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Résumé. Nous présentons dans cet article une étude empirique de l’application de l’approche de
l’entropie maximale pour l’étiquetage syntaxique de textes vietnamiens. Le vietnamien est une langue qui
possède des caractéristiques spéciales qui la distinguent largement des langues occidentales. Notre meilleur
étiqueteur explore et inclut des connaissances utiles qui, en terme de performance pour l’étiquetage de
textes vietnamiens, fournit un taux de précision globale de 93.40% et de 80.69% pour les mots inconnus
sur un ensemble de test du corpus arboré vietnamien. Notre étiqueteur est nettement supérieur à celui qui
est en train d’être utilisé pour développer le corpus arboré vietnamien, et à l’heure actuelle c’est le meilleur
résultat obtenu pour l’étiquetage de textes vietnamiens.

Abstract. This paper presents an empirical study on the application of the maximum entropy ap-
proach for part-of-speech tagging of Vietnamese text, a language with special characteristics which largely
distinguish it from occidental languages. Our best tagger explores and includes useful knowledge sources
for tagging Vietnamese text and gives a 93.40% overall accuracy and a 80.69% unknown word accuracy on
a test set of the Vietnamese treebank. Our tagger significantly outperforms the tagger that is being used for
building the Vietnamese treebank, and as far as we are aware, this is the best tagging result ever published
for the Vietnamese language.

Mots-clés : Etiqueteur syntaxique, entropie maximale, texte, vietnamien.
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1 Introduction

After decades of research in natural language processing (NLP) mostly concentrated on English and other
well-studied languages, recent years have seen an increased interest in less common languages, notably
because of their growing presence on the Internet. Vietnamese, which belongs to the top 20 most spoken
languages and is employed by an important community all over the world, is one of those new focuses
of interest. Obstacles remain, however, for NLP research in general and part-of-speech (POS) tagging
in particular : Vietnamese does not yet have vast and readily available manually constructed linguistic
resources upon which to build effective statistical models, nor acknowledged reference works against which
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new ideas may be experimented.

Moreover, most existing research so far has been focused on testing the applicability of existing methods
and tools developed for English or other Western languages, under the assumption that their logical or sta-
tistical well-foundedness guarantees cross-language validity, when in fact assumptions about the structure
of a language are always made in such tools, and must be amended to adapt them to different linguistic
phenomena. For an isolating language such as Vietnamese, techniques developed for flexional languages
cannot be applied “as is”. It is with this idea in mind that we have devised the Vietnamese POS tagger
presented in this paper.

The primary motivation for the development of an efficient tagger for the Vietnamese language is the need
of a fast and highly accurate tagger which may contribute more effectively in the development of basic
linguistic resources and tools for automatic processing of Vietnamese text (Nghiem et al., 2008; Tran
et al., 2009). Recently, a group of Vietnamese computational linguists has been involved in developing a
treebank for Vietnamese (Nguyen et al., 2009). Among tools for annotation of treebanks, a POS tagger
is an essential tool that must be robust and minimize errors. As reported in (Nguyen et al., 2009), the
tagger that is currently being used in the development of the treebank has the F1 score of 90.5%, a not
very high accuracy, far from the state of the art on Western languages. One of the reasons for this modest
performance is that the tagger employs only generic information sources used for tagging and does not
take into account some specific characteristics of the Vietnamese language.

We present in this article a more accurate and efficient tagger for Vietnamese. Based on the classical
principle of maximum entropy, it however explores and includes new useful knowledge sources for tagging
Vietnamese text and achieves state-of-the-art result for this language. It yields a 93.40% overall accuracy
and a 80.69% unknown word accuracy on a test set of the Vietnamese treebank.

Section 2 gives an introduction to the specific properties of Vietnamese and presents the tagset used in our
POS tagging task. Section 3 briefly presents the classical maximum entropy model which has been widely
used in POS tagging. The main contribution of the paper is presented in Section 4, where experimental
results are given and the best performing system is described in detail. We conclude this paper in Section 5
with a discussion of further possible improvements.

2 Vietnamese tagset

In this section, we first briefly introduce the Vietnamese language, bringing into focus the specific char-
acteristics which make automatic processing tasks difficult for this language. We then introduce a tagset
currently being used in an ongoing project involving the development of a treebank for the Vietnamese
language, which we have also adopted in our work.

2.1 Vietnamese language

Vietnamese belongs to the Austro-Asiatic language family. It is the national language of Vietnam. The
majority of the speakers of Vietnamese are spread over the South East Asia area.

Vietnamese is a quite fixed order language, with general word order SVO (subject-verb-object). As for most
languages which have relatively restrictive word orders, Vietnamese relies on the order of constituents to
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No. Category Description No. Category Description

1. Np Proper noun 10. M Numeral
2. Nc Classifier 11. E Preposition
3. Nu Unit noun 12. C Subordinating conjunction
4. N Common noun 13. CC Coordinating conjunction
5. V Verb 14. I Interjection
6. A Adjective 15. T Auxiliary, modal words
7. P Pronoun 16. Y Abbreviation
8. R Adverb 17. Z Bound morpheme
9. L Determiner 18. X Unknown

TAB. 1 – Vietnamese tagset

convey important grammatical information. Although Vietnamese text is written in a variant of the Latin
alphabet (a script that exists in its current form since the 17th century, and has become the official writing
system since the beginning of the 20th), there are three principal characteristics of Vietnamese which
distinguish it from occidental languages.

First, Vietnamese is an inflectionless language in which its word forms never change. Since there is no
inflection in Vietnamese, all the grammatical information is conveyed through word order and tool words.
The inflectionless characteristic makes a special linguistic phenomenon common in Vietnamese : type
mutation, where a given word form is used in a capacity that is not its typical one (a verb used as a noun,
a noun as an adjective. . . ) without any morphological change. This leads to the fact that Vietnamese word
forms are usually highly ambiguous in their part-of-speech. The same word may be a noun in a context
while it may be a verb or a preposition in other contexts. For example, the word yêu may be a noun (the
devil) or a verb (to love) depending on context.

Second, Vietnamese is an isolating language, the most extreme case of an analytic language, in which each
morpheme is a single, isolated syllable. Lexical units may be formed of one or several syllables, always
remaining separate in writing. Although dictionaries contain a majority of compound words, monosyllabic
words actually account for a wide majority of word occurrences. This is in contrast to synthetic languages,
like most Western ones, where, although compound words exist, most words are composed of one or
several morphemes assembled so as to form a single token.

The third difference, a consequence of the latter, is that there is no word delimiter in Vietnamese : spaces
are used to separate syllables, and no specific marker distinguishes the spaces between actual words. For
example, a simple sequence of three syllables a b c can constitute three words (a) (b) (c), two words (a
b) (c), two words (a) (b c) or even a single one (a b c). This characteristic leads to many ambiguities in
word segmentation, the foremost basic processing task which influences part-of-speech tagging and higher
levels of annotation for Vietnamese text. As an example, the sequence of three syllables học sinh học1 may
constitute the following word segmentations (học) (sinh) (học), (học sinh) (học), or (học) (sinh học). This
constitutes, however, a distinct task from POS tagging per se, and we shall therefore in this paper work on
a corpus that has undergone automatic segmentation (several tools for this task are presented in (Nguyen
et al., 2008; Le-Hong et al., 2008)) with manual correction.

1This phrase can be roughly translated as the pupil learns or study biology depending on context.
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2.2 Vietnamese tagset

Because of its inflectionless nature, Vietnamese does not have morphological aspects such as gender, num-
ber, case. . . such as in occidental languages. Vietnamese words are classified based on their combination
ability, their syntactic functions and their general meaning. The complete tagset which was designed for
use in the Vietnamese treebank (Nguyen et al., 2009) is shown in Table 1.

Beyond the classical POS used in Western languages (noun, verb, . . . ), one may notice the presence of
classifiers, which are commonly found in Asian languages, and of modal words, which convey some of
the nuances borne by flection in synthetic languages. “Bound morphemes” designate syllables that are not
supposed to appear alone and should only be seen as part of a compound word, and this tag is normally
only ever used to deal with cases when the segmentation of the corpus has been done improperly—which
is not our concern here.

3 Maximum Entropy model

The principle of Maximum Entropy states that given a set of observations, the most likely underlying
probability distribution is that which has minimal bias—that is, maximal entropy—while verifying the
statistical properties measured on the observation set. Those enforced properties are referred to as the
constraints imposed on the distribution.

This principle provides a guide for the acquisition of conditional probability distributions from training
data, but since it is quite computationally taxing, algorithms applying it have only become widely used
in recent years. Maximum entropy models have been applied successfully in many problems in NLP with
state-of-the-art results. Maximum entropy models are also known as log-linear models in NLP literature.
These models have been seen as a successful supervised machine-learning approach to linguistic clas-
sification problems, in which contexts are used to predict linguistic classes. They offer a clean way to
combine diverse pieces of contextual evidence in order to estimate the probability of a certain linguistic
class occurring with a certain linguistic context (Berger et al., 1996).

Maximum entropy models have been used extensively in numerous tasks of NLP for English and French
including machine translation (Deyi et al., 2006; Chiang, 2005), statistical parsing (Clark & Curran, 2007;
Finkel et al., 2008; Tsuruoka et al., 2009), part-of-speech tagging (Ratnaparkhi, 1996; Toutanova & Man-
ning, 2000; Toutanova et al., 2003; Denis & Sagot, 2009).

In part-of-speech tagging, the maximum entropy model tagger learns a log-linear conditional probability
model from tagged text using a maximum entropy method. One of its most appreciable strengths compared
with other methods is that it potentially allows a word to be tagged with a POS which has never been
observed in the training corpus.

Given a word w and its context h, the model assigns a probability for every tag t in the set T of possible
tags of w. The context h is usually defined as the sequence of several words and tags surrounding the word.
The probability of a tag sequence t1t2 . . . tn given a sentence w1w2 . . . wn can be estimated as

p(t1 . . . tn|w1 . . . wn) ≈

n∏

i=1

p(ti|hi). (1)
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The tagging is the process of assigning the maximum likelihood tag sequence to a sequence of words.
In the maximum entropy modeling, the distribution p is chosen so that it has the highest entropy out of
those distributions that satisify a set of constraints. These constraints restrict the model to match a set of
empirical statistics collected from the training data. The statistics are expressed as the expected values of
feature functions defined on the context h and tag t.

In the maximum entropy framework it is possible to define and incorporate complex statistics, not re-
stricted to n-gram statistics as in a Markov model. We can easily define and incorporate for example
statistics about the shape of a certain word (its prefix or suffix, whether it contains a number or not,
whether it is capitalized or not. . .).

The constraints of the model are that the expectations of these feature functions according to the joint
distribution p are equal to the emprical expectations of the feature functions in the training data distribution
p̂ :

Epfi(h, t) = Ebpfi(h, t), ∀i = 1, . . . , k. (2)

In order to make the model tractable, the joint distribution of contexts and tags p(h, t) is usually approxi-
mated as follows

p(h, t) ≈ p̂(h) · p(t|h).

Then the constraints (2) could be rewritten as
∑

h∈H,t∈T

p̂(h)p(t|h)fi(h, t) =
∑

h∈H,t∈T

p̂(h, t)fi(h, t),

∀i = 1, . . . , k, where H is the space of possible contexts h when predicting a part-of-speech tag t.

The model that is the solution to this constrained optimization task is a log-linear model with the paramet-
ric form :

p(t|h; λ) =
1

Z(h, λ)
exp

k∑

i=1

λifi(h, t), (3)

where Z(h) is the normalizing term :

Z(h, λ) =
∑

h∈H

exp

k∑

i=1

λifi(h, t).

There exists efficient algorithms for estimating the parameter λ = (λ1, . . . , λk) of the model. Some of
widely used methods are Improve Iterative Scaling (Lafferty et al., 2001) and quasi-Newton unconstrained
optimization methods like L-BFGS and conjugate gradient. Readers interested in a more extensive discus-
sion of parameter estimation methods for maxium entropy models may refer to (Gao et al., 2007; Malouf,
2002).

4 Experiments

This section presents experiments and results of a number of tagging models which are acquired using a
training method based on the maximum entropy model presented in the previous section. The difference
between them is in the use of different feature sets. All the models are trained and tested on the same
training and test corpus.
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4.1 Corpus constitution

The models are trained and tested on the part-of-speech tagged section of the Vietnamese treebank. The
treebank is currently composed of 10, 165 sentences which are manually segmented, tagged and parsed.
The raw texts of the treebank are collected from the social and political sections of the Youth online daily
newspaper (Nguyen et al., 2009). The minimal and maximal sentence lengths are 2 words and 105 words
respectively.

Evaluation of the trained models is performed classically using 10-fold cross-validation, where the corpus
is randomly split into 10 parts which are each used for testing a model built using data from the 9 others,
after which the computed accuracies for each run are averaged.

4.2 Baseline model

We first develop a baseline model similar to a simple trigram conditional Markov model in that the context
available for predicting the part-of-speech of a word wi in a sentence of words wiw2 . . . wn with tags
t1t2 . . . tn is {ti−1ti−2wiwi+1}. The features for this model are automatically produced by instantiation of
feature templates which are shown in Table 2. We call this baseline model Model 0.

No. Template

1. wi = X, ti = T

2. wi−1 = X, ti = T

3. wi+1 = X, ti = T

4. ti−1 = T1, ti = T

5. ti−1 = T1, ti−2 = T2, ti = T

TAB. 2 – Features used in the baseline model

This baseline model presents an accuracy of 90.23%, which is comparable with the precision of the tagger
used by (Nguyen et al., 2009) (90.5%) ; in particular, it performs very poorly on words that have never
been seen in the training data (“unknown words”), with a precision of only 47.08% in that case. For that
reason, we have first decided to focus on the extension of the feature set to allow a better guess of the POS
of unknown words.

4.3 Unknown words features

In order to increase the model’s prediction capacity for unknown words, some special feature templates are
included in the baseline model and the resulting model is called Model 1a. Based on the idea that unknown
words are likely to be rare words, if they have not been observed before, the additional features selected to
deal with unknown words are therefore only instanciated during training for the rare words of the training
corpus ; we talk henceforth of “rare features”. The rare feature templates are shown in Table 32. We define
rare words to be words that appear less than six times in the training data (threshold selected empirically).

2The actual general and rare feature templates for the model are a subset of the features used in (Ratnaparkhi, 1996;
Toutanova & Manning, 2000) for tagging English text.
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No. Template

1. wi contains a number, ti = T

2. wi contains an uppercase charac-
ter, ti = T

3. wi contains all uppercase charac-
ters, ti = T

4. wi contains a hyphen, ti = T

TAB. 3 – Features used for rare words

It should be noted that, unlike in the taggers for occidental languages, we do not include prefix and suffix
features when predicting rare words, since the concept of affixes is undefined for isolating languages.

Nevertheless, in the mechanics of syllable combination that allow the creation of compound words in
Vietnamese, some syllables play roles similar to the affixes of synthetic languages. For example, with
biên meaning “to write, to compile” and biên tập meaning “to edit”, the syllable viên may be appended
to produce biên tập viên, meaning “editor”. It is used similarly, with the same effect on part of speech, in
nghiên cứu viên (“researcher”) diễn viên (“actor”), etc. Similarly, the syllable hóa is usually appended to
the end of a noun or adjective to transform it into a verb, for example the word công nghiệp (“industry”) can
be transformed into the word công nghiệp hóa (“to industrialize”), or the word hiện đại (“modern”) into
the word hiện đại hóa (“to modernize”). The syllables viên and hóa in these examples can be considered
as a “suffix” of related composed words.

Not all suffixes, however, define the type of the resulting word as in those examples. That is for example
the case of phó (“vice-”) in phó giám đốc (“vice-director”), whose POS tag is the same as that of giám đốc
(“director”).

To account for all those cases, we consider as additional feature when trying to find out the tag of unknown
compound words their first and last syllables (potential affixes) as well as the groups of the first two and
last two syllables (potential “semantic kernel” of the compound word). Model 1a augmented with these
additional features, shown formally in Table 4, is referred to as Model 1b.

No. Template

1. σ(1, wi) = X , ti = T

2. σ(m, wi) = X , ti = T

3. σ(1, wi) = X1, σ(2, wi) = X2,
ti = T

4. σ(m, wi) = X1, σ(m − 1, wi) =
X2, ti = T

5. Number of syllables of wi

TAB. 4 – Features for syllables of a word. σ(j, wi) is a function which returns the j-th syllable of an
m-syllable composed word.

We also found the usefulness of the length of a word measured in syllables when predicting unknown
words. Adding template 5 of Table 4 to Model 1b slightly increased the accuracy of the resulting Model
1c. In our opinion, the number of syllables of a word can help predict long unknown words since they
are often classified correctly as locutions ; in addition, it is predictable that monosyllabic words are hardly
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unknown words.

The results on the test set of the four presented models are shown in Table 5.

Model Overall Unknown Word

Accuracy Accuracy

Model 0 90.23% 47.08%
Model 1a 92.64% 68.92%
Model 1b 92.85% 73.23%
Model 1c 92.92% 76.92%

TAB. 5 – Accuracy of the first four models.

The results show the importance of lexical information to the tagger by a large reduction of unknown word
error of models 1* compared with Model 0. The results also show the benefit of incorporating syllable-
specific features to the baseline model.

4.4 Discussion of problematic cases

There are many words which can have more than one syntactic category. In addition, the syntactic category
mutation presented earlier is a frequent phenomenon in Vietnamese. This introduces many ambiguities that
the tagger has to resolve. The confusion matrix of Model 1c on the test set is given in Table 6. The row
labels indicate the correct tags, and the column labels give the assigned tags. For example, the number 41
in the (N,V) position is the number of common nouns (N) that have incorrectly been tagged as verbs (V).
We see that the ambiguities between syntactic pairs (N,A), (N,V) and (A,V) are the harder for the tagger
to resolve. This result reflects and illustrates the frequent mutation between these syntactic categories in
Vietnamese. These particular confusions make up a large percentage of the total error (≈ 65%).

There are several types of tagger errors. First, some errors are the result of inconsistency in labeling in
the training data. Like in most other treebank data, this is inevitable, especially for an initial version of
the Vietnamese treebank. For example, the word ông is sometimes labeled Nc (classifier), sometimes
N (common noun) or P (pronoun). Second, some errors are due to systematic tag ambiguity patterns
in Vietnamese, for instance the patterns P/N, A/N, V/N and A/V are ambiguous pairs highly context-
dependent and sometimes difficult to disambiguate even by human annotators. Finally, it seems that the

N Nc Np V A R E P

N 0 16 9 41 20 2 6 11
Nc 24 0 0 1 0 0 0 0
Np 12 0 0 4 1 0 0 0
V 45 0 2 0 21 14 12 0
A 33 0 0 29 0 6 2 1
R 5 0 0 16 3 0 4 1
E 2 0 0 10 0 0 0 0
P 5 0 0 0 0 1 0 0

TAB. 6 – Confusion matrix Model 1c.
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tagger has some difficulties when resolving ambiguities between proper nouns, classifiers and common
nouns while human annotators do not frequently make this type of errors. With this error classification in
mind, the best way at the moment for tagging accuracy improvement appears to come from minimizing
errors in the third class of this classification.

In the following subsection, we discuss how we include additional information sources to help disam-
biguate proper nouns and thus improve the overall accuracy of the tagger.

4.5 Features for proper noun disambiguation

One of the significant source of tagging errors for our model are the Np/N ambiguity. However, in many
cases, it is trivial for humans to determine the correct category in that case, using very simple heuristics.
In Vietnamese, a proper noun having multiple syllables is written in a consistent form in that the first letter
of every syllable is always capitalized, for instance Nguyễn Tấn Dũng, Hà Nội. To help resolve a Np/N
ambiguity, we can add a feature template that looks at all the syllables of the current word and activates if
their first characters are uppercase ones. Table 7 shows the result of the new Model 1d incorporating this
feature. We see a considerable improvement of the accuracy on unknown words and the overall accuracy.

Model Overall Unknown Word

Accuracy Accuracy

Model 1d 93.13% 80.62%

TAB. 7 – Accuracy when adding the syllable capitalization feature.

4.6 Best overall model

It has been shown that the broad use of lexical features including jointly conditioning on multiple con-
secutive words produces a superior level of tagger performance. Notably, in the case of Vietnamese, since
many grammatical nuances borne in Western languages by inflections of the considered word itself are
instead indicated by separate tool words surrounding it, we need to consider a wider context in order to
extract a comparable amount of information. By combining all the useful features of Model 1d and adding
two more word feature templates that look at positions ±2 of the current word, we obtain Model 2, which
constitutes the best model in our experiments. The complete list of feature templates used in the best model
is shown in Table 8.

To our knowledge, this model gives the state-of-the-art accuracy of tagging result for Vietnamese text.
Table 9 shows the token accuracy of the best model together with sentence accuracy.

It is worth noting that our tagger also seems to outperform the tagger vnQTAG, a hidden Markov model
tagger for Vietnamese (Nguyen et al., 2003) whose average result on four test sets is 92.5%. However these
results are not directly comparable since the models are trained and tested on different corpora and, more
importantly, different tagsets.
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No. Template No. Template

Word and tag contexts Syllable contexts
1. wi = X, ti = T 8. σ(1, wi) = X , ti = T

2. wi−1 = X, ti = T 9. σ(m, wi) = X , ti = T

3. wi+1 = X, ti = T 10. σ(1, wi) = X1, σ(2, wi) = X2, ti =
T

4. ti−1 = T1, ti = T 11. σ(m, wi) = X1, σ(m − 1, wi) =
X2, ti = T

5. ti−1 = T1, ti−2 = T2, ti = T 12. Number of syllables of wi

6. wi−2 = X 13. Particular features for proper nouns
7. wi+2 = X

TAB. 8 – Features used in the best model.

Overall Unknown Word Sentence

Accuracy Accuracy Accuracy

93.40% 80.69% 31.40%

TAB. 9 – Accuracy of the best model.

4.7 Software package

We have developed a software package named vnTagger that implements the presented models for tag-
ging Vietnamese text. The software is written in the Java programming language. The development of
the software has been greatly facilitated thanks to the open source implementation of a maximum entropy
part-of-speech tagger of the Stanford Natural Language Processing Group3. This software implements a
maximum entropy classifier which uses a conjugate gradient procedure and a Gaussian prior to maximize
the data likelihood (Toutanova et al., 2003). Our software is also freely distributed under the GNU/GPL
license, available online at our website4.

It is worth noting that our tagger has been used in a number of national and international research projects,
for example in a project which builds very large lexicographic corpora for many languages (Kilgarriff
et al., 2009).

5 Conclusion

The work presented in this paper explores the use of specially selected, language-specific sources of in-
formation used for tagging Vietnamese text. These particular descriptive features are incorporated into a
maximum entropy model for developing a state-of-the-art tagger for the Vietnamese language.

Since Vietnamese is an isolating language, the most extreme case of an analytic language, it is worth
noting that our study may suggest methodology for the part-of-speech tagging of other analytic languages
in mainland southest Asia.

3http ://nlp.stanford.edu/software/tagger.shtml
4http ://www.loria.fr/ lehong/tools/vnTagger.php
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It was shown that the use of bidirectional dependency networks with a series of local maximum entropy
models produces better result when tagging English text (Toutanova et al., 2003). It is hopeful that an
appropriate application of this approach for tagging Vietnamese text may help resolve frequent ambiguities
in syntactic category mutation, and thus improve the tagging result.

It was also shown that the integration of an external lexical resource to the training corpus help improve
tagging performance (Denis & Sagot, 2009). Obviously, the use of an external dictionary has a potential
advantage of better handling unknown words in case words are not present in training corpus but they may
be present in the external dictionary. In future work, we plan on integrating a Vietnamese lexicon (Nguyen
et al., 2006) into our system to improve further its performance.

Finally, we believe that the accuracy of the tagger can be further improved when it is trained on larger
corpora, as the Vietnamese treebank grows.

One weakness of this POS tagger, which it shares with all POS-taggers for Vietnamese, is that it depends
on the segmentation accuracy of the input text. However, proper segmentation, cannot be achieved with
high accuracy without considering potential POS tags, and future developments of the system will require
to integrate those two tasks.
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