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Abstract

In recent years, it is becoming more and more clear that the localisation industry does not have the neces-
sary manpower to satisfy the increasing demand for high-quality translation. This has fuelled the search
new and existing technologies that would increase translator throughput. As Translation Memory (TM)
systems are the most commonly employed tool by translators, a number of enhancements are available to
assist them in their job. One such enhancement would be to show the translator which parts of the sen-
tence that needs to be translated match which parts of the fuzzy match suggested by the TM. For this
information to be used, however, the translators have to carry it over to the TM translation themselves.

In this paper, we present a novel methodology that can automatically detect and highlight the segments
that need to be modified in a TM-suggested translation. We base it on state-of-the-art sub-tree alignment
technology (Zhechev, 2010) that can produce aligned phrase-based-tree pairs from unannotated data. Our
system operates in a three-step process. First, the fuzzy match selected by the TM and its translation are
aligned. This lets us know which segments of the source-language sentence correspond to which segments
in its translation. In the second step, the fuzzy match is aligned to the input sentence that is currently
being translated. This tells us which parts of the input sentence are available in the fuzzy match and which
still need to be translated. In the third step, the fuzzy match is used as an intermediary, through which the
alignments between the input sentence and the TM translation are established. In this way, we can detect
with precision the segments in the suggested translation that the translator needs to edit and highlight
them appropriately to set them apart from the segments that are already good translations for parts of the
input sentence. Additionally, we can show the alignments—as detected by our system—between the input
and the translation, which will make it even easier for the translator to post-edit the TM suggestion. This
alignment information can additionally be used to pre-translate the mismatched segments, further reduc-
ing the post-editing load.

1. Introduction

As the world becomes increasingly interconnected, ideas, products and services need
to be communicated to the widest audience possible. This requires localisation for as
many languages, cultures and locales as possible, with translation being one of the
main parts of the localisation process. Because of this, the amount of data that needs
professional high-quality translation is continuing to increase well beyond the ca-
pacity of the world’s human translators.

Current efforts in the localisation industry are mostly directed at the reduction of
the amount of data that needs to be translated manually from scratch. Such efforts
mainly include the use of Translation Memory (TM) systems, where earlier transla-
tions are stored in a database and offered as suggestions when new data needs to be
translated. As TM systems were originally limited to providing translations only for
(almost) exact matches of the new data, the integration of Machine Translation (MT)
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techniques is often seen as the only feasible development that has the potential to
significantly reduce the amount of manual translation.

The system that we present in this paper, however, takes a different approach in
that it aims to aid the translators in the process of post-editing TM matches. In par-
ticular, the system isolates and marks-up the parts of the TM-suggested translation
(henceforth the TM output) that can be judged as good based on automatic align-
ment between the segment that needs to be translated (henceforth the input) and
the TM fuzzy match. The parts of the TM output that are leftover after this process
are the ones that need editing and the system highlights them so that they can be
easily spotted by the translator without having to search through the whole TM out-
put. The system can further be augmented with a Statistical Machine Translation
(SMT) backend to pre-translate the mismatched parts of the TM output, before pre-
senting them to the translator for post-editing, thus hopefully reducing post-editing
effort.

With recent advances in the performance and quality of Statistical Machine
Translation (SMT) systems, many commercial TM systems offer the user the option
to obtain SMT-generated translations for new data.! Such translations, however, are
usually only obtained for cases where the TM system could not produce a good-
enough translation (cf. Heyn, 1996). Given that the SMT system used is presented
with the “hard” translation cases (strings not seen in the TM) and is usually trained
only on the data available in the TM, it tends to have only few examples from which
to construct the translation, thus often producing fairly low quality output. Because
of this, and since translators are used to TMs as an integral part of their working en-
vironment but less so to MT, SMT output is still often scorned upon by professional
translators. We hope that the system described here presents a use case for SMT in a
TM context in which translators may see the benefits this technology can bring.

In Section 2, we present the technical details of the design of our system, together
with motivation for the particular design choices we took. Section 3 details the ex-
periments we performed with pre-translating the mismatched segments of the TM
output and the results we achieved. In Section 4, we present out future development
plans and conclude.

2. System Framework

We present a system that uses state-of-the-art sub-tree alignment techniques to
mark-up Translation Memory output highlighting the parts of it that need to be ed-
ited manually.

! At the time of writing, the only commercial system to include technology similar to the
framework described in this paper, rather than simply allow the translation of full sentences
via an SMT plugin, was the upcoming Déja Vu X2 (http://www.atril. com).
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2.1. Translation Memory Backend

Although the intention is to integrate the methodology outlined here into a full-
scale TM system, to have complete control over the process for this initial research
we decided to build a simple prototype TM backend ourselves.

We employ a database setup using the PostgreSQL v.8.4.32 relational database
management (RDBM) system. The segment pairs from a given TM are stored in this
database and assigned unique IDs for further reference. When a new sentence is
supplied for translation, the database is searched for (near) matches, using a Fuzzy
Match Score (FMS) based on character-based Levenshtein edit distance (Leven-
shtein, 1965). To speedup the computation, we use a recursive wrapper around the
PostgreSQL-internal implementation of the levenstein() function, taken from the
TinyTM project.3

In this way, for each input segment, from the database we obtain the matching
segment with the highest FMS, its translation and the score itself.

2.2. Sub-Tree Alignment

The system presented in this paper uses sub-tree alignment (Zhechev, 2010) to dis-
cover parts of the input sentence that correspond to parts of the suggested transla-
tion extracted from the TM database. This is done in a three-step process. First, the
plain TM match and the TM output are aligned, which produces a sub-tree aligned
phrase-based tree pair. We call this step bilingual alignment.

In the second step, called monolingual alignment, the phrase-based tree-
annotated version of the TM match is aligned to the plain-text input sentence. The
reuse of the structure for the TM match allows us to use it in the third step as an in-
termediary to establish the available sub-tree alignments between the input sentence
and the TM output.

During this final alignment, we identify matched and mismatched portions of
the input sentence and their possible translations in the TM output and, thus, this
step is called matching.

The alignment process is exemplified in Figure 1. The tree marked ‘T’ corresponds
to the input sentence, the one marked ‘M’ to the TM match and the one marked ‘T’
to the TM output. We only display the node ID numbers of the non-terminal nodes
in the phrase-structure trees—in reality all nodes carry the label ‘X’ These IDs are
used to identify the sub-sentential alignment links. The lexical items corresponding
to the leaves of the trees are presented in the table below the graph.

2http://www.postgresql.org
3http://tinytm.sourceforge.net/en/technology/fuzzymatch.html
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I 1 2 3
input |sender email |address
M 1 2 3 4 5
match |sender s email |address
T 1 2 3 4 5 6 7 8
translation|adresse|électronique| de I |expéditeurdu|message]| .

Figure 1. Example of sub-tree alignment between an input sentence,
TM match and TM output

The alignment process can be visually represented as starting at a linked node in
the I tree and following the link to the M tree. Then, if available, we follow the link
to the T tree and this leads us to the T-tree node corresponding to the I-tree node we
started from. In Figure 1, this results in the I-T alignments [1-T18, [2>-T2, I3-T1, I4-
T32 and 16-T34. The first three links are matches, because the lexical items covered
by the I nodes correspond exactly to the lexical items covered by their M node coun-
terparts. Such alignments provide us the direct TM translations for our input. The
last two links in the group are mismatched, because there is no lexical correspon-
dence between the I and M nodes (node I4 corresponds to the phrase sender email,
while the linked node Mio corresponds to sender ’s email). Such alignments can only
be used to infer reordering information for the experiments presented in Section 3.
In particular in this case, we can infer that the target word order for the input sen-
tence is address email sender, which corresponds to the translation adresse élec-
tronique de I’ expéditeur.

The correspondence between the input and the TM output could be presented to
the user as shown in Figure 2.4 The alignments representing correct translations as
inferred from the TM are highlighted in green and alignment lines are drawn to show

4 A prototype system implementing the proposed techniques is currently still being
developed. All UI elements presented here may change in the final product.
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the translator what the system believes the translational correspondences are. The
final words in the French segment are faded out, as an indication from the system
that they should probably be deleted. If desired, the system can also present the TM
match as the intermediary between the input and the TM output.

AaNn Translation

Figure 2. Suggested Ul representation for the correspondence in Figure 1.

;N Transiation

Figure 3. Suggested Ul representation for the correspondence in Figure 1.
(including the TM match)

We decided to use sub-tree-based alignment, rather than plain word alignment
(e.g. GIZA++ - Och and Ney, 2003), due to a number of factors. The goal of sub-tree
alignment methods is not to align as many lexical items as possible, but to represent
structurally the best translational equivalences in the sentences that are being
aligned. This allows for the encoding of long-distance translational dependency by
means of links between nodes higher up in the tree structures.

The alignments produced by a sub-tree alignment model are also precision-
oriented, rather than recall-oriented (cf. Tinsley, 2010). This is important in our case,
where we want to only extract those parts of the translation suggested by the TM for
which we are most certain that they are good translations.

Out of the three currently available open-source sub-tree alignment systems, two
can only operate when at least one language-side of the data that needs to be aligned
is pre-parsed (Ambati et al., 2009, Tiedemann, 2010) and one of them needs a hand-
crafted parallel treebank as training data (Tiedemann, 2010).

As these requirements necessitate the acquisition of human-annotated data be-
sides the data available in the TM, we decided to use the system described in
(Zhechev, 2010) instead. It can produce aligned phrase-based-tree pairs from unan-
notated (i.e. unparsed) data. It can also function fully automatically without the
need for any training data.
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The only resource necessary for the operation of this system is a probabilistic
bilingual dictionary covering the data that needs to be aligned. For the bilingual
alignment step, such a bilingual dictionary—if not already available—can be gener-
ated automatically using a tool like GIZA++ (Och and Ney, 2003). For the monolin-
gual alignment step, the required probabilistic dictionary is generated by simply list-
ing each unique token seen in the source-language data in the TM as translating only
as itself with probability 1.

3. Experimenting with Pre-Translation

As stated earlier, the design of our system allows for the pre-translation of the mis-
matched parts of the TM output using an SMT system. We explore two approaches to
handling the translation of these outstanding fragments.

The first approach is extremely straightforward, in that the non-translated seg-
ments of the input sentence are sent severally to the SMT backend for translation
without any context information. The segments translated using TM data and the
ones translated using the SMT backend are then simply concatenated in the target-
language word order, as determined implicitly by the sub-tree alignment informa-
tion. The most serious drawback of this approach is that translating the individual
segments out of context might often lead to improper lexical choice by the SMT
backend, which could have been properly resolved given the context of the whole
input sentence. Also, for certain cases (particularly with low FMS) the target-
language word order may not be discernible for all input-sentence segments and the
translations of the segments with undetermined placement are simply appended to
the end of the generated translation. Still, the simplicity of this approach makes it a
good baseline benchmark against which to evaluate improvements. This approach is
referred to as comb below.

The second approach to handling non-translated input-sentence segments relies
on a specific feature of the SMT backend we use, namely the Moses system (Koehn et
al., 2007). We decided to use this particular system as it is the most widely adopted
open-source SMT system, both for academic and commercial purposes. In this ap-
proach, we annotate the segments of the input sentence for which translations have
been found from the TM suggestion using XML tags with the translation corre-
sponding to each segment given as an attribute to the encapsulating XML tag. The
SMT backend is supplied with a string consisting of the concatenation of the XML-
enclosed translated segments and the plain non-translated segments in the target-
language word order, as established by the alignment process. The SMT backend is
instructed to translate the string as a whole, while keeping the translations supplied
via the XML annotation. This mode of operation provides the SMT backend with the
necessary context information to come up with proper lexical choice for the non-
translated fragments and allows it to introduce reordering on its own, based on the
SMT reordering models derived during training. We refer to this approach as xml. A
drawback present with this approach is that we need to perform additional align-
ment and matching steps to reestablish the alignments between the input and the
newly generated translation.
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Further, we present experiments on pre-translating the mismatched parts of the
TM output using the methods described above (comb and xml).

3.1. Experimental Data

We use real-life TM data provided by Symantec Ireland, an industrial partner of
CNGL. The TM was generated during the translation of RTF-formatted customer
support documentation. The data is in TMX format and originally contains 108 967
English-French translation segments, out of which 14 segments either have an empty
language side or have an extreme discrepancy in the number of tokens for each lan-
guage side and were therefore discarded.

A particular real-life trait of the data is the presence of a large number of XML
tags. Running the tag-mapping tool described in Section 2.5, we gathered 2 o049 dis-
tinct tags for the English side of the data and 2 653 for the French side. Still, there
were certain XML tags that included a label argument whose value was translated
from one language to the other. These XML tags were left intact so that our system
could handle the translation correctly.

The TM data also contain a large number of file paths, e-mail addresses, URLs
and others, which makes bespoke tokenisation of the data necessary. Our tokenisa-
tion tool ensures that none of these elements are tokenised, keeps RTF formatting
sequences non-tokenised and properly handles non-masked XML tags, minimising
their fragmentation.

Due to the nature of TM data, translation segments rarely occur more than once
in the data set. This explains the high number of unique tokens (measured after pre-
processing) that we observe for the two languages—41 379 for English and 49 971 for
French—out of 108 953 segment pairs. The average sentence length is 13.2 for English
and 15.0 for French.

For evaluation, we use a data set of 4 977 English-French segments that were ob-
tained from a different set of documents than the ones, for whose translation the TM
presented above was used. The sentences in the test set—with average length 9.2 to-
kens for English and 10.9 for French — are significantly shorter compared to the TM.

It must be noted that we used SMT models with maximum phrase length of 3
tokens, rather than the standard 5 tokens, and for decoding we used a 3-gram lan-
guage model. This results in much smaller models than the ones usually used in
mainstream SMT applications, thus making the system more accessible by lowering
the system requirements for running it. (The standard for some tools goes as far as 7-
token phase-length limit and 7-gram language models.)

3.2. Evaluation Results

For the evaluation of our system, we used a number of widely accepted automatic
MT-quality metrics, namely BLEU (Papineni et al., 2002), NIST (Doddington, 2002),
METEOR (Banerjee and Lavie, 2005), TER (Snover et al., 2006) and inverse F-Score
based on token-level precision and recall.
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We setup our system to only fully process input sentences for which a TM match
with an FMS over 50% was found, although all sentences were translated directly
using the SMT backend for control purposes (marked as direct). The TM output was
also evaluated unmodified (¢m). comb and xml refer to the two setups described in
the beginning of Section 3.

08 T 09 T
071 08 T
L
L +
0.6 071
-4
2 05T 8
= = 06T
= =] A
0sl =
05 T _tm
. comb
3t
0.3 =
04t x
> -
02 y direct
LER S
o '3 . . . . . . ; . . . . . .
0501963 5060779  60..70/21  70..80/537  80..90/537  90..100375  100/165 0..50/1963 50607779 60..70/621  T0..80/537  80..90/537 90100375 100/165
FMS Range/Segments FMS Range/Segments
o,
09+ O tm
\ tm 07 1 - e
-0 comb
08 T s
i o
comb 3
o > _ xml
07 1 % 06 1 A
ol . direct
06 T R 05T
o o
Eost 2 o,
5 04T >,
S * - _
04+ <] + )4 B Y
=y —— °
- e N 4
03 1+ ~— ~_ % 3
03 1 il = _— 8
g T . -
SR 7o
02+ 02+ F
01 ' ' ' ' ' n ' ' ' ' ' ' n '
0501963 5060779  60..70/21  70..80/537  80..90/537  90..100375  100/165 0..501963 50607779 60..70/621  T0..80/537  80..90/537 90100375 100/165
FMS Range/Segments FMS Range/Segments
*
N 18+ \ length
e
\ .
16 T \
\
8T \
b
14 \
1t \
12+ %
= = S )
[Zp : o 2 i o R
2 41 . r R - .
z g o T - \
- 3 a . N
N 8 T \
ERS y comb N
o - % - \
E 6r \
xml N
s - N
4t \
direct N
3 2+ .
L ' ' ' ' ' ' ' ' ' ' ' ' '
0501963 S0..60779 6070621 T0..80/537 8090537 90..100375  100/165 0501963 S0..60779 6070621  70..80537  80..90/537  90..100A75  100/165
FMS Range/Segments FMS Range/Segments

Figure 4. Evaluation results for English-to-French translation, by FMS range

The results of the evaluation are given in Figure 4, where the tm and direct scores
are also given for FMS between 0% and 50% and FMS 100%. Across all metrics we see
a uniform drop in the quality of TM-suggested translations, which is what we ex-
pected, given that these translations contain one or more incorrect words. We believe
that the relatively high scores recorded for the TM-suggested translations at the high
end of the FMS scale are a result of the otherwise perfect word order and lexical
choice. For n-gram-match-based metrics like the ones we used, such a result is ex-
pected and predictable. Although the inverse F-score results show the potential of
our setup to translate the outstanding tokens in a 90%-100% TM match, it appears
that the SMT system produces word order that does not correspond to the reference
translation and because of this receives lower scores on the other metrics.
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The inverse F-score results also confirm our prediction that the comb translation
approach is prone to lexical-choice errors due to the lack of context during transla-
tion. These errors seem to be the major factor leading to significantly worse perform-
ance compared to the xml approach.

The unexpected drop in scores for perfect TM matches is due to discrepancies
between the reference translations in our test set and the translations stored in the
TM. We believe that this issue affects all FMS ranges, albeit to a lower extent for non-
perfect matches. Unfortunately, the exact impact cannot be ascertained without hu-
man evaluation.

We observe a significant drop-off in translation quality for the direct output be-
low FMS 50%. This suggests that sentences with such low FMS should be translated
either by a human translator from scratch, or by an SMT system trained on different/
more data.

The xml setup of our system clearly outperforms the direct SMT translation for
FMS between 80% and 100% and has comparable performance between FMS 70%
and 80%. Below FMS 70%, the SMT backend has the best performance. Although
these results are positive, we still need to investigate why our system has poor per-
formance at lower FMS ranges. Theoretically, it should outperform the SMT backend
across all ranges, as its output is generated by supplying the SMT backend with good
pre-translated fragments. The Inverse F-Score graph suggests that this is due to
worse lexical choice, but only manual evaluation can provide us with clues for solv-
ing the issue.

The discrepancy between the results in the Inverse F-Score graph and the other
metrics suggests that the biggest problem for our pre-translation system is producing
output in the expected word-order.

4. Future Work and Conclusions

First, our main goal is to integrate the presented methodology in a standalone com-
mercial or open-source TM system so that it can become a part of a fully integrated
localisation workflow.

The pre-translation functionality needs to first be evaluated on a small, but rep-
resentative, set of data to establish the FMS level at which the system performs at its
best and set the appropriate thresholds accordingly for the further use of the system.
This can be linked to a translation-quality estimator, when such tools become more
widely available.

Finally, a user study evaluating the effect of the use of our system on post-editing
speeds should be performed. We expect the findings of such a study to show a sig-
nificant increase of throughput that will significantly reduce the costs of translation
for large-scale projects.

The system we developed uses precise sub-tree-based alignments to reliably de-
termine correspondences between an input sentence and a TM output and presents
them to a translator to facilitate the post-editing process. It can employ an SMT
backend to translate the mismatched parts of the input sentence and produce a
complete translation with higher quality than the original TM output.
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Our evaluation of the pre-translation functionality shows that it significantly im-
proves the quality of the pure SMT output when using TM matches with FMS above
80% and produces results on par with the pure SMT output for FMS between 70%
and 80%. Still, further investigation is needed to properly diagnose the drop in qual-
ity for FMS below 70%.
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