
Creating your own Translation Memory Repository
by Ronan Martin - 25 Oct 2010

background

SAS is a major international software company specializing in data processing

software. Products encompass a wide range of statistical, business intelligence

and analytical products for large enterprises in all sectors. These products are

localized to 21 languages. Project management, engineering and terminology-

related tasks supporting the localization process are carried out in the

Copenhagen and Tokyo based localization offices. The following paper

describes work carried out over several years by myself, Ronan Martin, and

my colleague, Krzysztof Jozefowicz, both based in the Copenhagen office.

In this introduction I would like to take the opportunity to explain my reasons

for submitting a request to present this paper.

My experiences as a conference guest and discussion group participant often

leave me with the feeling that in the localization domain there is a gap

between theoretical and research-based knowledge on the one hand, and the

practical application of solutions within enterprises on the other hand.

Furthermore, many of the applied solutions that are described in periodicals

and presentations are achieved by companies that seem to have invested

large sums in setting up localization processes (perhaps a seldom

phenomenon), or by major language providers whose life-blood depends on

making major investments in the domain they owe their existence to.

My impression from talking to other conference participants is that many of

them feel a sense of awe and sometimes perplexity when hearing about the

available technologies being presented – but that the situation in their own

organization seems to take place in a parallel universe. The will may be

present to rationalize operations by introducing workflows, terminology

management systems, some degree of machine translation etc., but the

chaos of existing systems presents a corporate localization department with

many challenges of a quite down-to-earth nature: legacy file-storage systems,

ad-hoc taxonomies, hectic and sometimes unpredictable file traffic,

heterogeneous technologies, ….

Wiping the slate clean and buying a comprehensive solution may be the

answer for some. For others, the prospect of opening your doors to external

consultants and completely re-thinking the localization workflow, and having

to explain the ins and outs (and the cost) of this to an upper management

that barely understands what the word “localization” means, and staff that

basically likes the way things have always been done in their own particular

office, must be pretty daunting.

At SAS’s European Localization Center (ELC) we have developed slowly and

organically over the past decade. Localization of SAS software was much less

extensive in the 90’s where end users tended to have a data science or IT

background and a good command of English statistical terms. In the last

decade, however, end solutions have increasingly targeted the front-office

business user and the need for localization has grown in step with this. To

keep track of the changes and growing volume of work, ELC has expanded

and it has been necessary for all of us to develop our skill set and optimize

our processes on a running basis.

This presentation describes how we have tackled the seemingly mundane task

of managing our translation memories, and the unexpected benefits that have

arisen from this initiative. The path that we have taken does not cover new

theoretical ground and is not earth-shattering in any sense. But I would like

to open a window onto a solution that has evolved in the day-to-day

maelstrom of the localization workspace and hope that it can inspire others to

find a low-cost homegrown solution that knits into the idiosyncrasies of their

particular localization workflow.

TMs: the situation before….

SAS uses three different CAT tools to localize software products. Around 2004

we used a great deal of time and effort in re-organizing our storage structure

for projects being sent out for localization, and translated projects coming

back. The major part of this effort involved lengthy and detailed discussions

about object granularity (product domain, product, project, toolkit, filetype

etc.) and a suitable taxonomy for these objects. I mention this somewhat

basic step because in my experience this is the absolutely most important

make-or-break factor in creating an automated workflow of any kind. You can

muddle by on inconsistent naming systems, but in the long-term this will

continually trip you up when you try and introduce overarching systems that

are scripted in a programming language.

We created a good structure which was partnered with a database using the

same set of taxonomies. Using the database and Perl scripts and a Web front-

end we set up a fairly straightforward automated workflow. Our translators

were able to trigger the building of localization toolkits, download these,

translate them and upload them again. [A localization toolkit is a package

containing all the files needed to deploy a localization project in a CAT tool on

a local computer. The returned, completed toolkit is the same package

including the translated files and the translation memory.] The system

ensured that the uploaded toolkits and the files they contained were placed in

the right folders. Some of the files were the translation memories. These were

placed in designated folders but left in their proprietary format.

After some time we wanted to set up a terminology management system, and

needed to carry out term extraction on our existing translation memories. It

now became a problem that our translation memories were distributed in the

system and stored with each project. But pulling them together didn’t fully

solve the issue because they were still in a binary format that was difficult to

work with.

We decided to go the TMX way. We added an extra step to the toolkit upload

process which took the uploaded project and used API’s from our CAT tools to

create TMX. This is in itself was not an easy format to play around with,

although now the TMs from the different tools were at least uniform. We

decided that we needed a simple delimited txt format that was more

amenable to scripting and we created an additional XSLT transformation that

converted the TMX files into a very simple delimited format with the source

and target strings only.

Other metadata was stored in the file name (version, project code, filetype),

and additional metadata was also obtainable through the relationships in our

data structure (domain, project ship date etc.)

Whenever a project was uploaded by a translator, a TMX file was created for

that project/language/version and placed in a designated folder. We allowed

uploaded files to overwrite any existing files for the same

project/language/version, as we only wanted to store the most recently

uploaded TM in these files, but wanted to allow different version numbers to

endure.

We were now close to a stage where we could aggregate all the TMs, but first

needed to go back and trigger the TMX/txt process for all legacy projects as

the only trigger we had until now was a project upload and many projects are

dormant between releases. This was actually quite a laborious task involving

hundreds of projects.

Now we created a script that ran nightly. It combed the project folders and

identified and gathered together all the txt format TMs for all the latest

versions of projects. This made it possible to aggregate the files into a grand

data set for each language. The rows of these data sets consisted of the

source string, target string, version, ship date, project name, filetype, toolkit

name, product domain. At SAS the development language is English and

therefore the source language for localization is always English. In other

words we had a set of language-specific TM silos containing the latest version

of the TM for every product ever localized at SAS, in an easily readable format.

An interesting feature of our automated workflow is that our translators can

build toolkits and upload translated toolkits themselves. Within the scheduled

period, until the sign-off date, translators can upload toolkits as many times

as they wish. This ensures that the TM stored in the TM repository can be

kept updated by translators to within a 24-hr period.

Although the original reason for creating these TM repositories was to extract

terminology, we quickly became aware of the possibilities embodied in these

data sets which were updated nightly.

now that we have TM repositories, what else can we use them for…?

Like all localization centers, we receive many queries from translators, testers,

reviewers, etc. about source/target strings. We added an extra step to the

repository creation and also created large language-specific txt files (one for

each language) containing all the strings from the TMs. This made it very easy

to quickly locate the offending string pairs and answer many kinds of query.

Interest in accessing these files snowballed, and we realized that it would be

of major benefit to our translators and others to make the files available in

some way via Web access.

The solution we came up with was to create a Web form that used a CGI

script to send queries on to a Perl script. The Web page provides a set of

search fields. Users enter search strings and these are sent for processing to

a script which uses regular-expression pattern matching to find results. These

are returned in a new Web page. We added a number of subsetting

possibilities. Users could select a language, a domain or project or just specify

All, and search in source and/or target strings. We also added various kinds of

advanced search.

This tool, which we call TM Search, was very heavily accessed and we were

surprised at the wide range of users. Word spread within the company and we

found that many other groups outside the localization community were also

using it.

We have also made the tool available to our language service providers and it

has drastically reduced the volume of terminology queries previously sent to

us. We also feel that it is contributing greatly to increased consistency in the

translations. As well as having the chance to see how other translators within

one’s own language have translated certain strings or terms, translators can

also search in languages that are related to their own and see how the

translations were tackled there.

Customers have also become aware that this facility exists and have

expressed interest in having access to it. Many SAS customers operate across

national-language boundaries, and local offices in, say, Holland, Germany and

France often sit using the same software product, carrying out the same

process. But the product versions they use are localized to their own language.

Having look-up access to the English source for the localized UI text strings

they see on their screens would greatly assist cross-border communication.

addressing an old pain: which TMs should I use?

There was a constantly recurring issue in the localization process. SAS

products are released in waves that we call ship events. For each new ship

event we typically target between 10-20 products for localization to a number

of languages. Products are only localized to a certain language if there is a

good business case for doing so, so the constellation of languages changes

from project to project.

We had always tried to advise localizers about which existing translation

memories would reduce the word count for the new localization projects we

launched. A previous release of the same product was an obvious candidate,

and if we knew of related products these were also recommended. However,

quite often, half-way through the translation cycle, a translator would contact

us and tell us that they had discovered that attaching the translation memory

from project XXX reduced the translatable word count by, for example, 6000

words.

In short, we had an idea about which TMs may be of help, but this was based

on what various people in the organization might remember, or vague

communications filtering through to us that developers had re-used several

components from product A, when creating product B. For new product

releases we found it hard to recommend TMs to attach as reference material.

This situation was compounded by the fact that for each language group we

had a different set of TMs.

We realized that the TM repository may provide us with a way to

systematically investigate the nature of our TMs.

Initially we toyed with the idea of a solution that created a purpose-built TM:

purpose-built for each new project in hand. This would be done on the basis

of strings from the repository. The format of the purpose-built TM could, for

example, be TMX; though right now the repositories were stored in a

database format, or txt delimited files.

We looked into the possibility of going back to the TMX and aggregating this

on a native XML server. With this in mind we invited an XML software provider

to advise us on a solution. The architecture could be set up. The solution was

sophisticated but somewhat expensive, and would require that we learn XML

technologies like XQuery, XPath, etc. to an expert level, or commit ourselves

to purchasing ongoing consultancy services from the provider which would

bump the price up even higher.

We took a look at the tools and technologies that we already had at our

disposal. We had the SAS environment and the SAS programming language,

and the necessary programming skills to attempt a solution. The solution we

came up with turned out to be a fairly simple one.

We decided to abandon the approach of creating purpose-built TMs for

projects based on all the existing TM material. Because of the nature of our

products, preserving the context of a translation is very important. We were

concerned that if we allowed an automated process to pluck out strings

individually from the repository, the resulting TM would encompass too many

different contexts from different products and the result of pre-translations

would be internally inconsistent. Also, this process would result in very many

variant target strings, and our translators would have to sit and choose

between these – a time-consuming task.

Another consideration was technical in nature. Attaching a proprietary

translation memory to a tool is straightforward. The proprietary TMs tend to

be richer in data (some of this is invariably lost or modified when changing

the TM to another format). Wherever possible we prefer to attach TMs written

in the tool’s own format.

What we were looking for was a solution that emulated the existing process.

We wanted a process that would return results in the form of a short list of

TMs that would provide the greatest possible number of pre-translations. We

could then use the proprietary TM formats and attach these to the new

translations – a very quick and easy step.

TM Discovery

We called the new process TM Discovery.

It consists of a number of steps that are scripted in the SAS programming

language, which is perfectly suited to crunching large data volumes, but could

just also have been written in many other languages. The basic algorithm is

quite simple.

Our localizations are packaged in toolkits. Each toolkit contains files that are

the same file type. A typical file type could be a Java properties file. So, for

the new release of product AAA, we wanted to discover which existing TMs

would give us the greatest number of pre-translations for our AAA_properties

toolkit for, say, French. This is the same as asking: are there any comparison

matches between source strings in AAA_properties and English source strings

in the French TM repository.

The repository contains all the string pairs for all translations that have been

carried out to date in French. The rows have a “product” variable and a

“filetype” variable, but also a “toolkit_name” variable which is a combination

of project and filetype. Imagine a string in the BBB product taken from the

properties files: the toolkit_name would be BBB_properties. This is an

important point because for us the toolkit, designated by the toolkit_name,

represents the basic-level granularity. Below it we have individual files and

eventually individual strings, and above it we have product, domain. This is

important in deciding how to deal with duplicate strings, which we did as

follows.

If we look at source/target string pairs (as opposed to source strings only), a

duplicate row was defined as a row in which the source string and target

string were identical with the source string and target string from another row

with the same toolkit_name. In other words all the string pairs at the

BBB_properties level were unique. If two rows contained the same source

string, but a differing target string these were not considered duplicates.

Coming back to our new set of strings under investigation, AAA_properties,

the first step is to copy the repository data set for French to a playpen and

append the set of AAA_properties strings under investigation as new rows.

Now a sort operation can be carried out on the source string variable.

Duplicate source strings will be grouped. If a group contains a string from

AAA_properties, then it is of interest to us. We keep these groups as

SUBSET_1 and remove all other rows.

Now we carry out a sort operation on the new SUBSET_1, but this time on the

toolkit_name variable so that the resulting groups of strings are each a set of

strings belonging to one toolkit. These groups are counted internally, and the

largest group (excluding of course AAA_properties) is extracted and we can

call this SUBSET_2. For example, this could be a set of strings from the XXX

product, called XXX_properties. SUBSET_2 is reduced to only include unique

source strings. This is the top candidate TM and can be added to the top of a

list of recommended TMs. A metric can be added to this: number of segments

matched, number of words matched.

Now we return to SUBSET_1 and using SUBSET_2, mark off all rows in

SUBSET_1 that match a string in SUBSET_2, and remove these rows from

SUBSET_1. The reason for this is that we are giving a privileged status to

strings from XXX_properties (found in SUBSET_2). It appears that

XXX_properties is the most similar TM to the set of strings we are

investigating. We do not want to encounter these strings again as we continue

our investigation through other TMs. They are, so to speak, already spoken

for.

Now we perform the same operation as before on the remainder of the strings

and create a SUBSET_3. SUBSET_3 turns out to contain strings from YYY_xml

and this is written to the list as the next-best candidate TM, and the metrics

are worked out for the number of matches. There is thus no “measured”

overlap between XXX_properties and YYY_xml. There may in fact be overlap,

but this is not reflected in our metrics. We are interested in the total number

of words that can be pre-translated using the smallest possible selection of

TMs.

Typically we find that after the first 3-4 recommended TMs, the number of

matches falls to less than 50 words, and then very quickly to less than 5

words, petering out after 6-10 recommended TMs.

The list of recommended TMs is then saved as a txt file and stored in a folder

below the project information Web pages for the AAA project. A link to this file

is added to the actual information pages. The operation is then carried out for

other filetypes that are being localized to French for the AAA product.

Typically we localize 3-8 filetypes for each product. Then the whole operation

is performed for each other language into which the AAA product is being

localized. All these operations are prepared and executed as a batch job.

So, localizers and PMs open the project information Web pages for the AAA

project, and under a designated tab are presented with a list of links. They

are arranged by language, and within each language by filetype. Clicking on a

link opens the list of recommended TMs that should be attached as reference

material to a new project.

discussion of results

Typically, the TM Discovery returns a list of 3-4 useful TMs. The top candidate

will most often be the previous version of the same toolkit. So for the

AAA_properties_2.0 toolkit, the top recommended TM will be

AAA_properties_1.0 – in other words the previous version of the same toolkit.

This is a re-assuring result, as any other result would invalidate the process.

But often the secondary recommended TM contains substantial matches, and

this would not have been predictable. For new products and sometimes even

for new releases of existing localized products we discover major overlaps

that we had not been aware of between the current project and an already

translated product.

Results are different for each language – sometimes quite different. As

described above, this is due to the fact that the set of existing TMs varies

from language to language. Previously we could give some indication about

which TMs may be of benefit, but this was based on our knowledge of the

English source, and didn’t always make sense for some languages. We are

now able to provide a language-specific list of recommended TMs.

The metrics provided by the TM Discovery process can be taken as a guide to

the usefulness of the TM. The inter-relationship between the TMs on the list

returned is a solid and reliable one. However, the metrics will never match

completely the metrics obtained from the CAT tool once the project is created

and the reference TMs leveraged. This is because the TM Discovery tool does

not attempt to carry out fuzzy matching and there can be discrepancies

caused by different handling of things like case-sensitivity, punctuation, etc.,

between the tool and the TM Discovery process.

Results returned can indicate that TM in one tool-specific format should be

used in another tool. This necessitates us using the TMX version of the TM,

which for some tools requires an intermediate conversion, but this is no great

problem.

the cost

We did not purchase any additional software or hardware. Naturally there is

the time spent creating the various scripts, but this was done in stages over a

fairly long period and did not create any noticeable resource problem.

We have not carried out any in-depth analysis of the savings gained by having

the system. The TM Search tool saves valuable time for many different types

of user and has increased the internal consistency of localizations. Quicker

troubleshooting means more bugs can be addressed in a release and this in

turn means better quality.

The TM Discovery tool displays a more immediate effect. In the word count

reports obtained after attaching recommended TMs, it is possible to see how

many words are pre-translated; words which may otherwise have been

missed. At a cost of 5-6 words per Euro, for just one localization project, if an

unknown TM relationship is discovered to the tune of 3000 words, if the

project is earmarked for localization into 12 languages this means a saving of

around 6,000 Euros. At ELC we manage around 250-300 localization projects

annually.

process designers

Krzysztof Jozefowicz is the Localization Manager at ELC, SAS's European

Localization Center. He has worked in the localization industry for 15 years

and has an M.Sc. in Computer Science from the Jagiellonian University in

Cracow.

Ronan Martin is the Terminology Manager at ELC, SAS's European Localization

Center. He has worked with terminology and localization for the last 10 years,

and previously as a language-learning consultant and translator. He has an

M.A. in Educational Psychology (Pædagogik) from the University of

Copenhagen.

