
source and target language models should be adapted to the
specific lecture topic. The active vocabulary in the source
language is critical because this defines the vocabulary used
in the end-to-end system.

3. Unsupervised Vocabulary Selection and
Language Model Adaptation

The vocabulary used by a presenter during a lecture can be
seen as a combination of two vocabularies as described in
[5]: A topic-independent lecture vocabulary, which contains
vocabulary common to spontaneous speech, and a topic-
dependent vocabulary. Our proposed approach for vocab-
ulary selection uses a similar breakdown. We begin with
a topic-independent lecture vocabulary, which consists of
stop words and common words used in spontaneous lecture
speech (in the experimental evaluation described in section
4 our common vocabulary consisted of 1788 words). In ad-
dition to this vocabulary, we then select a topic-specific vo-
cabulary for each lecture based on a set of initial seed doc-
uments, for example lecture-slides, handouts, or book chap-
ters. Using these seed documents, our proposed system auto-
matically collects a large corpus of related documents from
the World Wide Web and then selects an active recognition
vocabulary using a feature-based word ranking computed us-
ing this corpus. Additionally, the document corpus is used to
adapt the language model to the topic of the lecture. The
whole adaptation process consists of three steps, document
collection, vocabulary selection, and language model adap-
tation. Figure 3 illustrates the three steps of the adaptation
process, which are described in detail in the following sub-
sections.
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Figure 4: Document Collection

3.1. Document Collection

Figure 4 illustrates the document collection process. The
document collection process begins with one or more seed
documents, such as the slides of the lecture, from which
words and key phrases are extracted. Search queries are then
generated and a large number of web documents are collected
by performing a web-search. Then, language verification is
performed on the resulting documents. The document col-
lection process is described in detail in the following.

1. Word Extraction: The first step in document selec-
tion involves extracting text from the seed documents.
Symbols and punctuation are removed and the text is
lowercased and split into individual words. The re-
sulting word-list is then verified against an extremely
large dictionary to remove erroneous words that are in-
troduced during the extraction process. In the experi-
mental evaluation described in this paper, we used the
unigram occurrences from the Google Book Ngrams
dataset1 [9], which in total contains 3M word entries.

2. Query Selection: Next, search queries are gener-
ated from the lecture slides. Here, short phrases of
up to three words which do not contain any topic-
independent vocabulary are selected as search queries.

3. Web-Search: Web-search2 is then performed using
this query list. The search is limited to find only re-
sults in the source language and for each query, the
50 highest ranked documents were selected. Then, the
text from the resulting documents (web page or PDF
file) is extracted.

4. Language Verification: For each document, language
verification is performed to ensure that it is actually
in the required language. When the percentage of
topic-independent vocabulary in the document is be-
low 30%, the document is removed from further pro-
cessing.

1Available at http://ngrams.googlelabs.com/datasets
2Search is performed using the Microsoft Bing search engine.
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3.2. Vocabulary Selection using Feature-based Ranking

After document collection, the resulting vocabulary is too
large to be incorporated directly into an ASR system (in
our work we observed vocabularies between 135k and 850k)
and thus a smaller active recognition vocabulary must be se-
lected. To select words for this smaller vocabulary, a ranking
score for each word is computed. Words with the highest
score are added to the vocabulary until the desired vocabu-
lary size is reached. The ranking score is based on the dif-
ferent word features described in section 3.3. We compared
different scoring functions s(w) to compute the ranking of
each word w based on its specific word features fi(w):

1. Single Feature Score: The score ssingle,i(w) is based
on one single feature fi(w) (e.g. DocCount):

ssingle,i(w) = fi(w) (1)

2. Linear Feature Combination Score: The score
slinear(w) is defined as a linear weighting of two or
more features. For example:

slinear,i,j(w) = α · fi(w) + (1− α) · fj(w) (2)

3. Gaussian Mixture Model Score: The score sgmm(w)
is based on the likelihood ratio of two Gaussian Mix-
ture Models (GMMs). Two GMMs are trained, one
on words which occur in a specific lecture and one on
words which do not occur. The score sgmm(w) is the
difference in the log-likelihood of a word feature vec-
tor for each of these GMMs. For example with the
word feature vector fi,j(w) =

(
fi(w) fj(w)

)T
:

sgmm,i,j(w) = log Pin(fi,j(w))−log Pout(fi,j(w)) (3)

3.3. Features for Vocabulary Selection

The vocabulary ranking scores, described in section 3.2, rely
on the features defined in this section. In these definitions:
D is the set of all documents, Q is the set of all queries,
and W is the set of all words. The set which contains all
documents which contain the word wi is Dwi

(equation 4).
The set which contains all documents which were found by
the query qk is Dqk (equation 5) and the set which contains
all queries that found the word wi is Qwi

(equation 6).

Dwi
= {d ∈ D|wi ∈ d} (4)

Dqk = {d ∈ D|d ∈ qk} (5)

Qwi
= {q ∈ Q|∃d ∈ D : wi ∈ d ∧ d ∈ Dq} (6)

3.3.1. Document Features

For each document, two similarities metrics between the doc-
ument and the lecture slides are calculated. These similari-
ties are based on the cosine similarity (equation 7), which

has been found to be effective in information retrieval. We
are using a simplified version of the cosine similarity which
only compares the words which occur in the slides. This
modification speeds up the calculation and we believe it
has little effect on the final result. The cosine similarity
calculates the cosine distance between two vectors a =(
a1 a2 . . . an

)T
and b =

(
b1 b2 . . . bn

)T
in the

following manner:

cosine(a,b) =

n∑
i=1

ai · bi√
n∑

i=1

(ai)2 ·
√

n∑
i=1

(bi)2

(7)

We are using a simplified version of the cosine similarity

1. Cosine Similarity based on Word Frequency: Equa-
tion 8 shows the first similarity metric WFS(dk) be-
tween the slides s and the document dk.

WFS(dk) = cosine(freqs, freqdk
) (8)

where freqs is the word frequency vector for the slides
s and freqdk

is the word frequency vector for the doc-
ument dk, both for all the words in the slides. The
word frequency vector for any document x is explained
in detail in equation 9.

freqx =
(
countx(w1) . . . countx(wn)

)T
(9)

where w1, ..., wn are all unique words which occur in
the slides, countx(wi) is the number of occurrences of
the word wi in document x.

2. Cosine Similarity based on Tf-Idf: The second sim-
ilarity metric TIS(dk) (equation 14) is similar to the
first, however instead of the word frequencies, the vec-
tors contain the approximated tf-idf (term frequency
· inverse document frequency, equations 10 to 13) of
every unique word in the slides. Tf-idf is a common
metric used for information retrieval [10] and we are
using the following definition:

tf(wi, dk) =
countdk

(wi)∑
wj∈dk

countdk
(wj)

(10)

idf(wi) = log
N

g(wi)
(11)

whereN is the number of volumes in the Google Book
Ngrams dataset and g(wi) is the number of volumes
that contain the word wi in the Google Book Ngrams
dataset [9].

tfidf(wi, dk) = tf(wi, dk) · idf(wi) (12)

tfidfx =
(
tfidf(w1, x) . . . tfidf(wn, x)

)T
(13)

TIS(dk) = cosine(tfidfs, tfidfdk
) (14)
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3.3.2. Query Features

Each query qk has two metrics. The first metric QWF(qk) is
the average similarity between the slides and each document
found by this query based on the word frequency (equation
15). The second metric QTI(qk) is the average similarity
between the slides and each document found by the query
based on tf-idf (equation 16).

QWF(qk) =

∑
d∈qk

WFS(d)

|Dqk |
(15)

QTI(qk) =

∑
d∈qk

TIS(d)

|Dqk |
(16)

3.3.3. Word Features

For each word wi, 21 Features (f1(wi), ..., f21(wi)) are cal-
culated (equations 17 to 26). The majority leverage the doc-
ument and query features listed above.

1. DocCount: Number of documents in which the word
occurs.

f1(wi) = |Dwi
| (17)

2. VocCount: Number of occurrences in all documents.

f2(wi) =
∑
d∈D

countd(wi) (18)

3. tfSum: Sum of term frequencies:

f3(wi) =
∑
d∈D

countd(w)∑
wi∈W

countd(wi)
(19)

4. tfCosineCount: Sum of term frequencies weighted by
the cosine similarity based on word frequency:

f4(wi) =
∑
d∈D

WFS(d)
countd(w)∑

wi∈W

countd(wi)
(20)

5. tfCosineTfidf: Sum of term frequencies weighted by
the cosine similarity based on tf-idf

f5(wi) =
∑
d∈D

TIS(d)
countd(w)∑

wi∈W

countd(wi)
(21)

6. DocCosineCount: max, min and average of the doc-
ument feature WFS of all documents (Dwi ) in which
the word wi occurs.

f6,7,8(wi) = WFSmax,min,avg(Dwi
) (22)

7. DocCosineTfidf: max, min and average of the docu-
ment feature TIS of all documents (Dwi

) in which the
word wi occurs.

f9,10,11(wi) = TISmax,min,avg(Dwi
) (23)

8. QueryScoreCount: max, min and average of query
feature QWF of all queries (Qwi

) that found the word
wi.

f12,13,14(wi) = QWFmax,min,avg(Qwi
) (24)

9. QueryScoreTfidf: max, min and average of query
feature QTI of all queries (Qwi

) that found the word
wi.

f15,16,17(wi) = QTImax,min,avg(Qwi
) (25)

10. GoogleBookIDF: Inverse document frequency based
on the Google Book Ngrams dataset (equation 11).

f18(wi) = idf(wi) (26)

11. GoogleBookNgrams: The word features f19,20,21 are
the values match count, page count and volume count
from the Google Book Ngrams dataset [9].

3.4. Language Model Adaptation

Once an active vocabulary has been selected, we adapt the
language model (LM) to be applied during recognition us-
ing an approach similar to [2]. First, we train a lecture-
independent LM using large lecture-independent corpora.
Then, for each lecture we train a separate LM using the
lecture slides and the resulting web documents found with
our document collection approach (section 3.1). A lecture-
specific LM is subsequently generated by interpolating these
two LMs using the SRILM [11] toolkit. We used a fixed
interpolation weights of 0.5 in our experimental evaluation.
Kneser-Ney smoothing [12] was applied.

4. Experimental Evaluation
We evaluated the effectiveness of the proposed method on
the German speech recognition component in our German-
English Simultaneous Lecture Translation system [1]. The
evaluation was performed on six lectures held at Karlsruhe
Institute of Technology, in 2009 and 2010. The lectures con-
sisted of a variety of topics: Data structures (Lect1), machine
translation (Lect2), mechanics (Lect3), population geogra-
phy (Lect4), computer architecture (Lect5), and copyright
law (Lect6).

4.1. Vocabulary Selection

First, we evaluated our proposed vocabulary selection ap-
proach in terms of the reduction in out-of-vocabulary (OOV)
rate it could provide. Evaluation was performed using only
Lectures 1-4, as transcripts of Lectures 5 and 6 were not
available when this evaluation took place.

4.1.1. Baseline

Baseline vocabularies with 40k, 90k, and 300k words were
selected from a combined corpora of broadcast news, par-
liamentary debates, printed media, and university web data
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Figure 5: Proposed linear ranking results for a 40k vocabulary compared with baseline and baseline+slides.

using the method described in [13]. Using these vocabu-
laries, the average OOV rate across the four lectures were:
5.6% (40k), 4.0% (90k), and 3.0% (300k). Adding vocab-
ulary that occurred in the lecture slides (”Baseline+Slides”)
reduced OOV rate on average by 18.2%, obtaining average
OOV rates of 4.6% (40k), 3.2% (90k), and 2.5% (300k). A
detailed breakdown per lecture for 40k vocabularies is shown
in Figure 5.

4.1.2. Feature-based Vocabulary Selection

First, we selected vocabularies by ranking them by a single
feature. The average OOV rate of 40k vocabularies selected
using the single feature scores of all 21 features is shown in
figure 6. The lowest OOV rate using single feature ranking
score was obtained using feature 1, DocCount (f1), deliver-
ing average OOV rates of 2.4% (40k), 1.6% (90k), and 1.1%
(300k). The feature 2, VocCount (f2), obtained similar OOV
rates, on average 2.6% (40k), 1.7% (90k), and 1.1% (300k).
Vocabulary selection using either of these two features leads
to a significantly lower OOV rate than the OOV rate of the
three baseline systems. Figure 5 shows the OOV rate of a 40k
vocabulary selected using the DocCount feature compared
to the Baseline (with and without slides). For all four lec-
tures, the OOV rate is significantly lower than the proposed
Baseline vocabularies even when slides were added. Using
the proposed vocabulary selection with the DocCount feature
improved our baseline OOV rate on average by 56.8% while
maintaining the same vocabulary size.

Next, we investigated the effectiveness of combining
multiple features for vocabulary ranking. We linearly com-
bined pairs of features using the linear feature score (sec-
tion 3.2, eq. 2) evaluating across all feature combinations.
We observed that combining DocCount and VocCount with
α = 0.5 (”Doc+VocCount”) obtained an small average re-
duction of OOV rate of 1% compared to using the DocCount
feature alone, obtaining average OOV rates of 2.3% (40k),
1.6% (90k), and 1.1% (300k). The largest relative reduction
in OOV rate was 84.9% which was obtained on lecture 3 for
a 300k vocabulary, reducing the OOV rate from 5.0% (Base-
line) to 0.8% (Doc+VocCount). GMM-based word ranking
(section 3.2, eq. 3) did not reduce the OOV rate compared
to the linear case. We evaluated all feature-pairs and al-
though slight improvements were gained for specific lectures
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Figure 7: Average OOV rate of baseline compared with lin-
ear combination in different vocabulary sizes.

no feature-pairs consistently improved performance across
all lectures. Fig. 7 shows the effectiveness of our proposed
linear score Doc+VocCount compared to the baseline over
varying vocabulary sizes. The proposed approach reduced
the OOV rate by 58.2%, 55.1%, and 57.7% for the 40k, 90k,
and 300k systems. More significantly the 40k vocabulary
selected with the proposed approach obtained a lower OOV
rate of the 300k Baseline system, showing the effectiveness
of this approach.

4.2. Lecture-dependent Language Model Adaptation

For each lecture, the method described in section 3.4 was ap-
plied to train a lecture-specific language model (LM) using
the vocabulary selected in section 4.1.2, a topic-independent
corpora (1280M words) consisting of broadcast news (110M
words), parliamentary debates (160M words), printed media
(160M words), and web data (850M words), and a lecture-
specific corpora (avg. 56M words) consisting of the slides
and web documents collected using the method described
in section 3.1. The SRILM [11] toolkit was used for LM
training and LM interpolation. The resulting lecture-specific
LMs obtained a significantly lower perplexity compared to
the baseline lecture-independent model as shown in Table 1.
On average, the lecture-dependent LMs reduced perplexity
by 23.5%.

4.3. Lecture-dependent Speech Recognition

Using the automatically selected vocabularies and lecture-
specific language models, we performed speech recogni-
tion of each lecture using the automatic speech recognition
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Baseline Adapt LM
Lecture 1 344.1 261.4 (24.0%)
Lecture 2 352.0 291.3 (17.3%)
Lecture 3 325.0 192.2 (40.9%)
Lecture 4 247.1 207.1 (16.2%)
Lecture 5 274.3 170.1 (38.0%)
Lecture 6 241.3 229.9 (4.8%)

Avg. Improvement - 23.5%

Table 1: Language Model Perplexity (40k Vocabulary)

(ASR) component of our lecture translation system (sec-
tion 2). Recognition was performed using the Janus speech
recognition toolkit using speaker adaptated acoustic mod-
els. The German ASR system was trained with around 150
hours of audio data. Speaker adaptive recognition was per-
formed using both feature and model-space adaptation. The
acoustic model had 4000 codebooks and each codebook had
at most 64 Gaussian mixtures determined by merge-and-
split training. Semi-tied covariance and boosted MMI dis-
criminative training was performed during model training.
The features for the acoustic model was the standard 39-
dimension MFCC. We concatenate adjacent 15 frames and
perform LDA to reduce the dimension to 42 for the final fea-
ture vectors.

We evaluated the speech recognition accuracy of four dif-
ferent systems. The word-error-rate (WER) results for a 40k
vocabulary are shown in Table 2. The lecture-independent
baseline system obtained an average WER of 34.3% across
the six lectures used in this evaluation. When vocabulary se-
lection (described in section 3.2) was performed using linear
feature combination score (Doc+VocCount) an average WER
of 32.4% was obtained, a 5.8% relative reduction compared
to the baseline system. With LM adaptation (described in
section 3.4), an average WER of 33.9% was obtained, a 1.3%

Vocabulary X XSelection
LM X XAdaptation

Lecture 1 43.1 42.4 42.7 41.0 (5.0%)
Lecture 2 34.9 35.7 34.3 34.2 (2.0%)
Lecture 3 33.4 27.3 34.7 26.2 (21.6%)
Lecture 4 28.3 23.9 28.5 22.5 (20.6%)
Lecture 5 28.4 28.8 25.5 21.2 (25.3%)
Lecture 6 37.4 36.4 37.6 35.7 (4.4%)
Average - 5.8% 1.3% 13.2%Improvement

Table 2: Word Error Rate (40k Vocabulary)

relative reduction compared to the baseline system. Apply-
ing both, vocabulary and LM adaptation, led to an average
WER of 30.1%, a 13.2% relative reduction compared to the
baseline system. On average, vocabulary selection obtained
higher recognition accuracy than LM adaptation alone, but
the biggest gain was obtained by combining both, vocab-
ulary selection and language model adaptation. Although,
the improvement was not equally large across all lectures the
proposed approach always improved speech recognition ac-
curacy.

5. Conclusion
Effective adaptation techniques are required to enable lec-
ture transcription and lecture translation systems to perform
adequately across the diverse topics that occur in educational
and scientific lectures. Our proposed approach solves one of
the key issues in current systems, that of selecting an appro-
priate topic-specific vocabulary for real-time speech recog-
nition. Starting with a seed document, like lecture slides,
lecture-related documents are automatically collected from
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the World Wide Web. Then, a lecture-specific vocabulary is
selected using a novel vocabulary selection approach using
feature-based ranking scores applied on the collected docu-
ment corpus. Additionally, the document corpus is used to
adapt the language model. Using our approach, the OOV
rate was reduced by up to 84.9% (on average by 57.0%)
compared to a baseline vocabulary. Furthermore by gen-
erating a lecture-specific language model incorporating the
retrieved web documents, word error rate was dramatically
reduced, obtaining a WER up to 25.3% lower than a lecture-
independent Baseline.
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