
The Integration of Moses into Localization Industry

Tomáš Hudík
Moravia Worldwide

Hilleho 4, Brno,
Czech Republic

thudik@moraviaworldwide.com

Achim Ruopp
Digital Silk Road

2800 Quebec St NW #816
Washington, DC 20008

achim@digitalsilkroad.net

Abstract

A majority of the localization indus-
try is still unable to benefit from SMT,
since it does not know how to integrate
SMT system into its production workflow.
This paper describes a workflow on how
to integrate the open source SMT sys-
tem Moses into computer-aided translation
(CAT) tools. It introduces a software pack-
age which is able to export XLIFF data
into a special InlineText format that is fur-
ther processed and is sent as plain text to
Moses as input. Then, the translated text is
inserted back to the original file.

This transformation is needed, otherwise
the use of MT in the localization indus-
try would hardly be advantageous, since
formatting information would have to be
manually added by localization profes-
sionals. A few attempts to bridge the local-
ization industry and Moses were already
done in the past, however, the method de-
scribed here represents a new approach.

1 Credits

This work was done with the support of Moravia
Worldwide and in cooperation with Digital Silk
Road and the Let’sMT! consortium.

2 Introduction

An integration of Statistical Machine Translation
(SMT) into Computer Aided Tools (CAT) has been
needed for a long time (Ruopp, 2006).

The localization industry started to use so-called
Translation Memory (TM) (Reinke, 2006) some

c
 2011 European Association for Machine Translation.

30 years ago. A lot of valuable information is
stored in these datasets. TMs, if available, are
used for each translation project, since they contain
things like a translated previous version of a prod-
uct, or translation of some other product from the
same client. With the deployment of TMs, transla-
tion has become much easier, often pre-translated
text just need to be post edited. Therefore, TMs
are very useful for human translators and should
be heavily used also by SMT systems.

Mainly universities and research centers are cre-
ating various SMT systems. Each of them provides
two phases – training and translation. For both
phases, it is necessary to have input. Due to com-
pletely different environments, the issues involved
and broad variability of research questions, univer-
sities do not have a uniform format similar to TM.
For this reason, SMT systems usually require gen-
eral plain text as an input. The localization indus-
try is different, its TMs contain a lot of additional
information, for example XML, RTF, HTML tags,
or even binary data. Some of it is related to for-
matting – e.g. end of line, italics. Other kind of
the information is related to content placeholders –
e.g. untranslatable company names; specific trans-
lations of dates, numbers, names etc. Such addi-
tional information is not a big problem in the train-
ing process, since additional formatting tags can
be easily removed and special tags like placehold-
ers can be substituted. A much bigger problem is
to use TMs in real translations due to a necessity
to have all the described information included in a
result (target language)1.

Moravia in collaboration with Digital Silk

1Simplification – TM is exported to TMX, the vendor-neutral
open XML standard for the exchange of TM data created by
CAT tools, which is used in translation

Mikel L. Forcada, Heidi Depraetere, Vincent Vandeghinste (eds.)
Proceedings of the 15th Conference of the European Association for Machine Translation, p. 47�53
Leuven, Belgium, May 2011

Road2 (project called m4loc – Moses for Local-
isation), and the consortium Let’sMT!3 created a
software toolkit that is capable to use TMs in SMT
system called Moses. The developed toolkit is re-
leased under LGPL license and is freely download-
able from code.google.com/p/m4loc.

A few attempts to achieve this goal has been
done in the past already, e.g. (Simard, 2009; Du,
2010), although, none of them were released as an
open source4, or covered the whole cycle: using
TM in Moses and putting the results back to TM
as some alternative (suggestion) translation which
can be accepted, rejected, or modified by a post
editor.

The most similar approach is followed by (Du,
2010). However, methods 2 and 3 would bring a
lot of noise into SMT systems. Consequently, the
noisy systems would give worse results and require
additional post-editing. Our work can be con-
sidered as an improvement of method 1 (Markup
transformation).

3 Technology Overview

3.1 XLIFF and TM

TMs can be stored in a variety, often proprietary,
formats (e.g. tmx, po, btx, XLIFF). The formats
are often based on XML. The data is formatted in
two layers. The first layer is format, like the type of
font (bold, or italic) and the second one is a content
layer, like a reference to full product name which
should not be translated at all, or numbers (dates)
which are translated in a special way. A deeper
knowledge can be gained in (Reinke, 2006).

Recently, TMX became one of the standards
in the localization industry for TM exchanges.
XLIFF – XML Localisation Interchange File For-
mat, overseen by Oasis5 is widely used as well.
All the major CAT tools providers support TMX
and their tools are capable to convert TMX to/from
XLIFF. Unfortunately, these conversions are often
far from perfect. OASIS is working hard to im-
prove XLIFF in the next version (2.0) that should
solve many issues, some of them related to MT.
XLIFF allows to store translation candidates with
an associated quality score. Due to these features,

2www.digitalsilkroad.net
3www.letsmt.eu
4PangeaMT probably has such a system, however, all train-
ings and testing have to be done internally on theirs servers.
No scripts, programs, or specification are possible to reach
5www.oasis-open.org/committees/xliff

XLIFF was recognized as the best alternative for
our effort to bridge TM/CAT and Moses.

3.2 Moses
As it is well-known, many different SMT and
RBMT systems emerged in the past ten years.
Probably the most developed ones are: Moses
(Koehn, 2007) and Apertium (Armentano, 2006).
At the beginning, Apertium was devoted to the lan-
guages of Spain. Since Moses is well-documented
and is better- known in the localization industry, it
was chosen for our effort.

Moses is still a hot spot of research, it was devel-
oped mainly by Edinburgh University and is heav-
ily funded by many organizations, for example Eu-
ropean Commission (translation and interpretation
consumes 1% of whole annual EU budget). One of
major Moses disadvantages is how it is releasing.
Only builds (Subversion repository), it means al-
most no quality assurance, or usability testing are
available (no versions). This is acceptable in uni-
versity environment, however, it is causing some
pain for industry partners.

4 XLIFF and Moses integration

For a better understanding of the overall process:
people from the localization industry often face a
problem similar to the one shown in Figure 1 on
how the screen dialog should be correctly trans-
lated and also correctly placed (aligned) as shown
in Figure 2.

Figure 1: Source sentence – English is the source
language. The word “IBM” is italicised and the
line break is placed after “created”. The right part
of the figure is some graphic

Figure 2: Solution. Target language – Czech. The
sentence was translated and correctly placed

48

Figure 3: XLIFF,Moses transformation workflow. Regular darker bars refer to scripts and lighter bars
with curly bottom line refer to the state of data (e.g. whether data is tokenized). Start and end state are
marked as it is common in UML – solid circle is the starting point, double circle indicates finite state.
Dot-dashed lines show additional information needed by a script. For example, markup re-inserter needs
tokenized target but also tokenized InlineText source

Figure 4: Extracted string in XML
AIX was created<x id="10A" ctype="lb"/>by <i>IBM</i>.

Figure 5: Example of InlineText source
AIX was created<x id="1"/>by <g id="2">IBM</g>.

Figure 6: Tokenized InlineText source (white spaces added)
AIX was created <x id="1"/> by <g id="2"> IBM </g> .

Figure 7: Incorrectly created InlineText
AIX was created <x id="1"/> by <i>IBM</i>.

49

Figure 8: Source sentence from Figure 1 inserted
into XLIFF. The whole source element is on one
line, “n” indicates no-end of line

<source>AIX was created by\
<ph id="1"><x id="10A" ctype="lb"/>\
</ph><bpt id="2"><i></bpt>IBM\
<ept id="3"></i></ept>.</source>

The focus, throughout the article, will trace this
particular translation. A complete description of
the workflow of how Figure 1 is translated into
Figure 2 will be given.

At first, the source sentence needs to be exported
into XLIFF format. This can be easily done by
many available CAT tools. Let’s assume some
CAT tool extracted the sentence from Figure 1 to
the XML string shown in Figure 4. A localizer
needs to translate this XML string, which means
to retrieve (from some external MT or SMT sys-
tem) XML string in target language which would
be easily inserted into Figure 2 by the CAT tool.
The problem is that this XML string is different
in every CAT tool, therefore export to XLIFF is a
necessary next step.

After translation, the CAT tool reinserts the
XML code into XLIFF, an example of which
is shown in Figure 8 (for the specification
of XLIFF tags see docs.oasis-open.org/
xliff/xliff-core/xliff-core.html).
Each CAT tool can produce slightly different
XLIFF. Note, XLIFF is XML again,therefore one
can see </i> instead of </i>. The descrip-
tion of the conversions into XML is out of scope of
this article, however,can be easily found on the In-
ternet. The tag <x/> is a placeholder and means
the place where line is divided, the end of line is
due to the image on the right.

The whole cycle XLIFF , Moses can be seen
from Figure 3. Direction XLIFF) Moses, it
means Okapi Tikal, Modified tokenizer, Markup
remover and Lowercaser is covered in Section 4.1.
And the rest, Moses)XLIFF, is explained in Sec-
tion 4.2.

4.1 XLIFF to Moses

XLIFF is processed by Tikal which is a part
of Okapi Framework6. Tikal is a cross-
platform command-line tool that performs various
localization-related tasks. It is especially good at

6okapi.opentag.com

transformation from one file format into another.
In our workflow,Tikal converts XLIFF file into so-
called InlineText format. This conversion is done
by -xm option. The conversion to InlineText and
InlineText back to original XLIFF file was devel-
oped by Yves Savourel.

In Figure 3, this is referred to as InlineText
source because only the source language is
needs to be extracted. For the extraction of source
and target language, Tikal uses the parameter -2.
While the source InlineText is created from the
XLIFF <source> tag, the target is created from
<target>. Throughout XLIFF , Moses trans-
formations, the target file is not needed. However,
it is good to have a possibility to check how some
particular segment was translated, for instance by
some other MT tool. Target and source files have
the same number of lines, equivalent to the num-
ber of segments in the XLIFF file. In some cases
the segment is not translated and the target file will
contain an empty line instead of translation. Basi-
cally, the output of Tikal’s -xm process is a XML
document without the XML notation and some
root element. It can have just four elements (tags):
x, g, bx and ex. All of them have mandatory
attribute id, nothing else is permitted – no other at-
tributes, namespaces, etc. These tags are a specific
subset of XLIFF inline elements.

� <g> – paired tags; e.g. <i></i>

� <x> – standalone tags; e.g. <x/>

� <bx>,<ex> – broken tags

Broken tags are the ones which were broken for
some reason – e.g. during segmentation, some er-
rors in CAT tools, etc.

InlineText source, for our example, is shown in
Figure 5, where:

� <x id="1"> points to XLIFF’s linebreak

� <g id="2"> points to <i> tag in XLIFF

Keep in mind that InlineText tags just refer to
XLIFF tags. Therefore, in the first item, <x
id="1"> is not a linebreak but rather a reference
to the original <x id="1" ctype="lb"/>
which is the linebreak. It can be a bit misleading
since both of them use the same element name.

Many different XLIFF files have been processed
during testing phase. Tikal’s advantage is an abil-
ity to work with XML’s namespaces. IDIOM

50

World Server7 is particularly problematic, it cre-
ates its own, very complicated XML namespace
that is incorporated into each XLIFF file produced
by this tool. However, Tikal is able to handle it.

The application of mod_tokenizer.pl8 is the next
step. It is a modification of the original Moses’ to-
kenizer.perl. It treats input as XML document and
does not tokenize XML tags and URL addresses,
all the other contents is tokenized via Moses’
original tokenizer. The modified tokenizer needs
the nonbreaking_prefixes directory, part
of the original tokenizer, to be in the same direc-
tory. The original tokenizer is language-depended,
it tokenizes a text string according to rules specific
for some particular language. If the appropriate
language is not found, rules for English are used
instead. More info can be found in the Moses doc-
umentation.

At the moment, a number of interested parties
are involved in the development of the XLIFF ,
Moses workflow and it is still in a testing phase.
Disadvantages of such development are that some
procedures could be programmed in a more ef-
ficient manner, fewer lines of code could do the
same job and also could be faster.

The output of the modified tokenizer can be seen
in Figure 6. A space was added before and after the
<x> and <g> tags.

Of crucial importance is to have correctly cre-
ated XLIFF. If this would not be the case, Tikal
would produce incorrect results and the other
scripts in workflow would increase problems. For
example, if the sentence from Figure 4 would be
treated as a text instead of XML in e.g. SDL Tra-
dos Studio, the XLIFF would look like one in Fig-
ure 9.

Figure 9: Wrongly encoded text can lead to incor-
rect XLIFF. The whole code is on one line, “n”
indicates no-end of line

<source>AIX was created by\
<x id="10A" ctype="lb"/>\
<i>IBM</i>.</source>

Then, Tikal’s output would be the text in Figure
7 instead of Figure 5. With such corrupted Inline-
Text, all the information about formatting is lost

7www.idiominc.com
8documentation can be found in code.google.com/p/
m4loc click on Specification

and also the translation would be of low quality
because of strange input.

Later on, the markup remover is invoked. It
is easy and fast perl script which removes all
markups (XML tags). Even the documentation
states that Moses is able to handle XML tags, it
is not always true as it was found during our re-
search.

Finally, Moses’ Lowercaser is deployed. It sim-
ply converts all text into small letters.

4.2 Moses to original XLIFF

The Moses decoder translates lowercased, tok-
enized source text into lowercased, tokenized tar-
get text.

In order to insert the translations back into
the original XLIFF file as <alt-trans> or
<target> elements, Moses needs to be run
with -t option which reports the phrase seg-
mentation for the best translation hypothesis.
When translating the example sentence aix
was created by ibm . the Moses output
would be ibm |4-4| vytvořilo |1-3|
aix |0-0| . |5-5|

The first step of the XLIFF(Moses chain is to
use the Moses Recaser or Truecaser to correct text
capitalization. After this step the example would
look like this:
IBM |4-4| vytvořilo |1-3| AIX
|0-0| . |5-5|

Then, the recased, tokenized target text includ-
ing the phrase segmentation is processed by the
markup reinserter. The markup reinserter com-
bines the inline element information from the
source file with the target text including the phrase
alignment information to output target text with in-
line elements. The algorithm used attempts to the
place the inline elements in the target text under
the following constraints:

� All inline elements that are present in the
source text have to be placed in the target text

� For paired inline elements the closing tag al-
ways has to be placed after the opening tag

� Multiple paired inline elements can only en-
close each other, they cannot overlap (this is
required by XML)

� Opening tags of inline elements are to be
placed as close as possible before the correct
target word token

51

� Closing tags of inline elements are to be
placed as close as possible after the correct
target word token (unless this violates second
constraint)

The algorithm implements these requirements in
the following steps:

� Based on the source text with inline elements
the algorithm determines the position of the
inline elements relative to the source word to-
kens

� For each of the target phrases

– It is determined which elements that are
to be closed and opened based on the
phrase alignment information (enclosed
in the vertical bars)

– All elements that need to be opened are
added to the output

– The target phrase is added to the output

– All elements that need closing and are
currently open are added to the output
(remaining closing tags are stored in a
hash for output in later phrases)

� If any inline elements remain, output them at
the end of the sentence

With the phrase alignment information and the
markup positions from the tokenized InlineText
source, the markup reinserter is capable of plac-
ing the inline elements at appropriate positions in
the target text. Due the phrase segmentation per-
formed by the MT engine, the placement might not
exactly match the placement a human editor would
perform. The output is tokenized InlineText target.

The Modified detokenizer simply removes white
spaces in markup tags and non-markup text is pro-
cessed by the original Moses detokenizer.perl for
final detokenization.

At the end of the XLIFF (Moses chain is
Okapi Tikal which takes InlineText target as an
input and inserts it as an alternative translation or
target element into the original XLIFF. The option
-lm needs to be used. The final text is shown in
Figure 10.

Such results go to a post editor who, together
with some CAT tool, creates the final results – cor-
rectly translated and aligned output (Figure 2).

Figure 10: Target (Czech) sentence inserted into
XLIFF as <alt-trans> tag. The whole segment is
on one line, “n” indicates no-end of line

<target><bpt id="2"><i></bpt>IBM\
<ept id="3"></i></ept>\
<ph id="1"><x id="10A" ctype="lb"/>\
</ph>vytvořilo AIX.</target>

5 Conclusions

The integration of SMT into CAT tools was de-
scribed in this article. Due to easy exchange and
broad support, the XLIFF format was chosen to
be the connector on the side of CAT tools. As
the SMT system, Moses was picked because of its
good support, open source license and continued
innovation.

During the Let’sMT! and m4loc (Moses for Lo-
calization) projects, the described system will be
tested by volunteers9 from both projects on vari-
ous free and proprietary data.

In the future, we will be looking support for tree-
based models (Chen, 2009), since our approach
is currently only applicable to phrase-based mod-
els. Also of interest would be the development of
a metric that measures the accuracy of the inline
element placement and the required post-editing
effort. This would also allow the comparison of
various approaches for the placement of inline for-
matting.

References
Armentano-Oller, C., Carrasco, R. C., Corbí-Bellot,

A. M., Forcada, M. L., Ginestí-Rosell, M., Ortiz-
Rojas, S., Pérez-Ortiz, J. A., Ramírez-Sánchez, G.,
Sánchez-Martínez, F., and Scalco, M. A. 2006.
Open-source Portuguese-Spanish machine transla-
tion. In: Computational Processing of the Por-
tuguese Language, Proceedings of the 7th Interna-
tional Workshop on Computational Processing of
Written and Spoken Portuguese, PROPOR 2006, pp
50–59.

Du J., Roturier J. and Way A. 2010. TMX markup:
a challenge when adapting SMT to the localisation
environment. In: EAMT 2010 – 14th Annual Con-
ference of the European Association for Machine
Translation, Saint-Raphaël, France.

Chen Q., and Yao T. 2009. Flattened Syntactical
Phrase-Based Translation Model for SMT. In: Pro-
ceedings of the 22nd International Conference on

9demo.letsmt.eu

52

Computer Processing of Oriental Languages. Lan-
guage Technology for the Knowledge- based Econ-
omy (ICCPOL ’09), pp 345–353.

Koehn, P., Hoang, H., Birch, A., Callison-Burch,C.,
Frederico, M., Bertoldi, N., et al. (2007). 2007.
Moses: Open Source Toolkit for Statistical Machine
Translation. MT Summit XII: proceedings of the
twelfth Machine Translation Summit, Annual Meet-
ing of the Association for Computational Linguistics
(ACL). Prague, Czech Republic.

Reinke U. 2006. Translation Memories. In: Encyclo-
pedia of Language & Linguistics, Elsevier

Ruopp A. 2010. The Moses for Localization open
source project. AMTA 2010: the Ninth conference
of the Association for Machine Translation in the
Americas, Denver, Colorado.

Simard M, Isabelle P. 2009. Phrase-based Machine
Translation in a Computer-assisted Translation En-
vironment. MT Summit XII: proceedings of the
twelfth Machine Translation Summit, pp.120-127,
Canada, Ontario.

53

