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Abstract

In the last few years, several enhancements for the hierar-
chical phrase-based translation model have been proposed.
They aim to include additional syntactic information in the
translation process in order to achieve better fluency in the
generated output.

In this work we review and compare three such methods:
parsematch, soft syntactic labels and string-to-dependency.
Our goal is to find out if these models complement each other
of if they rather address the same deficiencies in the transla-
tion process. Furthermore, we present a novel method for
extending the translation model in the same direction with-
out the need for parse trees, since they may not be available
for some languages. Our approach is based only on auto-
matic clustering of phrases, without the need for additional
information. Our findings show that we are able to achieve
similar results as when applying syntax models.

1. Introduction

The hierarchical phrase-based model was introduced by [1]
as a generalization of the well-known phrase-based transla-
tion approach. The hierarchical model is formally defined as
a synchronous context free grammar, a property which makes
it attractive for possible enhancements aimed at including
additional syntactic information in the translation approach.
Many different enhancements to the basic model have been
proposed in recent years.

In this work we will review and compare three such ap-
proaches: parsematch features [2], which mark if the hier-
archical phrases match syntactic constructions; a string-to-
dependency model [3], which augments the hierarchical rules
with dependency information; and soft syntactic labels [4],
which enhances the set of non-terminals of the hierarchical
models. Our goal will be to determine if these models are
complementary or if they address the same issues with the
baseline translation model.

Furthermore we present a novel approach which aims to
obtain similar improvements as the syntax-based models, but
without the need for additional information in the form of
parse trees. This may pose an important advantage for cer-
tain tasks, for example for translation pairs involving under-
resourced languages, for which no linguistic tools may be
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available. We will compare this new model with the previ-
ously listed syntax-based approaches and show that its per-
formance is only slightly worse.

This paper is organized as follows: In Section 2 we
shortly review the related work and in Section 3 the hier-
archical phrase-based translation approach. In Section 4 we
present the three syntactic models we will analyze. Section 5
introduces the new model presented in this paper. The per-
formance of all the approaches is analyzed in Section 6 and
conclusions are drawn in Section 7.

2. Related Work

One of the first works to incorporate syntactic knowledge in
a statistical machine translation model was [5], although the
performance was not on-par with other state-of-the-art ap-
proaches at that time. Further development in this direction
achieved competitive results, as can be seen in [6] and later
publications by the same group.

In contrast to these works, which propose new models
centered around the syntactic information, we focus mainly
on methods that can be easily incorperated into an existing
hierarchical system. Apart from the models employed in this
work, other approaches in this field like [7] and [8] are work-
ing in similar directions, but create a rather large quantity of
features. For these approaches it is not really clear which
features are actually beneficial for the translation process.

3. Hierarchical Phrase-based Translation

The hierarchical phrase-based translation approach [1, 9] is
a generalization of the well-known phrase-based translation
approach [10, 11], where the phrases are allowed to have
gaps. The model is formalized as a synchronous context free
grammar, with rules of the form

X = (a,7.) (N

where X is a non-terminal symbol, o and  strings of ter-
minals and non-terminal symbols in the source and target
language respectively and ™ is a one-to-one correspondence
between the non-terminals of o and +. An example for a
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Figure 1: Example of a parse tree.

Chinese-to-English translation task would be:

X — (2 X~/ X~

is not the X ~of the XN0> .

If a and ~y consist only of terminal symbols, we will denote
them as lexical phrases.

The extraction process consists of two steps. In the first
one, we extract the set of lexical phrases. In the second step,
we look for those phrases that contain other smaller sub-
phrases. These smaller ones are suppressed and gaps are
produced on the larger ones, which correspond to the non-
terminals in the grammar.

The translation probabilities, as is standard practice in
statistical machine translation nowadays, are modelled using
a log-linear approach [12], the scaling factors of which are
usually computed by numerically optimizing over a perfor-
mance measure [13].

4. Syntax-based Models

In this section we will present the three syntax-based models
that we will compare in our study. Two of the approaches
analyzed apply the concept of valid syntactic phrases. Given
a monolingual sentence (be it in the source or the target lan-
guage) and the associated parse tree, we will say that a lexical
phrase extracted from this sentence is syntactically valid if it
corresponds to the yield of one of the nodes in the syntax
tree. We extend this concept to hierarchical phrases by defin-
ing it as valid if the originating phrase was syntactically valid
and every phrase which was suppressed in order to generate
the gaps in the phrase is also syntactically valid.

Figure 1 shows an example of a sentence together with
the associated syntax tree. The phrase “the big house”, for
example, is syntactically valid, as it is the yield of the node
labelled with NP. Examples of syntactically invalid phrases

are “big house” or “is the”. “Where X~° the big house”
and “Where is X~0” are valid hierarchical phrases, whereas
“Where X~° big house” or “Where is the X~°” are not.

For the syntactically invalid phrases, we can search for
the node whose yield is closest to the phrase we are consid-
ering. We choose the node for which a minimum number of
words has to be added or deleted from the phrase so that it
fits the yield of the node. The node is then called the best
match node for the phrase. In case of ambiguity we favour
addition over deletion of words. Returning to the example of
Figure 1, the phrase “big house” has NP as best match node,
because adding just one word, “the”, we arrive at the yield of
this node.

4.1. Parsematch Features

In [2] the authors propose to compute additional features
which measure how well the extracted phrases correspond to
linguistic structures. In contrast to other approaches in which
rules are extracted to enforce the syntactical integrity of the
translation (e.g. [14]), they do not limit the extraction algo-
rithm. The rule extraction is the same as for the standard
hierarchical phrase-based model, but additional scores are
computed for the generated phrases. They point out that non-
syntactical phrases are necessary to achieve good translation
performance, as shown in [11, 6]. It is also worth noting that
by adjusting the corresponding scaling factor the minimum
error rate training procedure can fall back to the original sys-
tem.

In contrast to other approaches, which normally only take
into account the target syntax, both the source and the target
part of the rules can be considered. The inclusion of this
information as additional scores in the phrases does hardly
have an impact on computation time.

The simplest way to include this information is to add a
new binary feature, which is fired if the phrase is syntacti-
cally valid, else it has a value of 0. Other features that try to
take into account how many words have to be added or re-
moved from a phrase to be syntactically valid have also been
investigated in [2]. In this work we further apply the “rela-
tive” distance measure, as defined in that paper.

4.2. String-to-Dependency

The second possibility for introducing syntactical informa-
tion in the translation process is inspired by [3]. The authors
propose to augment the phrases used in the translation in-
cluding dependency information of the target side. At gen-
eration time they build a dependency tree of the produced
translation and score them using appropriate language mod-
els. These dependency language models are able to span
longer distances than the standard n-gram language models
at the word level.

Figure 2 shows an example dependency tree. A language
model that scores this structure can for example evaluate the
left-handed dependency of the structure “In”, followed by
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Figure 2: Dependency parsing for the sentence “In recent years, the textile industry in China faced serious difficulties”.

“industry”, on the structure “faced”.

In [3] the authors propose to parse the training data and
use only phrases that meet certain restrictions. The first pos-
sibility is what the authors call a fixed dependency structure.
With the exception of one word within this phrase, called the
head, no outside word may have a dependency within this
phrase. Also, all inner words may only depend on each other
or on the head. The second possibility is what the authors
name a floating dependency structure, in which the head de-
pendency word may also exist outside the phrase.

Formally, for the word at position k let dep,, be the po-
sition of the word it depends on. A sequence of words span-
ning from ¢ to j constitutes a fixed structure, if there exists
h € [i, j] such that

o depy, ¢ [i J]

o Vke [Za.]] Nk 7£ h7 depk' € [27.7]

o Vk & [i,j], dep;, = h V dep,, & [i, j]

and floating with children C for a non-empty set C' C
{iy...,j}if

e Jh ¢ [i,j], st.Vk € C,dep,, = h
o Vk e [i,j]Nk & C,dep, € [i, ]

o Yk & [i,]], dep,, & [i, ]].

The phrases that do not belong to one of these categories are
considered invalid and removed from the translation table.

The original authors score the resulting dependency tree
already at translation time using dependency language mod-
els. In this work we used an alternative approach, but similar
in the basic ideas.

We do not impose the above restrictions to the phrase
table, rather we mark those phrases that would be rejected
with a binary feature. In this way, it is again the minimum
error rate training algorithm the one responsible for deciding
if these phrases are useful for the translation or not. For each
phrase, we store the corresponding dependency information,
and further memorize for all hierarchical phrases if the gaps
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were dependent on the left or on the right side. We then pe-
nalize if the new phrase filling the gap in a larger hierarchical
rule is pointing into the wrong direction, i.e. is pointing to the
left when the hierarchical rule is expecting the gap to point
to the right and vice versa. This introduces three features
in the log-linear model: one for merging errors to the left,
one for merging errors to the right and one for the number of
non-valid dependency structures used.

We then generate an n-best list of translations, construct-
ing the dependency tree using the information contained in
the augmented phrase set, and score them using three depen-
dency language models: one for left-side dependencies, one
for right-side dependencies and one for head structures.

Note that we do not parse the produced translation with a
standard dependency parser. A standard dependency parser
will try to find a “sensible” dependency structure, even for ill-
formed sentences. In this way, the language models will not
have enough discriminative power to favour the more cor-
rect translations. The translation system has additional in-
formation at decoding time, and can build dependency trees
which are ill-formed for ill-formed sentences. In this way
the rescoring process can choose those sentence which have
sensible dependency structures attached to them.

One drawback of this approach is that badly recon-
structed dependency trees have fewer probabilities to com-
pute. Thus they tend to score higher than better structured
trees in other sentences. We saw this effect in early ex-
periments, even if we penalized every reconstruction error.
Therefore, we include a language count feature that is incre-
mented each time we compute a dependency language model
score. This is similar in spirit as the word penalty.

4.3. Soft Syntactic Labels

Another possibility to include syntax information in the hi-
erarchical model is to extend the set of non-terminals in the
hierarchical model from the original set of generic symbols
to a richer, syntax-oriented set [15]. With this, we hope to
improve the syntactic structure of the output sentence. For
example there may be rules which ensure that there is a verb
in the translation of every source verb phrase.
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However, augmenting the set of non-terminals also re-
stricts the parsing space and thus we alter the set of possible
translations. Furthermore, it can happen that no parse can
be found for some input sentences. To address this issue,
our extraction is extended in a similar way as in the work
of [4]. In this model, the original generic non-terminal X is
not substituted, rather the new non-terminals are appended
as additional information to the phrases and a new feature is
computed based on them. In this way the original parsing
and translation spaces are left unchanged. In contrast to the
above work, where the authors expand the set of linguistic
non-terminals to include a large set of new symbols, we re-
strict ourselves to the non-terminals that are to be found in
the syntax tree.

Each lexical phrase is marked with the non-terminal sym-
bol of the best matching node as described above. When pro-
ducing hierarchical rules, the gaps are labelled with the non-
terminal symbols of the corresponding phrases instead of the
original generic non-terminal X. It is important to point out
that the syntax information is extracted from the target side
only, but the substitution of the corresponding non-terminal
symbol is carried out both on the source and the target sides
(with the same non-terminal on both sides).

For every rule in the grammar we will store information
about the possible non-terminals that can be substituted in
place of the generic non-terminal X, together with a proba-
bility for each combination of non-terminal symbols. More
formally, let S be the set of possible syntax non-terminals.
Given a rule r with n gaps, we will define a probability dis-
tribution p(s|r) over S™*1, where s denotes a possible com-
bination of syntax non-terminal symbols to be substituted in
the rule, including the left-hand-side.

We will illustrate this concept with an example. Consider
the rule

r=X— <uXN0vXN1w,$XNOyXle> 2)

and let s = (A, B,C). Then p(s|r) will be the probability
that the rule r is interpreted as rule

A — (uB~ v~ w, 2B~ C12) . 3)

For each derivation d we will compute two probabilities.
The first one will be denoted by py, (Y'|d) (h for “head”) and
will reflect the probability that the derivation d, under consid-
eration of the additional non-terminal symbols, has Y € §
as its starting symbol. This quantity will be needed for com-
puting the probability psyn(d) that the derivation conforms
with the extended set of non-terminals, i.e. that we can find
a derivation with the same structure but considering the new
non-terminals. The negative logarithm of this last probability
will then be added as a new feature to the log-linear model
combination.

For the exact definition of these two quantities we will
separate the case where the top rule of derivation d is a
lexical phrase (in which case the derivation consists only
of one rule application) and the general case where the top

rule is a hierarchical one. If the top rule r of d corresponds
to a lexical phrase, the probability distribution for the non-
terminals for d will equal the distribution for rule r, i.e.
pr(s|d) = p(s|r),Vs € S. Given that only one rule has been
applied, the derivation fully conforms with the extended set
of non-terminals, thus in this case peyn(d) = 1. For the gen-
eral case of hierarchical rules, let d be a general derivation,
let  be the top rule and let dy, . . ., d, be the sub-derivations
associated with the application of rule r in derivation d. For
determining if the derivation is consistent with the extended
set of non-terminals we have to consider every possible sub-
stitution of non-terminals in rule r and check the probabil-
ity of the n sub-derivations to have the corresponding non-
terminals. More formally:

n+1
pl(d) = Y (p(SIT)-th(S[k]Idk_1)>, 4)
k=2

seSn+l

where the notation [] is used to represent addressing the ele-
ments of a vector. The index shifting in the product in Equa-
tion 4 is due to the fact that the first element in the vector
of non-terminal substitutions is the left-hand-side of the rule.
Note also that although the sum is unrestricted, most of the
summands will be left out due to a zero probability in the
term p(s|r).

The probability py, is computed in a similar way, but the
summation index is restricted only to those vectors of non-
terminal substitutions where the left-hand side is the one for
which we want to compute the probability. More formally:

pa(Yld) =

n+1
> <p(sr)~th(s[k]|dk1)>. )
k=2

seSntl:s[l]=Y

In practice, the probability distributions may be renor-
malized in order to avoid numerical problems.

5. Poor Man’s Syntax

Let us take a step back and look at the model from Section 4.3
from a distance. We can consider the rules with the same left-
hand side to be a class of phrases, which share some common
characteristics. Similarly, the non-terminals in the right-hand
side represent the preferred type of rule that should be substi-
tuted in the corresponding gap. The syntax tree of the target
side of the training corpus is what defines the correspond-
ing labels. Looking at it under this viewpoint, the parsing
process is little more than a sophisticated way to cluster the
phrases.

In this section we will investigate a novel approach, in
which we cluster the phrases with fully automatic methods,
thus avoiding the need for additional syntax information in
the form of a parse tree of the training data. This can be a
big advantage e.g. for under-resourced languages for which
no parsers might be available. It can also reduce the com-
putational cost of the training process, although this depends
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both on the parser to use, the language pair, the size of the
training corpus and the clustering algorithm. In our case, the
clustering took around 20 hours, while the running time for
parsing can be estimated at around 2000 sentences per hour.
Looking at the corpus statistics in Section 6 we can see that
the training time is dramatically reduced.

We will try to mimic the phrase “clustering” of the syntax
tree. The process is represented schematically in Figure 3.
First we cluster the words, very much like the POS labels
do, but we apply this operation on both the source and the
target sides. We use the makecls tool [16], which is widely
used as part of the alignment training procedure in statistical
machine translation. Note that in this way the mapping of
words will be deterministic instead of context-dependent, as
is the case with part-of-speech labels.

We then go through the table of lexical phrases and sub-
stitute each word with its corresponding class. In the exam-
ple of Figure 3, the source classes are denoted as “SC” and
the target classes as “TC”. Note that we can do this operation
already on an extracted phrase table due to the deterministic
word mapping. Should we want to apply a context-dependent
mapping of words, we will have to perform a new phrase ex-
traction keeping track of the associated classes. It is also
worth noting that the size of the mapped phrase table will
be smaller, as the result of the word mapping may join some
phrases together.

On the resulting mapped table we apply a new cluster-
ing, this time on the phrase level, assigning a label to each
of them. In our experiments we used the CLUTO toolkit
[17] for this step. The features for the clustering are thus the
mapped words as found in the previous stage.

The lexical phrases are then labelled with the correspond-
ing class in the left-hand side of the rule. The hierarchical
phrases are labelled in the same way in the left-hand side,
and the gaps are labelled with the corresponding classes of
the phrases that produced the gaps. This corresponds to the
labelling procedure using syntactic labels described in Sec-
tion 4.3. As we did there, we also considered these non-
terminals as soft syntactic labels and store them as additional
information associated with the rules, they do not constitute
hard constraints.

6. Experimental Results

We present results on the Chinese-English NIST 2008 task.
We used a selected subset of the available training material
to arrive at a medium sized training corpus. The NIST 2006
was used as development set for minimum error training on
BLEU in all the experiments. Table 1 shows the statistics of
the data.

6.1. Syntactic Approaches

Our first goal was to compare the syntax-based methods
with each other. Table 2 shows the results of the different
approaches. The parsematch method, although it does not
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Chinese English
Train Sentences 3030696
No. of Words 77456152 81002954
Vocabulary 83128 213076
Singletons 21059 95 544
Dev Sentences 1 664
No. of Words 42930 172324
Vocabulary 6387 17202
OOVs 1871 50353
Test Sentences 1357
No. of Words 36114 149 057
Vocabulary 6418 17877
OO0Vs 1375 43724

Table 1: Statistics for the Chinese-English corpus

show any improvements on the development set, is able to
improve the translation on the test set by 0.4% BLEU and
0.5% TER, although this result is not statistically significant.
String-to-dependency is able to achieve a much bigger im-
provement in TER (1.7%), although it is only slightly better
than parsematch on BLEU. The string-to-dependency exper-
iments were carried out rescoring 100-best lists. The soft
syntactic labels produce the best BLEU score, 1% over the
baseline, but are not better than the string-to-dependency ap-
proach on TER.

Next we wanted to investigate if the improvements of the
different methods are complementary, or if perhaps the dif-
ferent models address the same flaws in the baseline transla-
tion. We performed experiments with every possible pair of
approaches. The BLEU score is improved in every case with
respect to each of the individual approaches alone. The TER
score however, does not show the same behaviour, and when
combining parsematch and string-to-dependency we obtain
a deterioration of 0.9% compared to string-to-dependency
alone. Applying the three approaches we obtain the best
TER score, with a 2% improvement over the baseline, and
1.1% improvement in BLEU. Still, the best BLEU score is
obtained applying soft syntactic labels together with string-
to-dependency.

The results seem to point that parsematch and depen-
dency are a problematic pair. This can be due to the
fact that parsematch, by its design, favours syntactically
valid phrases, while dependency may allow for incomplete
chunks, for which it remembers information about how they
should be completed. We speculate that there may be con-
flicts when these two approaches interact and this may pro-
duce the drop in performance when measured in BLEU.

6.2. Poor man’s syntax

For the poor man’s syntax approach there are two additional
parameters that have to be chosen, namely the number of
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= | core Target class 2 Mapped phrases
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. - lass 4 ...
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Clustered phrases
4 N\

Z[H # united states Class 14

A EZE 1 20 EZRF)RE #is not
the core national interests of the Class 8
united states

%0 EZF)ZE # core national interests  Class 16

|
X — (2 EE B %0 EZXFEE , isnotthe core national interests of the united states )

~ ~

\ 4 4 4 4
C8 — ( & C14™ 1 cl6™ , is not the Cc16™* ofthe C14™° )

Figure 3: Illustration of the extraction procedure for the poor man’s syntax method
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NIST 06 (dev)

NIST 08 (test)

BLEU TER BLEU TER
baseline 314 63.2 24.0+09 6844+0.6
parsematch 314 63.1 24.4 67.9
dependency 322 61.9 24.6 66.7
syntax labels 322 62.1 25.0 67.2
parsematch + dependency 32.0 62.5 24.6 67.6
syntax labels + parsematch 324 62.3 25.3 67.3
syntax labels + dependency 329 61.4 254 66.7
syntax labels + parsematch + dependency  32.9 61.0 25.1 66.4
poor man’s syntax 32.1 62.0 24.8 66.9

Table 2: Results for the additional syntactic models on the NIST *06 and the NIST *08 test set. All the scores are in percentage.
The 95% confidence interval is given for the baseline system. Results in bold are significantly better than the baseline.

classes the words and the phrases are to be clustered into.
Each combination requires a new clustering process, a new
extraction of hierarchical phrases and, for optimal results, a
new run of minimum error rate training. The extracted phrase
tables are also of considerable size on the hard disk, and con-
ducting a series of experiments may easily fill up the file
servers. For these reasons we carried out a non-exhaustive
search for the best combination of the number of classes for
the word and phrase clustering algorithms. Somehow sur-
prisingly we arrived at a relatively low number of classes for
both: 5 classes for word clustering and 20 for phrase cluster-
ing.

Table 2 shows the results obtained when applying this
approach. This model achieves an improvement of 0.8% in
BLEU' and 1.5% in TER over the baseline. This makes it
comparable to the best performing syntax-based methods on
both scores. In this way we are able to simulate the effect of
including syntax information by applying only purely auto-
matic methods. This is a promising result, specially for tasks
where obtaining syntax information in form of parse trees is
difficult or even impossible.

7. Conclusions

In this paper we have reviewed and analyzed three different
possibilities for augmenting the hierarchical phrase-based
translation approach including syntactic information. We
have compared the performance of each of them separately
and of the combination of them. We found out that the com-
bination of different approaches further improves translation
quality, which constitutes and indicator that the models ad-
dress different problems in the translation process.

We have presented a new model which, while inspired
by one of the syntax enhancements, does not need any ad-
ditional information in the form of parse trees. This model

IThis result is not statistically significant at a 95% confidence level, but
it is at 90%.
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can thus be applied to every language pair, even for under-
resourced languages, for which no linguistic tools may be
available. The results obtained with this approach are on-par
with the syntactic models, being only slightly below the best
performing systems on both the BLEU and TER scores.

The main advantage of the proposed method is that we
leave it open to the algorithms how to classify the rules.
When using syntax labels (the more similar method), we try
to “enforce” a structure that has been defined outside of the
translation task. Intuitively it is an appealing concept that
the produced text should follow this structure, but it may not
be the optimal for the translation task. By using automatic
methods we allow for more flexibility. E.g. in this paper we
allowed information about the source side to enter the rule
labelling process.

There are still many directions to research for this new
model. We used fairly standard clustering techniques for
both words and phrases. Better clustering algorithms that are
more tailored for the task at hand may further improve the
results. Specifically, we ignored the context the phrases ap-
pear in, and this may prove to be relevant for a more efficient
classification scheme.
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