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ABSTRACT

For spoken language systems to effectively operate across
multiple languages it is critical to rapidly apply the correct
language-specific  speech recognition models. Prior
approaches consist of either, first identifying the language
being spoken and selecting the appropriate language-
specific speech recognition engine; or alternatively,
performing speech recognition in parallel and selecting the
language and recognition hypothesis with maximum
likelihood. Both these approaches, however, introduce a
significant delay before back-end natural language
processing can proceed. In this work, we propose a novel
method for joint language identification and speech
recognition that can operate in near real-time. The proposed
approach compares partial hypotheses generated on-the-fly
during decoding and generates a classification decision soon
after the first full hypothesis has been generated. When
applied within our English-Iraqi  speech-to-speech
translation system the proposed approach correctly
identified the input language with 99.6% accuracy while
introducing minimal delay to the end-to-end system.

Index Terms— Language Identification, Speech
Recognition, Multilingual Spoken Language Understanding

1. INTRODUCTION

In recent years, voice-enabled human-computer
interfaces have become increasingly pervasive in the US. A
recent survey [1] cites that 82% of US adults have used a
telephone-based automated customer service system in the
past year (2009), and for certain tasks users prefered these
systems to talking directly with a live customer service
agent. In addition to telephone-based spoken dialog systems
[2,3], there has been a large growth in the availability of
other voice-enabled services. Examples include, systems for
automatic transcription of voice messages [4,5], voice-
enabled search on mobile devices [6,7], speech-enabled
interfaces for self-service Kiosks [8], mobile devices [9] and
in-car applications [10].

* This work was performed when the author was a visiting
researcher at the Language Technologies Institute, Carnegie
Mellon University.
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However, although 18 million adults in the US (8% of
the adult population) have limited English proficiency [11],
currently deployed systems are limited to a single input
language, generally English. If the user is unable to
understand or speak this language, it is impossible for them
to interact with these systems. The ability to handle
multilingual input would extend the capabilities of current
systems to support a much wider range of users. This
capability would be especially useful for multilingual
information kiosks at hospitals, hotels or airport lobbies,
speech-to-speech  translation  systems deployed in
multilingual communities, and humanoid robots enabling
them to interact and converse in multiple languages.

Creating spoken language systems which can operate
across multiple languages, however, remains a challenge. In
addition to developing speech recognition and natural
language understanding components for each language, the
system must also determine which set of language-specific
models to use for a given interaction. This can be done by
either explicitly eliciting the language required from the
user, perhaps by asking them to select it from a menu in a
graphical or voice-based user interface, or alternatively, the
system must automatically identify the language as the user
interacts with the system.

Prior approaches for automatic language identification
(LID) and recognition consist of either, first identifying the
language being spoken and then applying the appropriate
language-specific automatic speech recognition (ASR)
engine [12] (LID+ASR); or performing speech recognition
in parallel with multiple language-specific engines and
selecting the language and recognition hypothesis with
maximum likelihood [12] or confidence score [13]. In prior
works this approach is called large vocabulary continuous
speech recognition (LVCSR)-based LID. Both these
approaches, however, introduce a significant delay into the
speech processing pipeline. In the LID+ASR approach, the
language of the incoming utterance must be determined
before speech recognition can begin, thus introducing a
delay which could be equally to the length of the input
utterance. For LVCSR-based approaches, recognition
hypotheses and scores must be generated for all languages
before a classification decision can be obtained; this
approach is thus limited to the slowest individual ASR
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engine. Even when each individual engine is tuned to
operate at near real-time, when a mismatch in language is
present between the input speech and models, the time taken
to decode the final first-best hypothesis is significantly
longer than real-time.

In this work, we propose a novel extension to the
LVCSR-based approach to enable language identification
and speech recognition to be performed in near real-time.
Rather than generating a decision based on the final
recognition hypotheses, the proposed approach compares
partial hypotheses during decoding. This allows a
classification decision to be generated with only a small
delay after the first full hypothesis is available. We evaluate
the effectiveness of the proposed approach within our
English-Iraqi speech-to-speech translation system, and show
that it obtains performance similar to that of the traditional
approach while introducing minimal delay.

The remainder of the paper is organized as follows. In
Section 2 we describe current approaches for phone-based
LID, and LID-based multilingual speech recognition. In
Section 3 we describe LVCSR-based LID and introduce our
proposed real-time LID and recognition scheme. An
experimental evaluation for real-time -classification of
English-Iraqi is described in Section 4. Finally, conclusions
are presented in Section 5.

2. PHONE-BASED LANGUAGE IDENTIFICATION
FOR ASR MODEL SELECTION

Two popular techniques for spoken language identification
are Phone Recognition followed by Language Modeling
[14] (PRLM) and Parallel PRLM [15] (PPRLM). In these
approaches one (or more) phone recognizers are applied to
the input speech and the resulting phone sequence(s) are
evaluated using a set of language-specific phone-sequence
Markov-models (typically an n-gram phone sequence
model). The language of the model(s) with maximum score
is selected as the language classification decision. These two
approaches are popular for language identification due to
their low complexity and significantly lower computational
cost compared to LVCSR-based methods. With sufficient
computational resources both can operate in a fraction of
real-time. As an extension of PPRLM, in [16] we
incorporated a CRF-based classifier (PPRLM+CRF), which
significantly improved classification accuracy (by up to
25% relative compared to the baseline PPRLM technique).
These three approaches are briefly described below.

2.1. Phone Recognition Followed by Language Modeling

Phone Recognition followed by Language Modeling [14]
(PRLM) is a common, and computationally low cost method
for language identification. A block diagram of a PRLM
system is shown in Figure la. PRLM applies language-
classification models trained on the output of a single phone
recognizer and selects the language with maximum model
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Speech
Input Phone LM (L) »| Select
recognizer |O max.
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(a) Phone Recognition Followed by Language
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(b) Parallel PRLM (PPRLM)

Figure 1: Block diagrams of the phone recognition-based
PRLM and PPRLM language identification approaches

likelihood. During training, utterances for language L; are
converted into phone sequences using a phone recognizer
and the output is used to train a phone-language model for
that language (LM(L;)). Models for all n languages
{Ly, ..., L, } are trained in this manner. During recognition,
first, the phone recognizer is applied to the input utterance,
and the 1-best phone sequence output (O) is generated.
Next, the log likelihood of (O) for each language model is
calculated and the language [ with maximum model
likelihood is selected:

[ = argmaxieq, ..., 10g P(O| A1) ()

where P(0| 4;) is the likelihood of the phone language
model for language [ given for the phone sequence (0).

2.2. Parallel PRLM (PPRLM)

Parallel PRLM (PPRLM) [15] extends on the above
approach by applying multiple PRLM systems in parallel.
Each system uses a phone recognizer for a different
language and the likelihood for language [ is summed across
the individual systems. A block diagram of this approach is
shown in Figure 1b. The training process is similar to that
for PRLM, the difference being that multiple sets of
language models are trained, one for each phone recognizer.
The language [ with maximum likelihood is:

[= argmaxeq, ...} 2i=a 108 P(0;| A1) ()

where P(0;| 4;) is the likelihood of the phone language-
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Block diagram of approach

Timing diagram showing delay (At) incurred between end

of utterance (t;) and generation of ASR hypothesis (t;)

Language i Speech Input
Speech Identification —
Input —P (LID) | L | ; Ly
' LID ' |
Automatic Speech ' X
Recognition (ASR) [ ASR ) , ' ASR (L)) —» (L, hypn)
L, Hypothesis T T T
(Ly, hypr) E 0 h < Aty ipsasr :: "
) ] .
(a) Language Identification Followed by ASR (LID+ASR)
., Speech Input
ASR (L)) (logscore, , hypy ;) P :
1 1
Speech . | ASR (L)) : i
Input ASR(L) [—»| Hypothesis Ly ASR : ; :
selection | Hynothesis | ASR (Ly ! |
PO et : ; > (Ly, hypu)
ASR (L : h (L1, hypry ! . !
S ( n) ( 0gscore,, pru) : ASR (Ln) :
l : |
| 1 1,
:tO b Atpycsrup o !
I ] 1
(b) Large Vocabulary Continuous Speech Recognition-based LID (LVCSR-LID)
. Speech Input |
D —
ASR (L)) ! b
Speech —> . 1| ASR(L)) L
I Comparison I ]
nput ASR (L) of partial [ ASR '| ASR (L) ' (L, hypy)
T———> hypotheses Hypothesis ' K
(Li, hypry) ' N
" | ASR(@) | !
ASR (L,) L !
1o t, ' th
| —’: A_
Atprop(;sed

(c¢) Proposed real-time LVCSR-based LID using partial hypotheses (proposed)

Figure 2: Block and timing diagrams for the three language identification and recognition approaches evaluated

model for language [ given the phone sequence from the
PRLM system for L;.

2.3. PPRLM with CRF classifier (PPRLM+CRF)

As an extension to PPRLM, in [16] we proposed a CRF-
based approach to incorporate phone confidence scores
during language identification. In this approach, first phone
sequences from the individual recognizers {O,, ..., 0,} were
aligned using dynamic programming and a CRF classifier
was then applied using phone confidence scores and overall
language model likelihood as additional features during
classification. The most common label [ in the output was
used as the final classification decision.

2.4. LID-based Model Selection (LID+ASR)

Using one of the LID approaches described above the input
utterance can subsequently be recognized using language-
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specific ASR models. An overview is shown in Figure 2a.
With this approach the delay incurred due to language
selection, i.e. the delay between the end of the input speech
(t;), until the generation of a recognition hypothesis (t;),
(Atyipyasr) Will be t;, the length of the input utterance. This
is assuming the correct language is selected and the ASR-
engines operate in real-time. If only the first m seconds of
audio are used for classification then:

At _{ m ift;>m
LID+ASR = | ¢, else

Using the experimental setup described in Section 4, we
determined that for PPRLM+CRF classification no
degradation in LID performance was observed when m=10.
However, the majority of utterances in the evaluation set
had a length < 10sec, so the reduction in delay by
incorporating this constraint was small.
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3. LVCSR-BASED JOINT LANGUAGE
IDENTIFICATION AND RECOGNITION

Compared to traditional LID tasks where only the identity of
the language being spoken is required, multilingual spoken
language systems also require a hypothesis of what is being
said in order to perform spoken language understanding.
Therefore, rather than performing LID as a separate pre-
selection component, large-vocabulary continuous speech
recognition (LVCSR) could be performed in parallel for all
languages of interest. The best ASR-hypothesis would be
selected identifying both the language (L;) and recognition
hypothesis (hyp Li) in a single pass. This approach is known

as LVCSR-based LID.

3.1. LVCSR-based LID (LVCSR-LID)

Previous works, including [12], have shown that LVCSR-
based LID significantly outperforms phone-based
approaches. Block and timing diagrams for this approach
are shown in Figure 2b. First, speech recognition is
performed in parallel using language-specific ASR models
for languages {L1, ..., L,}. From the resulting set of 1-best
ASR-hypotheses {(hyp Li,logscorei)}ie{l‘""n} the language

[ with maximum hypothesis likelihood is then selected,
[= argmaxe, ..., ylogscore, 3)

where logscore; is the log-scale ASR score of the 1-best
ASR hypothesis for language L;. In this work ASR
likelihood scores were used, as no improvement was gained
using the normalized confidence described in [13].

For LVCSR-based LID, a 1-best ASR hypothesis for
each language is required before the likelihood comparison
(3) can be performed. Even when operating on the same
multi-core processor the time required to generate
hypotheses will vary greatly especially due to the decoding
time required when there is a mismatch in language between
the input speech and ASR models. The slowest ASR system
(shown in gray in Figure 2b) dictates the delay incurred by
this approach. In the experimental evaluation in Section 4,
At;yesr—ip Was on average 1.5t; as decoding the input
utterance with ASR models of an incorrect language took on
average 2.5 x RT.

3.2. Real-time LVCSR-based LID (proposed)

Current  LVCSR-based  approaches to  language
identification are unsuitable for real-time applications as
ASR hypotheses must be generated for all languages before
a classification comparison can be performed. As an
extension to this approach we propose comparing the partial
hypotheses generated during decoding and halting decoding
for less likely languages. Block and timing diagrams for this
approach are shown in Figure 2c.

Speech recognition is performed in the same manner as
the LVCSR-based approach in 3.1. However, during
decoding partial hypotheses are generated for each
additional 200ms of input audio. In addition to the ASR
score, each partial hypothesis also stores an approximate
timestamp (t) for the amount of input audio currently
decoded. When decoding is complete the partial hypothesis
score and timestamp are replaced with those of the final
hypothesis.

During decoding partial hypotheses across languages are
compared using a normalized score which takes into account
both the ASR likelihood and time lag compared to the
fastest system. First, the log-scale ASR score is normalized
to compensate for the difference in the amount of audio
decoded and the log likelihood ratio compared to the fastest
system is calculated. A time-lag penalty is then applied to
penalize languages for which decoding is not proceeding.
For language [ the normalized partial hypothesis score is:

logscore, tmnax

tmax — U
score; = _—

— Wpenalty (
tmax

logscoreay  tmax —t

where:

tmax = argmax; E{Ll.'".Ln}tl

logscore,,,, is log-scale ASR score for the system with
tmax » t 18 the amount of audio processed by language [‘s
decoder and Wyep,p, is the time-lag penalty.

When the partial hypothesis for language [ is updated its
score (score;) is compared to a predefined threshold @ and
decoding is halted for languages where the hypothesis falls
below this threshold. In the experimental evaluation
described in this work a threshold (@) of 0.8 was used and a
time-lag penalty (Wpenqaiy ) Of 0.5. The performance of the
proposed approach was not sensitive to the exact settings of
these parameters.

4. EXPERIMENTAL EVALUATION

The classification accuracy and processing delay incurred
by the joint LID and recognition approach proposed in
Section 3.2 was evaluated within the CMU-TransTAC
English-Iraqi  Speech-to-Speech translation system [18].
Within this system the proposed approach simplified the
user interface, enabling parties of users to interact using a
single microphone and single push-to-talk button. Users
push and hold down the button while speaking into the
microphone and LID is used to select the appropriate
translation direction. Language classification accuracy was
evaluated on the two standard TransTAC test-sets shown in
Table 1. The classification accuracy obtained using the three
phone-based approaches described in Section 2 and the two
LVCSR-based methods introduced in Section 3 are shown
in Figure 3.
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Figure 3: Classification accuracies for phone-based and
LVCSR-based language identification in identifying English
and Iraqi-Arabic

Table 1: Overview of Training and Evaluation Corpora
(1 GlobalPhone Corpora [17], 2TransTAC Program Data)

| English | Iragi/Arabic
Training Corpora
Phone Recog' 20hrs 20hrs
AM (ASR)’ 150hrs 350 hrs
LM (ASR)’ 3M words 3M words
LID Models” 4 hrs 4 hrs
Evaluation Corpora
June08-OPEN” 54 mins 54 mins
June08-NAMES® 8 mins 16 mins

3.1. Comparison of LID performance

First, the language classification accuracy of the three
phone-based approaches described in Section 2 was
evaluated. For the PRLM system a single English phone
recognizer was used, and for the PPRLM and PPRLM+CRF
approaches Arabic and English phone recognizers were
applied. The three phone-based LID systems were trained
on 8 hours of speech, split 50/50 between English and Iraqi.
The performance in terms of language -classification
accuracy is shown in Figure 3. On both test-sets the
PPRLM+CRF system obtained higher classification
accuracy than the PRLM and PPRLM approaches. On the
June08-OPEN set an accuracy of 95.3% was obtain and
85.6% was obtained on the June08-NAMES set. Using this
approach a language misclassification occurred for 1 in 10
to 1 in 20 utterances, which is much too high for a fieldable
system.

Next, the performance of the LVCSR-LID approach
described in Section 3.1 was evaluated. Recognition was
performed in parallel with the English and Iraqi speech
recognition systems described in Table 2. After recognition
completed, the language of the hypothesis with maximum
ASR score was selected as the output decision. Compared to
the phone-based approaches, LVCSR-based LID obtained
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Table 2: Overview of English and Iraqi ASR Systems
| English Iraqi/Arabic
Model Details
Codebooks 3000 6000
Max. Gaussians 32 64
Training Method ML boostedMMI [19]
Recognition Accuracy WER (RTF)

June08-OPEN 20.7% (1.0) 27.6% (1.2)

June08-NAMES 26.9% (1.2) 34.5% (1.1)

Table 3: Average per-utterance delay (in milliseconds) from
the end of speech input until a recognition hypothesis is
available

June08-OPEN | June08-NAMES | Avg.

(EN) (E/D
LID+ ASR 5038 /7303 2017 /4000 4590
LVCSR-LID 8099 /10511 2748 /5033 6800
proposed 386 /1575 493 /507 740
manual 130/ 1317 290/ 346 520

significantly higher classification accuracy: 99.9% for the
June08-OPEN set and 99.6% for June08-NAMES.

Finally, our proposed approach, where language
identification is performed using partial-hypotheses was
evaluated. Using this approach the classification accuracy
was comparable to that obtained in LVCSR-LID.
Classification accuracies of 99.9% and 99.4% were obtained
on the June08-OPEN and June08-NAMES sets respectively.
Interestingly, when hypotheses scores were discarded and
language identification was selected purely based on time-
lag the degradation compared to the proposed approach was
small. When ASR scores were not considered classification
accuracies of 99.8% and 98.9% were obtained for the two
test-sets.

4.2, Comparison of Incurred Delay

In addition to classification accuracy, processing speed and
more importantly the delay introduced into the end-to-end
system is a critical measure of usability. Using the systems
evaluated in Section 4.1, we calculated the average per-
utterance delay from the end of speech input until a
recognition hypothesis was available. For the LID+ASR
approach, PPRLM+CRF classification was applied.
Evaluation was performed on a desktop PC with a 2.8GHz
quad-core Intel7 processor and 8GB memory. The ASR
systems used in this work had been designed to operate at
near real-time. The English system operated with an average
real-time factor (RTF) of 1.1, and the Iraqi system operated
with an RTF of 1.2. The delays incurred by each approach
and for the manual case (i.e. when the language is pre-
selected by the user) are shown in Table 3.

Both the LID+ASR method (described in Section 2.4)
and the LVCSR-based approach (Section 3.1) introduce
significant delays into the end-to-end system, on average 5
and 7 seconds per-utterance respectively. The proposed
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approach however, introduces little delay showing the
effectiveness of the proposed approach.

5. CONCLUSIONS AND FUTURE WORK

In this work we developed a novel method for joint
language identification and speech recognition that can
operate in near real-time. The proposed approach compares
partial hypotheses generated during decoding and obtains a
language identification decision soon after the first full
hypothesis has been generated. The proposed approach
obtains similar classification accuracy to a LVCSR-based
language identification (LID) system while operating in near
real-time. When applied within our English-Iraqi speech-to-
speech translation system the proposed approach correctly
identified the input language with 99.6% accuracy while
introducing no additional delay to the end-to-end system.

In future work we intend to evaluate the proposed
approach for language classification and recognition across
a large number of languages. We also intend to extend it to
operate across a cloud computing setting where recognition
may be performed on heterogeneous servers.
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