
Apertium Advanced Web Interface
A first step towards interactivity and language tools convergence

Arnaud Vié

Informations Systems
Engineering

Grenoble INP - Ensimag
arnaud.vie@ensimag.fr

Luis Villarejo Muñoz,
Mireia Farrús Cabeceran

Learning Technologies Office
Universitat Oberta de Catalunya
lvillarejo@uoc.edu,
mfarrusc@uoc.edu

Jimmy O’Regan

Eolaistriu Technologies
Thurles
Ireland

joregan@gmail.com

Abstract

This document describes a project
aimed at building a new web inter-
face to the Apertium machine transla-
tion platform, including pre-editing and
post-editing environments. It contains
a description of the accomplished work
on this project, as well as an overview
of possible future work.

1 Introduction

One of the classic, and still open, tasks of Natural
Language Processing (NLP) is Machine Trans-
lation (MT). Since its first steps, back in the
1950s (Hutchins and Somers, 1992), MT has in-
creased its presence in several scenarios provid-
ing access to multilingual content. The number
of MT initiatives has risen greatly in recent years,
mainly in statistical MT, as a result of the avail-
ability of vast multilingual parallel texts, but also
in rule-based MT, example-based MT or hybrid
systems.

One such example is the Apertium machine
translation engine1. Apertium is a transfer-based
MT platform which provides the engine, tools and
data to perform translations between a large num-
ber of language pairs, available under the terms of
the GNU General Public License (GNU GPL)2,
and is being developed by a community of users
worldwide. It has been integrated in a wide vari-
ety of translation workflows both at public institu-

1http://www.apertium.org
2http://www.gnu.org/copyleft/gpl.html

tions like The Open University of Catalonia (Vil-
larejo et al., 2009) and private institutions such as
Autodesk (Masselot et al., 2010).

Apertium’s basic design is based on the
earlier Spanish–Catalan MT system interNOS-
TRUM3 (Canals-Marote et al., 2001), and the
Spanish–Portuguese translator Traductor Univer-
sia4 (Garrido-Alenda et al., 2004). developed by
the Transducens group at the University of Ali-
cante.

Apertium is designed to operate as a UNIX
pipeline (McIlroy et al., 1978): each component is
implemented as a separate program, which reads
and writes a simple text stream. Components can
be added or removed as required: typical compo-
nents in an Apertium pipeline include:

• A deformatter which encapsulates the for-
mat information in the input as superblanks
that will then be seen as blanks between
words by the rest of the modules.

• A morphological analyser which segments
the text in surface forms (words) and deliv-
ers, for each of them, one or more lexical
forms consisting of lemma, lexical category
and morphological inflection information.

• A PoS tagger which chooses the most likely
lexical form corresponding to an ambiguous
surface form.

• A lexical transfer module which reads each
SL lexical form and delivers the correspond-

3http://www.internostrum.com
4http://traductor.universia.net

F. Sánchez-Mart́ınez, J.A. Pérez-Ortiz (eds.)
Proceedings of the Second International Workshop on Free/Open-Source Rule-Based Machine Translation, p. 45–51
Barcelona, Spain, January 2011. http://hdl.handle.net/10609/5641



ing target-language (TL) lexical form by
looking it up in a bilingual dictionary.

• A morphological generator which delivers a
TL surface form for each TL lexical form, by
suitably inflecting it.

• A post-generator which performs ortho-
graphic operations such as contractions (e.g.
Spanish del = de + el) and apostrophations
(e.g. Catalan l’institut = el + institut).

• A reformatter which de-encapsulates any
format information.

A complete description of the platform can be
found in Forcada et al. (2009).

Despite the advances in MT, there has yet to
be a system that can produce a perfect transla-
tion. For the purpose of assimilation, or the un-
derstanding of text, MT can be sufficient; how-
ever, for the purpose of dissemination, or the pub-
lication of translated material, correction (post-
editing) by a human editor is typically required.
Doyon et al. (2008) divides these edits into
two main categories: Full Edits (larger changes,
mainly stylistic), and Brief Edits (small changes,
mainly syntactic).

Automating the process of post-editing is itself
an active area of research, both in SMT (Chin and
Rosart, 2008), and in rule-based MT. Llitjós et al.
(2004) describes a method of automatically refin-
ing rules in a transfer-based system based on user
feedback; however, the types of edits permitted
are restricted to Brief Edits, while for this work,
we aimed at allowing the editor full freedom to
edit as they saw fit.

2 Overview

The Apertium platform lacks one important as-
pect: the ability to get user feedback on the qual-
ity of the translation, in order to improve the
translation process. Therefore, the initial aim of
the project was to build a post-editing environ-
ment in which users may correct the translation
they obtained, and that the changes they made
may be logged by the system to benefit from that
user’s feedback.

With that goal in mind, we realised that a great
number of the typical mistakes found in an auto-
matically translated document are due to mistakes

in the source document. Thus, the inclusion of au-
tomatic tools that can highlight to the user possi-
ble errors or perform efficiently certain repetitive
tasks regarding the source document which could
improve the translation process.

However, Apertium’s web interface5 is funda-
mentally inadequate for such a task, as it takes
care of the whole translation process at once.
Here, it is necessary to pause before transla-
tion (for pre-editing) and just after the automatic
translation (for post-editing) to enable the user to
check for mistakes and correct them in both the
source document and the translated output, with
all tasks performed via the web interface to allow
logging of the edits, hence it proved necessary to
build a whole new interface, as well as a frame-
work for future post-editing tools.

This gave birth to the Apertium Advanced Web
Interface (AWI) project. As part of the Apertium
project, it is available under the terms of the GNU
GPL, and hosted on Apertium’s SVN repository6.

3 Benefiting from user edits

3.1 Translation Memory generators and
their limits

A simple way, quite commonly used in the NLP
community, to benefit from the translation’s re-
sult is decomposing both source and generated
texts in smaller elements, and then find the cor-
respondance between them with an aligning al-
gorithm. This Advanced Interface embeds such
a tool, mALIGNa7 (Jassem and Lipski, 2008),
making it able to generate a Translation Mem-
ory (TM) of the result in the TMX format (LISA,
2005). A small example of such file is given be-
low in Figure 2.

Such a TM can then be reused by translation
engines if they encounter the same elements later.
Many engines allow for approximative matches to
be considered as well, so that these memories be
used in more different cases. Ideally, when Aper-
tium has better support for TMX input8 we could
store this file locally as well to keep a corpus of
completed translations and reuse it.

5Available on http://www.apertium.org
6http://apertium.svn.sourceforge.net/
7http://align.sourceforge.net/
8Currently, only a subset of TMX 1.1 is supported.

46



Figure 1: Overall interface layout

Figure 2: Example of TMX file
<?xml version="1.0"?>
<tmx version="version 1.1">
<header
creationtool="Apertium TMX Builder">

</header>
<body>
<tu>
<tuv xml:lang="en">

<seg>This is a test</seg>
</tuv>
<tuv xml:lang="es">

<seg>Esto es una prueba</seg>
</tuv>

</tu>
<tu>
<tuv xml:lang="en">

<seg>This is test 3</seg>
</tuv>
<tuv xml:lang="es">

<seg>Esto es prueba 3</seg>
</tuv>

</tu>
</body>
</tmx>

However, while being widely supported and
quite simple to use, this approach also has a ma-
jor drawback: it is virtually impossible to have it
working on a lower level than complete sentences.
Indeed, while most sentences retain punctuation,
relative order and length throughout the transla-
tion – making aligning sentences rather simple –
words don’t. The order of words is frequently
changed, a single word can be translated into sev-
eral, and so on.

3.2 Text edit logging: different possibilities

A different approach, allowing for more precise
analysis, is to log the changes made by the user in
the target text after the translation. This isn’t di-
rectly reusable in other translation processes, but
it can help language pair maintainers get an idea
of the changes to make. There are two main ways
to envision this analysis.

The first is to compare the initial and final
forms of the document. A simple diff utility can
provide the shortest list of transformations lead-
ing from the source text to the result. If the user
has only made small changes in the process, this
should give out good results. However, important
changes may result in it being difficult for the diff
tool to located changed and unchanged portions
of the text properly.

The second is to log events in real time. In
other words, getting information on the user ed-
its at the precise moment they are made. The
main advantage of this approach is that some spe-
cific events can then be handled in a specific way.
For example, it enables logging a global replace-
ment as such, while a comparison between input
and output texts would point out one difference
for each occurrence of the replacement. This is
the approach implemented in the Apertium AWI
project.

The central point of this approach is therefore
the need to be able to interpret a small event at the
moment it occurs, in the web browser, in terms of
an operation on words and sentences. Indeed, the
web browser gives technical information about
events in terms of affected document node and

47



position inside of the node, that have to be con-
verted to the linguistic information we wish to ob-
tain. This is all the more complex as the text can
be contained in a lot of different document nodes,
due to the original document’s formatting infor-
mation.

3.3 An interface between browser
information and linguistic data

To deal with that problem, this project relies on
a text data structure, basically a sequence of sen-
tences that all are a sequence of words, with infor-
mation on the position of each word in the docu-
ment. A word in that structure is represented by
the object containing the following properties:

• The current text data of the word, that will
change as edits occur.

• The original text data of the word when it
was loaded. This won’t change during edit-
ing.

• A reference to the sentence object containing
this word

• A reference to the document node containing
this word

• The position of the word inside of that node

• References to the previous and next words of
the text

All the same, a sentence is represented as:

• References to its first and last words

• References to the previous and next sen-
tences

And the text object contains references to its
first and last sentences and words.

This way, locating the word affected by an
event is quite easy. It is also easy to get the con-
text around a word - the neighboring words, or
event the complete sentence it belongs to. The
hard part is keeping that structure synchronised
with the real text as the edition goes on, and that is
what the logging lowlevel module of the project
does. It is done by handling elementary opera-
tions, ie inserting or deleting a character, and de-
termine the structural change to operate consider-
ing the properties of the said event.

3.4 The log structure
Now that we can get the information to log in a
useful form, it is time to generate a proper log.
The logging lowlevel module will call func-
tions from the logging module whenever a ba-
sic operation is being performed. These opera-
tions include adding, deleting or editing a word,
as well as splitting and merging sentences (by
inserting or deleting punctuation). This logging
module can then be written to handle these basic
operations in any desired way; for now, its main
job is to group events regarding the same entity.
For example, if the user deletes the word “the”,
three events would be sent by the lowlevel mod-
ule: edited the word twice, and then deleted it.
That is, the elementary events involved are three
character deletions, where the first two leave a
part of the word (hence a word edition report),
whereas the last event deletes the only character
of the word (hence a word deletion report). The
logging module takes care of grouping all these
elementary logs into one word deletion log, and
so on. Of course, that module could quite sim-
ply be changed to group the events in different
ways, to output more of the context of an event,
and so on, without changing the lowlevel module
that does most of the work.

4 Improving the user experience with
the translation

The second objective of this project was to pro-
vide a simple interface as well as to integrate con-
venient tools into it to help the user get an ac-
curate translation. The following tools were in-
cluded:

4.1 Formatted document handling
The text editor is able to handle formatted
documents through the apertium-unformat and
apertium-reformat modules, which replace the
usual Apertium format handling tools. Currently,
it supports the ODF (ISO, 2006) format, notably
used in the OpenOffice suite, but this can be ex-
tended to other formats. Translating formatted
documents changes only one aspect of the user
interface: non-deletable characters (displayed as
grey spaces at the moment, see Figure 3) ap-
pear in the text to represent the superblanks con-
taining format information, so the user can make

48



more accurate decisions on where words should
be placed in relation to their formatting.

Figure 3: Example of formatting artefacts

4.2 Spell checking and Grammar checking
The interface integrates the ability to check both
input and output texts for mistakes. The interface
provides a button “Check for mistakes” on top
of each text editing field. When pressed, it runs
spell checking and grammar checking on the text,
in the language specified by the language pair
selected for the translation, and underlines mis-
takes in different colours (red for spelling, blue
for grammar). The user can then click on a mis-
take to see suggestions if they are available (Fig-
ure 5) and select one; the description of a gram-
mar error can also be seen when hovering over it,
as shown in Figure 4.

Figure 4: Grammar mistake description

Figure 5: Mistake correction suggestions

All checking is done on the server, using AJAX
to update the text in place. The server uses
two main tools to provide the translation: As-
pell (Atkinson, 2004) for spell checking, and Lan-
guageTool (Naber, 2003) (in its server configura-
tion) for grammar checking. The language.php

module written for this project handles reading
and applying the output from both programs onto
the text.

4.3 Link to external dictionaries

The user interface includes links to dictionaries
next to all suggestions on mistakes, so that the
user may easily find which one corresponds to the
expected meaning. Whenever a dictionary for the
language is available, a dictionary selection list is
displayed under the text editing field, as shown in
Figure 6, and links to the right page on this dic-
tionary included next to all suggestions. These
links are visible in Figure 5 (page 5). The inter-
face selects available dictionaries by reading the
OpenSearch (Clinton et al., 2005) XML files or-
ganised in a folder on the server, making it easy
to add new dictionaries.

Figure 6: External dictionary selection

4.4 Search and replace

The interface contains search and replace forms to
instantly search for a word throughout the whole
text and replace it, according to a specific pattern.
Available patterns are “Case sensitive”, “Case in-
sensitive” and “Apply source case”. This last
mode runs a case insensitive search, executes a
short case analysis on each match and tries to im-
itate the case on the replacement. For example,
when an “Apply source case” replacement is set
for “herr” to “sir”, any occurrence of “Herr” will
be replaced by “Sir”, and so on. This should allow
speeding up the correction of long documents.

5 Project conclusion and possible
evolutions

The main goals of this project have been reached,
as it provides three major modules.

First, a basic interface for asynchronous trans-
lation, with document deformatting and reformat-
ting and PHP Apertium interface on the server
side, as well as a quick AJAX interface to update
the text in place on client side.

Second, a set of tools to make translation more
comfortable; mainly interfaces between the PHP
script and other tools like LanguageTool and As-

49



pell, and the ability to display their result in a
clean way in the translation environment.

Third, tools to log the edits made by the user
during the translation process, including TMX
generation through mALIGNa and a real time edi-
tion logging engine.

However, there are still a few bugs happening
during edition, depending on the browser used.
The next step for the project obviously is to cor-
rect them and, if possible, make it more cross-
browser compatible, as it has been mostly de-
signed and tested on Firefox so far.

Another goal for the future is to make it
smoother, to feel more like a usual translation en-
vironment, by integrating common user interac-
tion events and removing the limitations of the
current interface, such as the undeletable char-
acters generated by the formatted document han-
dling module and so on. Copy/Pasting have just
been implemented, but there are still other limita-
tions that could be frustrating for the user.

A quite important progress with benefiting
from user input would be being able to reuse
TMXs of successful translations when making a
new one. Unfortunately, the Apertium TMX com-
piler isn’t quite usable yet, but it should be possi-
ble to integrate an external tool like OmegaT9 to
process part of the translation using the provided
memories, before feeding the rest into Apertium.

At last, it could be useful to make this project
more modular and adaptable. First, by reorganis-
ing the project’s source code as thematic modules:
some people might want a simple and light trans-
lation interface without many tools, and some
people may not care about translation logging.
For this project to reach a wider use, reorganis-
ing it as more clearly separated and more con-
figurable modules would be useful. With the
same idea, it would also be a good thing to leave
more choice on what tools are to be used for all
server-side tasks. For example, integration of Af-
ter The Deadline10 as an alternative to Language-
Tool could prove useful.

9http://www.omegat.org/
10http://afterthedeadline.com/

Acknowledgements

Development for this project was funded by
Google as part of the Google Summer of Code
2010 event; many thanks to Carol Smith and the
GSoC team for organising it.

Thanks to the LanguageTool developers, in
particular Marcin Miłkowski for his help with
solving a few bugs.

Thanks also to the anonymous reviewers for
their comments.

References

Atkinson, K. (2004). GNU Aspell manual.

Canals-Marote, R., Esteve-Guillén, A., Garrido-
Alenda, A., Guardiola-Savall, M., Iturraspe-
Bellver, A., Montserrat-Buendia, S., Ortiz-
Rojas, S., Pastor-Pina, H., Pérez-Antón, P. M.,
and Forcada, M. L. (2001). The Spanish-
Catalan machine translation system interNOS-
TRUM. Proceedings of MT Summit VIII: Ma-
chine Translation in the Information Age, San-
tiago de Compostela, Spain.

Chin, J. and Rosart, D. (2008). US Patent Appli-
cation No. 20080195372: Machine Translation
Feedback.

Clinton, D., Tesler, J., Fagan, M., Gregorio, J.,
Sauve, A., and Snell, J. (2005). OpenSearch
1.1 Draft 4. Technical report.

Doyon, J., Doran, C., Means, C., and Parr,
D. (2008). Automated machine translation
improvement through post-editing techniques:
Analyst and translator experiments. In Pro-
ceedings of the Eighth Conference of the
AMTA.

Forcada, M. L., Tyers, F. M., and Ramı́rez-
Sánchez, G. (2009). The free/open-source
machine translation platform Apertium: Five
years on. Proceedings of the First International
Workshop on Free/Open-Source Rule-Based
Machine Translation FreeRBMT’09, Alacant,
Spain.

Garrido-Alenda, A., Gilabert-Zarco, P., Pérez-
Ortiz, J. A., Pertusa-Ibáñez, A., Ramı́rez-
Sánchez, G., Sánchez-Martı́nez, F., Scalco,
M. A., and Forcada, M. L. (2004). Shallow
parsing for Portuguese-Spanish machine trans-
lation. Language technology for Portuguese:

50



shallow processing tools and resources, pages
135–144.

Hutchins, W. J. and Somers, H. L. (1992). An In-
troduction to Machine Translation. Academic
Press, London, UK.

ISO (2006). Open Document Format for Office
Applications (OpenDocument) v1.0. Technical
Report ISO/IEC 26300:2006.

Jassem, K. and Lipski, J. (2008). A new tool
for the bilingual text aligning at the sentence
level. Intelligent Information Systems, pages
279–286.

LISA (2005). TMX 1.4b Specification. Technical
report.

Llitjós, A. F., Probst, K., and Carbonell, J. (2004).
Error analysis of two types of grammar for
the purpose of automatic rule refinement. In
Frederking, R. E. and Taylor, K. B., editors,
Machine Translation: From Real Users to Re-
search, volume 3265 of Lecture Notes in Com-
puter Science, pages 187–196. Springer Berlin
/ Heidelberg. 10.1007/978-3-540-30194-3 21.

Masselot, F., Ribiczey, P., and Ramı́rez-Sánchez,
G. (2010). Using the Apertium Spanish-
Brazilian Portuguese machine translation sys-
tem for localization. Proceedings of the EAMT
Conference, Sain-Raphaël, France.

McIlroy, M., Pinson, E., and Tague, B. (1978).
Unix time-sharing system forward. The Bell
System Technical J., 57(6 part 2):1902.

Naber, D. (2003). A Rule-Based Style and
Grammar Checker. Diplomarbeit, Technische
Fakultät, Universität Bielefeld, Germany.

Villarejo, L., Cullen, D., and Corral, A. (2009).
La integració de les tecnologies de la llengua
en el flux de treball del Servei Lingüı́stic de la
UOC. Llengua i ús, revista tècnica de polı́tica
lingüı́stica, (46).

51


