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Abstract

In this paper we study several advanced
techniques and models for Arabic-to-
English statistical machine translation. We
examine how the challenges imposed by
this particular language pair and transla-
tion direction can be successfully tack-
led within the framework of hierarchical
phrase-based translation.

We extend the state-of-the-art with a novel
cross-system and cross-paradigm lightly-
supervised training approach. In addition,
for following recently developed tech-
niques we provide a concise review, an em-
pirical evaluation, and an in-depth analy-
sis: soft syntactic labels, a discriminative
word lexicon model, additional reorder-
ings, and shallow rules. We thus bring to-
gether complementary methods that previ-
ously have only been investigated in iso-
lation and mostly on different language
pairs.

Combinations of the methods yield signifi-
cant improvements over a baseline using a
usual set of models. The resulting hierar-
chical systems perform competitive on the
large-scale NIST Arabic-to-English trans-
lation task.

1 Introduction

Since its introduction in (Chiang, 2005), hierar-
chical phrase-based translation has become a stan-
dard approach in statistical machine translation.
Many additional features and enhancements to
the hierarchical paradigm have been proposed or
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adopted from the conventional phrase-based ap-
proach, but the effect of the various methods is
typically merely evaluated separately. Neither are
they compared to each other, nor is it clear whether
combining the methods would be beneficial.

The aim of the work presented in this pa-
per is to explore the effectiveness of a state-of-
the-art hierarchical phrase-based system for large-
scale Arabic-to-English statistical machine trans-
lation (SMT). Within this framework, we inves-
tigate the impact of several recently developed
methods on the translation performance. Not only
do we analyze them separately, but also exam-
ine whether their combination further increases the
output quality.

More specifically, we focus on three models:
First, we integrate syntactic information in order
to improve the linguistic structure of the transla-
tion. Second, we utilize a discriminatively trained
extended word lexicon to obtain a better lexical
selection based on global source sentence con-
text. Third, we introduce a jump model which is
based on reordering enhancements to the hierar-
chical grammar to allow for more flexibility during
the search process.

The Arabic-English language pair is known to
behave more monotone than other language pairs,
e.g. Urdu-English or Chinese-English. In a con-
trastive experiment done by Birch et al. (2009),
a hierarchical system does not outperform a con-
ventional phrase-based system for Arabic-English.
On the other hand, a lattice-based hierarchical
system (de Gispert et al., 2010) has been the
best-performing system at the 2009 NIST Arabic-
English evaluation campaign.1 Noticing these

1http://www.itl.nist.gov/iad/mig/tests/
mt/2009/ResultsRelease/currentArabic.
html
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facts, we also want to investigate to what extent the
translation quality relies on the recursion depth for
hierarchical rules. In order to separate the effect
of the recursion level, we conduct all experiments
with an unrestricted hierarchical grammar as well
as with a depth-restricted one.

Finally, we perform a novel cross-system and
cross-paradigm variant of lightly-supervised train-
ing (Schwenk, 2008). We make use of bitexts
that have been built by automatic translation of
large amounts of monolingual data with a conven-
tional phrase-based system to improve our transla-
tion model. We propose to integrate this kind of
data as purely lexicalized rules solely while stick-
ing to the set of hierarchical rules that is extracted
from the more reliable human-generated parallel
data.

2 Overview

The paper is structured as follows: First we give
an outline of some previous work that is related to
ours (Section 3). We then present the methods we
apply in the following sections:

We introduce soft syntactic labels in Section 4,
an approach to integrate syntactic information in
a non-obtrusive manner into hierarchical search as
an additional model. The discriminatively trained
extended word lexicon model that is employed in
this work is discussed in Section 5. Section 6 con-
tains a description of the reordering enhancement
we apply to the hierarchical phrase-based model.
In Section 7 we describe the limitation of the re-
cursion depth for hierarchical rules. Section 8
presents an effective and easily implementable
way to integrate information extracted from unsu-
pervised training data into the translation model of
a hierarchical phrase-based system.

We present the experimental setup and discuss
the results obtained with the various configurations
in Section 9. Finally we sum up our findings in
Section 10.

3 Related Work

Hierarchical phrase-based translation has been pi-
oneered by David Chiang (Chiang, 2005) with his
Hiero system. He induces a weighted synchronous
context-free grammar from parallel text, the search
is typically carried out using the cube pruning al-
gorithm.

Soft syntactic labels. Soft syntactic labels have
been first introduced by Venugopal et al. (2009)

as an extension to their previous SAMT approach.
In SAMT, the generic non-terminal of the hier-
archical model is substituted with syntactic cat-
egories. Using soft syntactic labels, these addi-
tional non-terminals are considered in a probabilis-
tic way, no hard constraints are imposed. Many
other groups have presented similar approaches to
augment hierarchical systems with syntactic infor-
mation recently, e.g. Chiang (2010), Hoang and
Koehn (2010), Stein et al. (2010), and Baker et al.
(2010), among others. Results on Arabic-English
tasks are rarely reported.

Discriminative word lexicon. Several variants of
discriminatively trained extended lexicon models
have been utilized effectively within quite differ-
ent statistical machine translation systems. Mauser
et al. (2009) integrate a discriminative as well
as a trigger-based extended lexicon model into a
phrase-based system, Huck et al. (2010) report re-
sults within hierarchical decoding, and Jeong et
al. (2010) use a discriminative lexicon model with
morphological and dependency features in a treelet
translation system.

Reordering extensions. Some techniques to ma-
nipulate the reordering capabilities of hierarchi-
cal systems by modifying the grammar have been
published lately. Iglesias et al. (2009) investigate
a maximum phrase jump of 1 (MJ1) reordering
model. They include a swap rule, but withdraw all
hierarchical phrases. He et al. (2010) combine an
additional BTG-style swap rule with a maximum
entropy based lexicalized reordering model and
achieve improvements on a Chinese-English task.
Vilar et al. (2010) apply IBM-style reordering en-
hancements successfully to a German-English Eu-
roparl task.

Shallow rules. The way to restrict the parsing
depth we apply in this work has been introduced by
Iglesias et al. (2009), along with methods to filter
the hierarchical rule set.

Lightly-supervised training. Large-scale
lightly-supervised training for SMT as we define
it in this paper has been introduced by Schwenk
(2008). Schwenk automatically translates a large
amount of monolingual data with an initial Moses
(Koehn et al., 2007) baseline system from French
into English. He uses the resulting unsupervised
bitexts as additional training corpora to improve
the baseline system. In Schwenk’s original work,
an additional bilingual dictionary is added to
the baseline. With lightly-supervised training,
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Schwenk achieves improvements of around one
BLEU point over the baseline. In a later work
(Schwenk and Senellart, 2009) he applies the
same method for translation model adaptation on
an Arabic-French task. We extend this line of
research by investigating the impact of lightly-
supervised training across different SMT systems
and translation paradigms.

4 Soft Syntactic Labels

A possibility to enhance the hierarchical model is
to extend the set of non-terminals from the origi-
nal generic symbol to a richer, syntax-oriented set.
However, augmenting the set of non-terminals also
restricts the parsing space and thus we alter the
set of possible translations. Furthermore, it can
happen that no parse can be found for some in-
put sentences. To address this issue, our extrac-
tion is extended in a similar way as in the work
of Venugopal et al. (2009): for every rule in the
grammar, we store information about the possible
non-terminals that can be substituted in place of
the generic non-terminal X , together with a prob-
ability for each combination of non-terminal sym-
bols (cf. Figure 1).

During decoding, we compute two additional
quantities for each derivation d. The first one is
denoted by ph(Y |d) (h for “head”) and reflects
the probability that the derivation d under con-
sideration of the additional non-terminal symbols
has Y as its starting symbol. This quantity is
needed for computing the probability psyn(d) that
the derivation conforms with the extended set of
non-terminals. Let r be the top rule in deriva-
tion d, with n non-terminal symbols. For each of
these non-terminal symbols we substitute the sub-
derivations d1, . . . , dn in r. Denoting with S the
extended set of non-terminals, psyn(d) is defined
as

psyn(d) =
∑

s∈Sn+1

(
p(s|r) ·

n+1∏
k=2

ph(s[k]|dk−1)

)
.

(1)
We use the notation [·] to address the elements of a
vector.

The probability ph is computed in a similar way,
but the summation index is restricted only to those
vectors of non-terminal substitutions where the
left-hand side is the one for which we want to com-
pute the probability:

X → uXvXw

d1 d2

d


p(A → uDvCw|r)

p(B → uAvBw|r)

p(C → uCvDw|r)

{
p(A|d1)

p(D|d1)


p(B|d2)

p(C|d2)

p(E|d2)

Figure 1: Visualization of the soft syntactic la-
bels approach (Section 4). For each derivation, the
probabilities of non-terminal labels are computed.

ph(Y |d) =∑
s∈Sn+1:s[1]=Y

(
p(s|r) ·

n+1∏
k=2

ph(s[k]|dk−1)

)
.

(2)

5 Discriminative Word Lexicon

We integrate a discriminative word lexicon (DWL)
model that is very similar to the one presented by
Mauser et al. (2009). This type of extended lex-
icon model accounts for global source sentence
context to make predictions of target words. It
goes beyond the capabilities of the standard model
set of typical hierarchical systems as word lexi-
cons and phrase models (even with hierarchical
phrases) normally do not consider context beyond
the phrase boundaries.

The DWL model acts as a classifier that pre-
dicts the words contained in the translation from
the words given in the source sentence. The se-
quential order or any other structural interdepen-
dencies between the words on the source side as
well as on the target side are ignored.

Let VF be the source vocabulary and VE be the
target vocabulary. Then, we represent the source
side as a bag of words by employing a count vec-
tor F = (. . . , Ff , . . . ) of dimension |VF |, and the
target side as a set of words by employing a binary
vector E = (. . . , Ee, . . . ) of dimension |VE |. Note
that Ff is a count and Ee is a bit. The model es-
timates the probability p(E|F), i.e. that the target
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sentence consists of a set of target words given a
bag of source words. For that purpose, individual
models p(Ee|F) are trained for each target word
e ∈ VE (i.e. target word e should be included in the
sentence, or not), which decomposes the problem
into many separate two-class classification prob-
lems in the way shown in Equation (3).

p(E|F) =
∏

e∈VE

p(Ee|F) (3)

Each of the individual classifiers is modeled as
a log-linear model

p(Ee|F) =
eg(Ee,F)∑

Ẽe∈{0,1}
eg(Ẽe,F)

(4)

with the function

g(Ee,F) = Eeλe +
∑

f∈VF

EeFfλef , (5)

where the λef represent lexical weights and the λe

are prior weights. Though the log-linear model of-
fers a high degree of flexibility concerning the kind
of features that may be used, we simply use the
source words as features. The feature weights for
the individual classifiers are trained with the im-
proved RProp+ algorithm (Igel and Hüsken, 2003).

6 IBM-style Reorderings for
Hierarchical Phrase-based Translation

We extend the hierarchical phrase-based system
with a jump model as proposed by Vilar et al.
(2010), to permit jumps across whole blocks of
symbols, and to facilitate a less restricted place-
ment of phrases within the target sequence. The
model is made up of additional, non-lexicalized
rules and a distance-based jump cost, and allows
for constrained reorderings. It is comparable to
conventional phrase-based IBM-style reordering
(Zens et al., 2004).

The hierarchical model comprises hierarchi-
cal rules with up to two non-neighboring non-
terminals on their right-hand side as built-in re-
ordering mechanism. An initial rule

S → 〈X∼0, X∼0〉 (6)

is engrafted, as well as a special glue rule that the
system can use for serial concatenation of phrases
as in monotonic phrase-based translation (Chiang,
2005):

S → 〈S∼0X∼1, S∼0X∼1〉 (7)

S denotes the start symbol of the grammar, the
X symbol is a generic non-terminal which is used
on all left-hand sides of the rules that are extracted
from the training corpus and as a placeholder for
the gaps within the right-hand side of hierarchi-
cal rules. ∼ defines a one-to-one relation between
the non-terminals within the source part and the
non-terminals within the target part of hierarchical
rules.

To enable IBM-style reorderings with a window
length of 1, we replace the two rules from Equa-
tions (6) and (7) by the rules given in Equation (8):

S → 〈M∼0,M∼0〉
S → 〈M∼0S∼1,M∼0S∼1〉 †

S → 〈B∼0M∼1,M∼1B∼0〉 ‡

M → 〈X∼0, X∼0〉
M → 〈M∼0X∼1,M∼0X∼1〉 †

B → 〈X∼0, X∼0〉
B → 〈B∼0X∼1, B∼0X∼1〉 †

(8)

In these rules, the M non-terminal represents a
block that will be translated in a monotonic way,
and the B is a “back jump”. Although these two
symbols could be joined into one (the production
rules are the same for both), it is useful to keep
them separate to facilitate the computation of the
distortion costs. The reordering extensions can
easily be adapted to the shallow grammar that will
be described in the following section.

We add a binary feature that fires for the rules
that act analogous to the glue rule (†). Addition-
ally, a distance penalty based on the jump width
is computed during decoding when the back jump
rule (‡) is applied.

7 Deep Rules vs. Shallow Rules

In order to constrain the search space of the de-
coder, we can modify the grammar so that the
depth of the hierarchical recursion is restricted to
one (Iglesias et al., 2009).

We replace the generic non-terminal X by two
distinct non-terminals XH and XP . By changing
the left-hand sides of the rules, we allow lexical
phrases only to be derived from XP , and hierar-
chical phrases only from XH . On all right-hand
sides of hierarchical rules, the X is replaced by
XP . Gaps within hierarchical phrases can thus
only be filled with purely lexicalized phrases, but
not a second time with hierarchical phrases.
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Note that the initial rule (Eqn. 6) has to be sub-
stituted with

S → 〈XP∼0,XP∼0〉
S → 〈XH∼0,XH∼0〉 , (9)

and the glue rule (Eqn. 7) has to be substituted with

S → 〈S∼0XP∼1, S∼0XP∼1〉
S → 〈S∼0XH∼1, S∼0XH∼1〉 . (10)

We refer to this kind of rule set and the parses
produced with such a grammar as shallow, in con-
trast to the standard rule set and parses which we
denote as deep.

8 Improving the Translation Model with
Lightly-supervised Training

In this section, we propose a novel cross-system
and cross-paradigm variant of lightly-supervised
training. More specifically, we extend the trans-
lation model of the hierarchical system using un-
supervised parallel training data derived from au-
tomatic translations produced with a conventional
phrase-based system. The additional bitexts are
created by translating large amounts of monolin-
gual source language data with a conventional
phrase-based system. Word alignments are trained
to be able to extract phrases from the data. Note
that, unlike Schwenk (2008), we do not try to im-
prove the same system which was used to create
the unsupervised data but rather change the trans-
lation paradigm, in order to combine the strengths
of both approaches.

Conventional phrase-based systems are usually
able to correctly translate short sequences in a lo-
cal context, but often have problems in producing
a fluent sentence structure across long distances
Thus, we decided to include lexical phrases from
the unsupervised data, but to restrict the set of
phrases with non-terminals to those that were de-
rived from the more reliable human-generated par-
allel data.

To our knowledge, this is the first time that
lightly-supervised training is applied to a hierar-
chical system.

9 Experiments

We use the open source Jane toolkit (Vilar et al.,
2010) for our experiments, a hierarchical phrase-
based translation software written in C++. We give
a detailed description of our setup to ease repro-
duction by the scientific community.

9.1 Experimental Setup
The phrase table of the baseline system has been
produced from a parallel training corpus of 2.5M
Arabic-English sentence pairs. Word alignments
in both directions were trained with GIZA++ and
symmetrized according to the refined method that
was proposed by Och and Ney (2003). To reduce
the size of the phrase table, a minimum count cut-
off of one and an extraction pruning threshold of
0.1 have been applied to hierarchical phrases.

Arabic English
Sentences 2 514 413
Running words 54 324 372 55 348 390
Vocabulary 264 528 207 780
Singletons 115 171 91 390

Table 1: Data statistics for the preprocessed
Arabic-English parallel training corpus. In the cor-
pus, numerical quantities have been replaced by a
special category symbol.

The models integrated into our baseline sys-
tem are: phrase translation probabilities and lex-
ical translation probabilities at phrase level, each
for both translation directions, length penalties on
word and phrase level, three binary features for hi-
erarchical phrases, glue rule, and rules with non-
terminals at the boundaries, a binary feature that
fires if the phrase has a source length of only one
word, three binary features marking phrases that
have been seen at least two, four, or six times, re-
spectively, and an n-gram language model.

Our setups use a 4-gram language model with
modified Kneser-Ney smoothing. It was created
with the SRILM toolkit (Stolcke, 2002) and was
trained on a large collection of monolingual data
including the target side of the parallel corpus and
the LDC Gigaword v4 corpus. We measured a per-
plexity of 96.9 on the four reference translations of
MT06.

The scaling factors of the log-linear model com-
binations have been optimized with MERT on the
MT06 NIST test corpus. MT08 was employed as
held-out test data. Detailed statistics about the par-
allel training data are given in Table 1, for the de-
velopment and the test corpus in Table 2.

To obtain the syntactic annotation for the soft
syntactic labels, the Berkeley Parser (Petrov et al.,
2006) has been applied.

The DWL model has been trained on a manually
selected high-quality subset of the parallel data of
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dev (MT06) test (MT08)
Sentences 1 797 1 360
Running words 49 677 45 095
Vocabulary 9 274 9 387
OOV [%] 0.5 0.4

Table 2: Data statistics for the preprocessed Arabic
part of the dev and test corpora. In the corpus, nu-
merical quantities have been replaced by a special
category symbol.

277 234 sentence pairs. The number of features
per target word which are considered during train-
ing is equal to the size of the source vocabulary of
the training corpus, i.e. 122 592 in this case. We
carried out 100 training iterations per target word
with the improved RProp+ algorithm. After train-
ing, the full DWL model was pruned with a thresh-
old of 0.1. The pruned model contains on average
80 features per target word.

9.2 Unsupervised Data
The unsupervised data that we integrate has been
created by automatic translations of parts of the
Arabic LDC Gigaword corpus (mostly from the
HYT collection) with a conventional phrase-based
system. Translating the monolingual Arabic data
has been performed by LIUM, Le Mans, France.
We thank Holger Schwenk for kindly providing the
translations.

The score computed by the decoder for each
translation has been normalized with respect to the
sentence length and used to select the most reliable
sentence pairs. We report the statistics of the unsu-
pervised data in Table 3. Word alignments for the
unsupervised data have been produced in the same
way as for the baseline bilingual training data.

Arabic English
Sentences 4 743 763
Running words 121 478 207 134 227 697
Vocabulary 306 152 237 645
Singletons 130 981 102 251

Table 3: Data statistics for the Arabic-English un-
supervised training corpus after selection of the
most reliable sentence pairs. In the corpus, nu-
merical quantities have been replaced by a special
category symbol.

Using the unsupervised data in the way de-
scribed in Section 8 increases the number of non-

hierarchical phrases by roughly 30%, compared to
the baseline system where the phrase table is ex-
tracted from the human-generated bitexts only.

9.3 Translation Results

The empirical evaluation of all our systems is pre-
sented in Table 4. All methods are evaluated
on the two standard metrics BLEU and TER and
checked for statistical significance over the base-
line. The confidence intervals have been computed
using bootstrapping for BLEU and Cochran’s ap-
proximate ratio variance for TER (Leusch and Ney,
2009). We report experimental results on both
the development and the test corpus (MT06 and
MT08, respectively). The figures with deep and
with shallow rules are set side by side in separate
columns to facilitate a direct comparison between
them. All the setups given in separate rows exist in
a deep and a shallow variant.

One of the objectives is to compare the deep and
shallow setups. This has an important effect in
practice, as the shallow setup is much more effi-
cient in terms of computational effort, with speed-
ups of 5 to 10 when compared to the (standard)
deep setup. We found that the shallow system
translation quality is comparable to the deep sys-
tem.

The inclusion of the unsupervised data leads to
a gain on the unseen test set of +0.7% BLEU / -
0.6% TER absolute in the deep setup and +0.8%
BLEU / -0.2% TER absolute in the shallow setup.
This shows that the proposed approach is benefi-
cial and allows to use available monolingual data
to improve the performance of the system.

A further clear increase in translation quality
is achieved by adding the extended word lexicon
model. Both the deep and the shallow setup ben-
efit from the incorporation of the discriminative
word lexicon, with gains of about the same or-
der of magnitude (+0.7% BLEU / -0.7% TER with
deep rules, +0.6% BLEU / -1.0% TER with shal-
low rules). Combining the unsupervised training
data and the extended word lexicon we arrive at an
improvement that is significant at the 95% confi-
dence level.

The two other approaches investigated in this
paper do not really help improving the transla-
tion quality. The syntactic labels improve the
BLEU score only slightly in the deep approach,
and even degrade the translation quality in the shal-
low setup. The additional reorderings have nearly
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dev (MT06) test (MT08)
deep shallow deep shallow

BLEU TER BLEU TER BLEU TER BLEU TER
[%] [%] [%] [%] [%] [%] [%] [%]

HPBT Baseline 43.9 50.2 44.1 49.9 44.3±1.1 50.0±0.9 44.4±1.1 49.4±0.9

+ Unsup 45.2 48.9 45.1 49.1 45.0 49.4 45.2 49.2
+ Unsup + DWL 45.8 48.3 45.8 48.4 45.7 48.7 45.8 48.2
+ Unsup + Syntactic Labels 45.1 49.0 45.2 49.1 45.2 49.3 45.0 49.0
+ Unsup + Reorderings 45.4 48.8 45.3 49.0 45.3 49.1 45.3 48.9
+ Unsup + DWL + Syntactic Labels 46.2 48.0 46.1 48.2 46.0 48.2 45.8 48.3
+ Unsup + DWL + Reorderings 46.1 47.9 46.1 48.2 45.7 48.7 45.9 48.2

Table 4: Results for the NIST Arabic-English translation task (truecase). The 95% confidence interval is
given for the baseline systems. Results in bold are significantly better than the baseline.

no effect on the translation.
These results, although a bit disappointing, were

to be expected. As stated above, the Arabic-
English language pair is rather monotonic and
these two last approaches are more useful when
dealing with translation directions where the word
order in the languages is rather different. The
degradation in translation quality in the shallow
setup can be explained by the restriction in the
parse trees that are constructed during the trans-
lation process. By restricting their depth they can
not conform with the syntax trees derived from lin-
guistic parsing.

The best results are obtained with a deep sys-
tem including all the advanced methods at once,
with the exception of the additional reorderings. It
achieves an improvement of +1.7% BLEU / -1.8%
TER over the baseline. For the shallow system, the
combination of the methods does not improve over
the unsupervised data and discriminative word lex-
icon alone. The final result does not exceed the
translation quality of the best deep setup, but re-
member that the computation time is significantly
decreased.

10 Conclusion

We presented a cross-system and cross-paradigm
lightly-supervised training approach. We demon-
strated that improving the non-hierarchical part of
the translation model with lightly-supervised train-
ing is a very effective technique. On the NIST
Arabic-English task, we evaluated various recently
developed methods separately as well as in combi-
nation. Our results suggest that soft syntactic la-
bels and IBM-style reordering extensions are less
helpful. By including the discriminative word lex-

icon model, we have been able to increase the per-
formance of the hierarchical system significantly.
Our experiments with shallow rules confirm that
a deep recursion for hierarchical rules is not es-
sential to achieve competitive performance for the
Arabic-English language pair, while dramatically
decreasing the computational effort.
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de Gispert, Adrià, Gonzalo Iglesias, Graeme Black-
wood, Eduardo R. Banga, and William Byrne.
2010. Hierarchical Phrase-Based Translation with
Weighted Finite-State Transducers and Shallow-n
Grammars. Computational Linguistics, 36(3):505–
533.

He, Zhongjun, Yao Meng, and Hao Yu. 2010. Extend-
ing the Hierarchical Phrase Based Model with Maxi-
mum Entropy Based BTG. In Conf. of the Assoc. for
Machine Translation in the Americas (AMTA), Den-
ver, CO, October/November.

Hoang, Hieu and Philipp Koehn. 2010. Improved
Translation with Source Syntax Labels. In ACL 2010
Joint Fifth Workshop on Statistical Machine Trans-
lation and Metrics MATR, pages 409–417, Uppsala,
Sweden, July.

Huck, Matthias, Martin Ratajczak, Patrick Lehnen, and
Hermann Ney. 2010. A Comparison of Various
Types of Extended Lexicon Models for Statistical
Machine Translation. In Conf. of the Assoc. for Ma-
chine Translation in the Americas (AMTA), Denver,
CO, October/November.

Igel, Christian and Michael Hüsken. 2003. Empirical
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