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Abstract

Cube Pruning is a fast method to explore the search space
of a beam decoder. In this paper we present two modifi-
cations of the algorithm that aim to improve the speed and
reduce the amount of memory needed at execution time. We
show that, in applications where Cube Pruning is applied to a
monotonic search space, the proposed algorithms retrieve the
same K-best set with lower complexity. When tested on an
application where the search space is approximately mono-
tonic (Machine Translation with Language Model features),
we show that the proposed algorithms obtain reductions in
execution time with no change in performance.

1. Introduction

Since its first appearance in [2], Cube Pruning (CP) gained
popularity in the Machine Translation community. Hi-
erarchical or Tree-based Machine Translation models rely
on Cube Pruning for decoding. Current research in such
Tree-based models builds translation systems that more
closely model the underlying recursive structure of lan-
guages, and produce more syntactically meaningful transla-
tions than Phrase-Based models. On the other hand, the non-
syntactically motivated Phrase-Based Models have linear de-
coding time, because in practise they use a reordering limit.
For Tree-based models, decoding is not linear with respect to
sentence length. This higher complexity of Tree-based model
decoding leads to a higher execution time. For this reason,
real time systems that involve an automatic translation step
(such as spoken dialogue systems, or real time text transla-
tion systems) often prefer Phrase Based models. With this
work we investigate how to improve the speed of Tree-based
models by reducing the Cube Pruning decoding complexity
without affecting the accuracy of the decoding.

In [2], Cube Pruning is presented as an adaptation of
the Lazy Algorithm [6] to the Hiero Model [1]. The name
“Cube” Pruning comes from the fact that Hiero Model uses
a binarised Synchronous Context Free Grammar; therefore
at each node of the decoding hypergraph any combination
of a rule with the two possible children must be consid-
ered, resulting in a three dimensional search space. But the
use of Cube Pruning is not necessarily limited to the Ma-
chine Translation field or to a three dimensional search space.
Lately CP is referred to as a general method for fast and
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inexact beam decoding that can be applied whenever cer-
tain conditions occur. [5] shows that CP can be viewed as
a specialisation of A* for a specific search space with spe-
cific heuristics. CP’s generality allows its application to other
tasks such as Parsing [6] and Word Alignment [8]. Any task
using CP can take advantage of the improvements described
in this paper, either in monotonic search spaces or in cases
where there are perturbation factors that could create areas
of non-monotonicity in the search space. This second case
of an approximately monotonic search space occurs in many
real word applications, such as the case of Machine Transla-
tion decoding with Language Model features, as clearly ex-
plained in Section 5 of [2].

We begin by describing the monotonic search space case
in Section 2, first stating the problem formally, then review-
ing the Lazy Algorithm and introducing the two algorithms
we propose as improvement. Section 3 describes the ap-
proximately monotonic search space case. It explains how
Cube Pruning handles the perturbations of the search space
and then shows how the two proposed algorithms can be ex-
tended as well. Section 4 reports experiments to test the pro-
posed algorithm and to compare them with Cube Pruning.
Finally, Section 5 further investigates the differences in be-
haviour between Cube Pruning and the proposed algorithms.

2. Monotonic Search Space

Cube Pruning is a solution to the problem of finding the best
k results of the product of n elements selected from each of
n ordered lists. All the applications of Cube Pruning can be
reduced to this simple problem. Formally we can state the
problem as follows:

Problem 1. As input we have:

e A set L, containing N = |L| ordered lists
L,|1 < n < N. We refer to the i-th element
of the list Ly, as xyp; € X.

o An ordering function min<, that allows us to compare
elements of X, and sort the lists in L.

e An operator © with monotonic property, so that if
2 2", & € X and x'min<z” then (2’ ©&)min< (2" ®
)
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o The size of the output beam k.
As solution of the problem we want:

e The ordered list “best-k” containing the top k ele-
ments of P. Where P is the set of the results obtained
from the ®-product of n elements selected from each
of the n ordered lists in L:

P = { @ xn,in |xn,in S Ln7 1 S Zn S |Ln|}
1<n<N
(1)

Formally:

best-k = {z;|1 <i < k,z; € P,Vi € (P—best-k), imin<z;}

2)

Following [4], it is possible to interpret ® and min< re-
spectively as ® and & (the two binary operations of a semi-
ring) and show the relation between the stated problem and
the general definition of bottom-up parsing.

We show the correspondence between Problem 1 and
common problems where Cube Pruning is applied. As an
example, consider a Probabilistic Context Free Grammar
(PCFQG) Parser. Problem 1 is the one that must be solved dur-
ing bottom up decoding at each node of the hypergraph. The
PCFG decoder has to choose the best & derivations that lead
to the generation of the span [i, j] associated with the node.
If using only context free features, the score of the derivation
is given by summing the log-probability score of the rule R
with the scores of the derivations related to the children of R.

To show the correspondence between Problem 1 and the
parsing example, given arule R, we make these associations:

e 1, is the score of a derivation for the n-th child of R.

e [, is the ordered list of scores of the derivations cor-
respondent to the n-th child of R.

e X is the set of possible values for the scores, for ex-
ample R, set of the real numbers.

e The two binary functions min< and © are respectively
< and +.

The same correspondence holds for hierarchical Machine
Translation decoding, which can be seen as a Synchronous
PCFG decoder. Similarly we can find correspondences with
other problems whose solution involves the use of Cube
Pruning, since they are based on bottom-up parsing tech-
niques, as for example in the case of [8] for Hierarchical
Word Alignment.

2.1. Lazy Algorithm

We describe here how to solve the stated problem using the
Lazy Algorithm presented in [6]. This method is the base for
the Cube Pruning algorithm. CP extends the Lazy Algorithm
to approximately-monotonic search spaces, as discussed in
section 3.

If the lists in £ were not sorted, a brute force solution
would be to compute all the possible results, sort them and
pick the best k. But having defined an ordering function
min< and a monotonic operator ©, it is possible to find the
solution without computing all the possible results.

To simplify the explanation, we introduce new notation.
Wedenote & = x4, © 224, ©® -+ © xn,;y WithZ =
¢(v), where v is the vector of the indexes of the elements
in the lists L,,, v =< 11,12, --- ,iny >. We can interpret v
as coordinates in a N-dimensional space, that is our search
space S, and ¢(-) can be seen as a function that maps points
in the search space S to values in X: P = {¢(u)ju € S}.
We define 1 to be the vector of length N whose elements
are all 1, and define b to be the vector of length N whose
elements are all 0 except for b! = 1.

The Lazy Algorithm solves Problem 1 proceeding recur-
sively. At each iteration a new element of the best-k list is
found. The element (1) is added to the best-k list at the first
iteration. Because of our assumptions, we know that ¢(1) is
the best element in S. After adding an element to the best-k
list, all the neighbouring elements are visited. Formally the
set of neighbouring elements V), of v is defined as:

V,={u=v+bll<i<NuecS} 3)

Then each neighbour is added to a Queue of Candidates @ if
it is not already in it. For all the iterations following the first,
the best element of the queue is moved to the best-k and the
loop iterate inserting in @ all its neighbours. The algorithm
terminates when either the Queue is empty or the best-k list
has k elements. So the number of iterations is min(|S|, k).
Figure 1 (a) pictures an example for the Lazy Algorithm for
a bi-dimensional case N = 2.

Algorithm 1 illustrates the Lazy Algorithm. At line 2
the queue () is initialised inserting the origin element 1. At
line 3 the best-k list is initialised as an empty list. The main
loop starts at line 4, that will terminate either when the best-
k list is full, or when the queue is empty; this second case
occurs when the search space contains less than k elements.
At line 5, as first step of the loop, the best element in @ is
popped and named v. At line 6 v is inserted in the best-
k. From line 7 to line 11 the algorithm iterates over all
the neighbouring elements of v, and add them to ). The
test at line 8 checks that the element to be inserted in @ is
not already into (). The pseudocode for the function that re-
trieves the neighbouring elements is listed between line 13
and line 20. This function implements the definition of V.
At line 14 V) is initialised as an empty set. The loop be-
tween line 15 and line 20 iterates over all the coordinates
of v. Each neighbour is created at line 16 adding 1 to v at
the current coordinate. The new element is added in V,, at
line 18. The test at line 17 is needed to check that the in-
cremented coordinate is still inside the valid range of values,
and points to an actual element in L;.

To find the best k elements, the Lazy Algorithm avoids
computing the ¢(-) score for all the elements in the search
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Algorithm 1 Lazy Algorithm

1: function MainLoop (£, ®, min<, k) : best-k
2 Q« {1}

3: best-k «—empty list;

4; while |best-k| < k and |Q| > 0do
5. v« get-min<(Q);

6:  insert(best-k, v);

7. for all v € NeighboursOf(v) do
8: if v/ ¢ Q then

9: insert(Q, v');

10: end if

11:  end for

12: end while

13: procedure NeighboursOf (v ): Vs,
14: )y, «— empty set;

15: for 1 <i < |v|do

16:  v* «— v+ bl

17:  if v} < |L;| then

18: insert(Vy,, v*);
19:  end if
20: end for

space S. It just needs to compute those best-k along with
few other elements that remain in the candidate queue. Note
that in the monotonic search space there is no approximation;
the algorithm finds the correct best-k set. This will not be
true for the approximately monotonic case, as we will see in
Section 3.

To improve the Lazy Algorithm we cannot avoid comput-
ing the best k elements. What can be done is to reduce the
number of elements that are in the queue during execution
time, and the number of leftover elements that remain in the
queue at the end of the execution. A shorter queue needs less
memory at run time and consumes less time adding the new
elements in sorted order. Furthermore, if the queue at the end
of the execution is shorter, we save computation time avoid-
ing computing elements that are not relevant for the output.

2.2, Algorithm 2

Algorithm 2 is the first of the two algorithms we propose
as improvement. To introduce it, we focus on a detail of
the Lazy Algorithm: before adding a neighbour element in
@, the algorithm needs to check that it has not already been
added (see Algorithm 1 line 8). At the implementation level,
this check requires either a search in Q (O(log|Q|)) or an
additional hash table that allows finding the response in con-
stant time but needs to be maintained as () changes. This
check is needed because an element can be in the set of
neighbours of more than one parent element.

To define the new algorithm we change the definition of
neighbouring elements V. For an element v we denote the
set of parent elements with
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Figure 1: Examples of processing for the three algorithms.
As input is given L with N = 2, and L, = {1,5,9,11},
Ly, = {1,6,8,13} sorted lists. For each algorithm are de-
picted the first 5 iterations. Shaded cells denote elements in
the candidate queue, white cells denote elements added in the
best-k output list. (a) Lazy Algorithm, (b) Algorithm 2 hav-
ing vertical dimension with index 1 and horizontal dimension
with index 2, (c) Algorithm 3.

Ay ={ulv e V,,ue s} (C))

We define a new neighbouring elements set V., such that
A, contains a single element. We propose the following def-
inition for V.

V,={u=v+b'|Vj<iv;=11<i<NueS} (5

Where wv; is the j-th coordinate of the vector
v =< v1,V3, -+ ,un >. As we can see from the defini-
tion, V., C Vy. V., contains the elements of ), that have all
unit values for the coordinates preceding the one updated.
For example: v + b! is always added in V.; v + b? is
added only if v; = 1; and in general v + b? is added only if
{v1,va,--- ,v;_1} are all 1. In this setting, it becomes nec-
essary to have an order of the coordinates of v. This means
that we need to set an ordering of the elements in £, and £
becomes an ordered list rather than a set. This can be seen as
deciding an order for the dimensions of the search space S.

Having defined V., we can consider the set of parents
elements of v : A, = {u|v € V/,u € S}. Now we prove
that A/, contains only one element for any v # 1.

Theorem 1. For any element v # 1 in the search space S,
we have that |A.,| = 1.

Proof. By contradiction:

e Assume that there is an element v for which
(AL > L.

o Letu,we A, u#w.
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e From the definition of 4/, we have that: v € V), and
vev,

o From the definition of V' , we have that: v = u + b?,
v = w + b7 and we have also that u, = 1V 2 < 1,
wy =1Vy <j,withl <i,5 <N.

ev=u+b'Av=w+bl =u=w+bl —b’
To conclude we distinguish three cases:

e if 1 = j then:
u = w + b’ — b’ = w and this cannot be because it
is in contradiction with u # w.

e if ; < j then:
From definition of b? we have that: b/ = 0, b% = 1
From 7 < j and the definition of V' we have that: w; =1
Therefore : u; = w; +b) — b =0

But this assignment of values cannot be because no
vector v € S can have coordinate with value O since
the indexing of the lists in £ start from 1 by definition.

e Similarly if i > j.

We showed by contradiction that .4/, cannot contain two
different elements. Therefore | A/, | < 1.

Now consider any v # 1, and let i be the index of the
first coordinate in the sequence so that v; > 1. We compute
u = v — b?, then from the definition of V' we have that
v € V). And we can state that for v # 1 we have that

|AL| > 0.
Combining |A,| < 1 and |A,| > 0, it follows that
|A, | = 1. O

Having defined how to retrieve the neighbours, it’s
straightforward to write the new algorithm, given as pseu-
docode in Algorithm 2.

Algorithm 2 does not need to check if the neighbours are
already in (). Therefore the test that was done at line 8 of
Algorithm 1 is removed. This allows us to avoid the use of a
hash table or the execution of a O(log|Q)|) search on Q. The
new NeighboursO f() procedure is really similar to the first
version. Only the test at linel8 is added to break the loop
when the first coordinate in the sequence that has a value
different from 1 is found. The loop break leads to a smaller
set of neighbours and therefore a smaller ) and less time
spent in the loop. Since most of the elements in the search
space have first coordinate with value different from 1, the
loop will execute only the first round in most of the cases.
Figure 1 (b) illustrates an example for Algorithm 2 for a bi-
dimensional case N = 2, where the vertical dimension has
index 1 and the horizontal has index 2.

Having defined this new algorithm we need to prove that
it solves Problem 1. The proof below shows that the Algo-
rithm 2 outputs the best-k list, that contains the top k ele-
ments in S.

Algorithm 2

1

2:

3

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

R B AN U

function MainLoop (£, ®, min<, k): best-k
Q< {1}
best-k «—empty list;
while |best-k| < k& and |Q| > 0do

v — get-min<(Q);

insert(best-k, v);

for all v/ € NeighboursOf(v) do

insert(Q, v');

end for

end while

procedure NeighboursOf (v ): V.,
V., « empty set;
for 1 <i < |v|do
v* «— v+ b?
if v <|L;| then
insert(V.,, v*);
end if
if v; # 1 then
break;
end if
end for

Theorem 2. Algorithm 2 solves Problem 1.

Proof. By induction on the iterations:
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e Base case:

At the first iteration, 1 is added to best-k. Having
monotonic search space and ordered lists, this is the
best element in S.

e Induction step:

At the z-th iteration, the best-k list contains already the
top z — 1 elements and a new element v is added from
Q. Now we focus on the the set of elements in the
search space that are “better” than v, formally: B =
{u|¢(u) < ¢(v),u € S}. Then we distinguish three
cases:

— u € Bis acandidate in @: This event cannot oc-
cur because in this case u would have been cho-
sen instead of v.

— u € Bhas not been considered (u ¢ @, u ¢best-
k) : Now we recursively apply A’ to u and its
ancestors, until we find the unique path that con-

nects 1 with u, path: < 1,wy,--- ,wj,u >.
From the monotonicity of search space
and definition of A’ we have that:

6(1) < d(wi) < -0 < (w) < H(u).
Therefore all elements in path are in B. Know-
ing that 1 is already in best-k and u hasn’t been
added in @, from the definition of Algorithm 2,
we know that there is an element in path that
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has been added in ) but has not yet been moved
into best-k. But this cannot happen since there
would be a w € B candidate in Q).

— u € Bis in best-k: By exclusion this is the only
possible case.

So we can state that all elements in /3 are in best-k:
B C best-k. Considering the loop invariant stated
above: “at the x-th iteration, best-k list contains al-
ready the top z — 1 elements”, we know that best-k
cannot contain elements that are “worst” than v, there-
fore: B = best-k. We conclude that all the elements
that are “better” than v are already in best-k, and there
are no “better” element outside best-k list. This proves
that at the end of the x-th iteration, best-k contains the
best x elements. n

As we explained, for this algorithm we need to specify
an order of the coordinates of the search space. It is indiffer-
ent in which order we put the coordinates, in the monotonic
search space the algorithm will retrieve the same best-k. But
the set of elements that are in the queue will be different. For
example, if in Figure 1 (b) we wanted to picture the same ex-
ample but with reversed dimension order (horizontal dimen-
sion with index 1, and vertical with index 2), at the second
step we would have the element with score 11 in @, in the
fourth step we would not have the element with score 13,
and in the last step we would have the element with score 15
instead of the one with score 13. These differences in QQ will
affect the decoding in the approximately monotonic search
space, as will be discussed in Section 3.

2.3. Algorithm 3

Now we introduce the second proposed variation of the Lazy
Algorithm. To explain the intuition behind Algorithm 3, con-
sider Figure 1 (a). At the first round we insert 2 in the best-k,
then 6 and 7 are added in the queue as candidates. In the
second round we pick the smaller element from () and move
it to best-k. Following Lazy Algorithm we need to add all
the neighbours of 6 in the queue. Among the neighbours of
6 there is 11. Before adding 11 in @), we could notice that
one of its ancestors, 7, is still in (). Thus it is certain that at
the next round 11 will not be selected to be moved in best-k.
So its presence in @ is useless until 7 is selected. Anyway,
after 7 is picked, the algorithm will try again to insert 11 in
Q. Therefore we can avoid adding 11 at this step and just add
10 as neighbour of 6.

In general we can say that it is possible to avoid adding
an element to @ until all its ancestors are in the best-k list.
Algorithm 3 uses the same V,, and .4, as the one defined
for the Lazy Algorithm. The difference is in the policy with
which @ is updated.

The pseudocode for Algorithm 3 is reported below. We
can see that the pseudocode for Algorithm 3 is very similar to
the pseudocode for the Lazy Algorithm. The only difference
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Algorithm 3
1: function MainLoop (£, ®, min<, k) : best-k

22 Q— {1}

3: best-k «—empty list;

4: while |best-k| < k and |Q| > 0do
5. v getmin<(Q);

6:  insert(best-k, v);

7. for all v € NeighboursOf(v) do
8: if A,/ Cbest-k then

9: insert(Q, v');

10: end if

11:  end for

12: end while

13: procedure NeighboursOf (v ):
14: V), < empty set;

15: for 1 <i < |v| do

16: v* «— v +Db?

17:  if vi < |L;| then

18: insert(Vy,, v*);
19:  endif
20: end for

is at [ine 8: before adding any of the neighbours of v, we
check that all the predecessors of the neighbour are already
in the best-k list: A, C best-k. Obviously we no longer
need to check if the neighbour v’ is in the queue, because
there is no risk that an element is added twice, since every
element is added to the queue only in the iteration where the
last of its predecessor is added in ).

As we observed in Algorithm 2: avoiding the statement
at line 8 of the Lazy Algorithm allows us to avoid using an
additional hash table. Unfortunately, for Algorithm 3 we re-
place that statement with: Ay C best-K, that needs a simi-
lar data structure. Furthermore we need to repeat the query a
number of times proportional to |.A-|. Fortunately this num-
ber is proportional to the number of dimensions in the search
space and that is constant or bounded in most cases. For ex-
ample in Machine Translation it is preferable to use a gram-
mar composed by binarised rules, in which case |Ay/| < 2.

Now we show that Algorithm 3 solves Problem 1. Since
the proof is similar to the proof of Theorem 2, we just prove
the step that is different. The rest of the proof is done by
induction on the iterations exactly following the proof for
Theorem 2.

Theorem 3. At the x-th iteration of Algorithm 3, the best-k
list contains the top x — 1 elements and a new element v is
added from Q. Let B = {u|¢(u) < ¢(v),u € S}, being the
set of elements in S that are “better” thanv. Then B C best-
k.

Proof.

e u € B is candidate in @): In this case u would have
been picked instead of v.
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e u € B has not been considered (u ¢ Q,u ¢ best-
k): Let’s define function y(-) : & — N, so that
v (u) = Zf\]:l u;. From the monotonicity of the
search space, we can state that: 4,, C B. Therefore
Au N Q = @. From the definition of the update pol-
icy of @) for Algorithm 3, we can say that not all the
elements of A, are in best-k, since otherwise u would
have already been added in (). We conclude that there
must be an element w; € A, that has not been consid-
ered yet. If we apply the same reasoning recursively,
we have that there exists a wo € Ay, that has not been
considered, and a wg € Ay, that has not been consid-
ered, and so on. Now we can find where this sequence
leads using the v(-) function: if v(u) = K then, from
how V, is defined, we have that y(w;) = K — 1
and v(ws) = K — 2 and so on. Repeating the itera-
tion X — N times, we reach the element w,, such that
v(wy) = N. Given that N = |L| is the number of
dimensions of the search space, the only element w,
for which v(w,) = N is 1. Now we have reached an
absurd because 1 cannot be in the chain of elements
that have not been considered.

Having shown that every element in B must have already
been considered and cannot be in (), we have to conclude
that: all elements in B have been already moved into best-k.
Therefore B C best-k. O

Compared to Lazy Algorithm, we expect Algorithm 3 to
be faster since it uses the minimal number of candidates in
the queue. Compared to Algorithm 2, Algorithm 3 also puts
fewer elements in (Q but needs to use an additional data struc-
ture, such as an hash table. Given this analysis, we can’t be
sure whether Algorithm 2 or Algorithm 3 is faster, so we will
address this issue in the empirical experiments in section 4.

We have shown that the three algorithms return the same
best-k list in a monotonic search space environment. In the
next section we discuss the case of approximately monotonic
search spaces, and how we expect the behaviour of the 3 al-
gorithms to change. Later we will compare our expectations
with the empirical results.

3. Approximately Monotonic Search Space

This section describes the approximately monotonic search
space case, shows the correspondence with some popular ap-
plications, and describes how the algorithms introduced for
the monotonic case can be extended.

In the approximately monotonic search space we still
have the set of ordered lists £, the ordering function
min<, and the monotonic operator ® as we defined
them in Section 2. The main difference is that instead
of computing the -product of the single input items:
T =214 O T2, © -+ O TNy, inthe approximately
monotonic case we have to add a perturbation element:

T =214 @ OTNiy ©A(i1, - iN) (6)

Where A(iy,---,in) is the perturbation function, A(-) :
S — X. For brevity we define )(v) = ¢(v) ® A(v). The
perturbation function A(-) must have two properties:

e A(-) is not proportional to ¢(-), formally: 3 v,u €
S, ¢(v) < ¢(u) such that A(v) £ A(u).
Therefore we could have cases where ¢(v) < ¢(u),
but ¢)(v) £ ¢(u). In those cases the search space
described by 9 (-) has some perturbations and it could
have areas of non-monotonicity.

e The magnitude of A(v) must be smaller or propor-
tional to ¢(v). In cases where |[A(v)| > [¢(v)| the
search space could become fully non-monotonic. In
order to successfully apply Cube Pruning and the pro-
posed algorithms, we need to have an approximately
monotonic search space.

Examples of adding a perturbation function A(-) are
adding the Language Model in a Machine Translation sys-
tem, or adding global features in a CKY parser. More gener-
ally, a perturbation function A(-) can add non-local contex-
tual factors in the scores used to define Problem 1.

Given this definition of the approximately monotonic
search space in terms of function ¢)(-), to guarantee finding
the best-£ list would require exploring the entire space. This
is because the function A(-) could be any function with the
two stated properties, and any distortion in the search space
could be introduced. If we apply the Lazy Algorithm to the
approximately monotonic search space, it would compute a
small corner of the space, and we would obtain an approx-
imate best-k list: best-k. As described in [2], Cube Prun-
ing applies the Lazy Algorithm using a margin parameter
€ to control the level of uncertainty about whether the true
best-k has been found. Cube Pruning continues to search the
space until the best-k contains k elements and all the ele-
ments v € S such that ¢(v) < ¢ (u*) © e have been com-
puted, where u* is the “worst” element in best-k. Thus the
algorithm does not stop as soon as the list is full, but con-
tinues to search in the neighbourhood of the top corner of
the search space for a while. Applications with a small ratio
R = |A(v)|/|¢(v)| are closer to the monotonic case, and we
can use a small € and still have good quality results. When R
is big, we need to tune € to a higher value, which will slow
down execution because more of the space is searched. In ei-
ther case, Cube Pruning is not an exact search technique and
will return an approximate best-% list.

We can apply the same reasoning that led us from Lazy
Algorithm to Cube Pruning to the proposed Algorithm 2
and Algorithm 3, and straightforwardly deduce the approx-
imately monotonic version of the two algorithms. Accord-
ingly, the proposed algorithms use a margin parameter €
to control the uncertainty in finding the best-k. As with
Cube Pruning, the proposed algorithms output an approxi-
mate best-k list in the approximately monotonic case. Since
A(+) can be any function that satisfies the two stated proper-
ties, the proofs used to show that the three algorithms output
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the same list in the monotonic search space case do not ap-
ply to the approximately monotonic case. Furthermore, Al-
gorithm 2 could output different lists if used with different
dimension orderings.

4. Experiments

In this section we test the algorithms presented, compare
them with Cube Pruning, and empirically show that the lower
complexity leads to a shorter execution time with no loss in
accuracy. We implemented the proposed algorithms on top
of a widely-used hierarchical Machine Translation system,
cdec [3]. Implemented in C++, it is know to be one of the
fastest decoders.

For the sake of comparability, the experiments were exe-
cuted on the widely used NIST 2003 Chinese-English paral-
lel corpus. The training corpus contains 239k sentence pairs
with 6.9M Chinese words and 8.9M English words. A hierar-
chical phrase-based translation grammar was extracted using
a suffix array rule extractor [7]. The NIST-03 test set is used
for decoding from Chinese to English, which has 919 sen-
tence pairs. The workstation used has Intel Core2 Duo CPU
at 2.66 GHz with 4M of cache, 3.5 GB RAM, and is run-
ning Linux kernel version 2.6.24 and gcc version 4.2.4. The
decoder uses SRI’s Language Model Toolkit version 1.5.11
[9]. All algorithms were configured to use a limit of 30 can-
didates at each node and no further pruning. Since in the cdec
system uses € = 0, we use this setting for all the experiments.

Table 1: Total Time (T) and average Time per-sentence, in
seconds, reduction of execution Time relative to Cube Prun-
ing, in percentage, and BLEU score.

Decoder | total T | sent T |T reduction| BLEU
CP 340.4 | 0.370 - 32.195
Alg. 2 322.7 | 0.351 5.2% 32.207
Alg. 3 325.1 | 0.354 4.5% 32.144

Table 1 reports results on decoding speed, comparing
standard Cube Pruning with the two algorithms we propose.
The measures reported are obtained by averaging a set of 20
experiments for each algorithm. We can see that the best
performance in time and BLEU score is achieved by Al-
gorithm 2, although the differences in BLEU among the 3
results are not large enough to be of any consequence. On
the other hand, the execution times of the three algorithms
do show real differences. Algorithm 3 achieves a reduction
of 4.5% on the total running time. Algorithm 2 achieves a
higher reduction of 5.2%.

As described in [3], cdec is designed as a pipeline; the
Cube Pruning is just a single module of the sequence of op-
erations that make up the Machine Translation decoding. To
have a clearer idea of the magnitude of the speedup obtained,
we measured the time for the single module that contains
the actual scoring of the translation hypergraph and that is
changed to modify Cube Pruning into Algorithms 2 and 3.
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In Table 2 we report those decoding speed measures. As we

Table 2: Measures for the Cube Pruning Step of the cdec
pipeline. Total time and sentence time in seconds. Time re-
duction and translation score variation for the proposed al-
gorithms in comparison with Cube Pruning.

Decoder | total T | sent. T |T reduction| score var.
CP 194.1 0.211 - -

Alg. 2 171.8 | 0.187 11.47% -0.015%
Alg. 3 177.9 | 0.193 8.33% -0.024%

can see, the time reductions are larger in this case. Algorithm
2 executes in 11.47% less time than the original Cube Prun-
ing version. Furthermore we report the average variation of
the translation sentences score. The irrelevance of the varia-
tion shows that Alg. 2 and Alg. 3 do not make more search
errors then CP and therefore show again the equivalence of
the quality of the output of the three algorithms.

These results confirm our hypothesis that Algorithms 2
and 3 are faster because they consider fewer candidates. Con-
sidering fewer candidates could make these algorithms more
susceptible to nonmonotonicity, but the very small variations
in scores suggest that this is not an issue. Algorithm 3 consid-
ers the fewest candidates, but Algorithms 2 is slightly faster,
indicating that the reduction in time spent manipulating data
structures has a greater effect, for this application.

5. Discussion

As stated in section 3, the proofs used to show that the three
algorithms output the same list in the monotonic search space
case do not apply at the approximately monotonic case. The
empirical results reported in Table 1 show that the three al-
gorithms reach different BL EU scores given the same input.
Therefore for the approximately monotonic case we can state
that, theoretically and empirically, the three algorithms do
not output the same list. Despite this difference, the BLEU
score results are very close.

To understand how the lists produced by the three algo-
rithms differ at each node of the hypergraph at decoding time,
consider the Cube Pruning algorithm. In the approximately
monotonic search space, it can happen that some element v
is popped from Q and moved to best-k before all its ances-
tors have been moved to best-k: Ay ;(_ best-k. Also it can
happen that some of the ancestors of v have not yet been
considered when v is moved to best-k: A, ¢ QU best-k.
These 2 cases cannot happen in the monotonic case, and are
due to the perturbations of the search space introduced by
A(+). When an element v is better than some of its ancestors,
Cube Pruning can move it to the best-k anyway. Algorithm
2 and Algorithm 3, treat these cases differently. Algorithm
cannot add v to best-k before all his ancestors are already in
it. Algorithm 2 sometimes behaves like Cube Pruning and
sometimes behaves like Algorithm 3, depending on the order
we have given to the coordinates. These cases are the cause
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of the divergence of behaviour between the three algorithms.
By measuring how often these cases occur during Cube Prun-
ing decoding, we can have an upper bound on the number of
elements that could lead to a divergence of the proposed al-
gorithms in the approximately monotonic case. In Table 3
we report the percentage of the occurrence of these events
during Cube Pruning decoding of the NIST-03 test set.

Table 3: Percentage of events measured during Cube Pruning
decoding that could lead to divergence of decoding for the
three algorithms.

Measured: Ay ¢ QUbest-k | A, € best-k
While decoding 0.65% 2.07%
At the end 0.24% 0.74%

While decoding, 2.07% of the elements were added to
best-k before all their ancestors were added to best-k. And
only the 0.65% of the elements were added to best-k before
all their ancestors have been considered as candidates in Q).
Any of these events may lead to a divergence in decoding,
but even in these cases the divergence may not occur. For ex-
ample, Algorithm 2 can behave like Cube Pruning in certain
cases. Furthermore even if the divergence happens, it may be
that later the algorithms reach the same state anyway, just in-
serting the same elements to best-% in a different order. Thus
these percentages can be considered as upper bounds of the
events that lead to an actual difference in output. The per-
centages of the occurrences of the same events measured on
the returned list can be considered as a lower bound. The sec-
ond line of Table 3 shows these measures. In conclusion, we
can state that the percentage of elements that will be different
in the returned list of Algorithm 3 will be between 2.07% and
0.74%. For Algorithm 2 we have the same upper bound of
2.07%, but since in some cases it can behave as Cube Prun-
ing, it can happen that some of the elements that don’t have
all their parent elements in the best-k list may appear in the
final list of Algorithm 2.

For those few elements that differ in the returned lists
of the three algorithms, they will tend to be at the bottom
of their respective best-k lists. Consider the general case,
where algorithm A return u and algorithm B instead returns
the worse-scoring v. From the proofs for the monotonic case,
we know that this can only arise because there is at least one
ancestor w of u which has blocked algorithm B from consid-
ering u because w is worse than all k elements in the best-k
list for algorithm B. Thus w is not in the true best-k, and w is
worse than v, which is in turn worse than u by assumption.
Because nonmonotonicity is generally small, the difference
in score between w and its descendant u is generally small,
and therefore the difference in score between w and v is also
generally small. Since w is not in the true best-k list, we can
therefore conclude that both u and v are generally below or
near the bottom of the true best-k list. Therefore we expect
that both u and v will tend to be near the bottom of their

respective best-k lists.

6. Conclusions

We presented 2 improved versions of the Cube Pruning al-
gorithm that leverage a more aggressive pruning to achieve
lower complexity and faster execution time at zero cost in
terms of accuracy. Indeed we prove that they have exactly
the same performance in a monotonic search space, and we
show empirically that for approximately monotonic search
spaces, as in the case of Machine Translation with Language
Model features, the accuracy remains comparable. These im-
provements in speed at zero cost can be critical in real time
applications, where even a 10% time reduction can make a
real difference.
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