N-gram-based Machine Translation enhanced with Neural Networks for the
French-English BTEC-IWSLT’10 task

Francisco Zamora-Martinez}, Maria José Castro-Bleda?, Holger Schwenk?

!Departamento de Ciencias Fisicas, Matematicas y de la Computacion
Universidad CEU-Cardenal Herrera, Alfara del Patriarca (Valencia), Spain
fzamora@dsic.upv.es
*Departamento de Sistemas Informdticos y Computacién
Universidad Politécnica de Valencia, Spain
mcastro@dsic.upv.es
3Laboratoire d’Informatique d’Université du Maine
Université du Le Mans

FirstName.LastName@lium.univ—-lemans.fr

Abstract

Neural Network Language Models (NNLMs) have been ap-
plied to Statistical Machine Translation (SMT) outperform-
ing the translation quality. N-best list rescoring is the most
popular approach to deal with the computational problems
that appear when using huge NNLMs. But the question of
“how much improvement could be achieved in a coupled
system” remains unanswered. This open question motivated
some previous work of us in order to speed the evaluation
of NNLMs. Now, this work integrates the NNLM evaluation
in the core of the SMT decoder. NNLMs are used in com-
bination with statistical standard N-gram language models
under the maximum entropy framework in an N-gram-based
SMT system. A reordering decoder builds a reordering graph
coupled during a Viterbi decoding.

This N-gram-based SMT system enhanced with NNLMs
for the French-English BTEC task of the IWSLT’ 10 evalua-
tion campaign is described in detail. An improvement be-
tween 1.8 and 2.4 BLEU points was obtained from the base-
line system to the official primary system. This system has
been positioned as second in the automatic evaluation of the
IWSLT’ 10 official results.

1. Introduction

The goal of Statistical Machine Translation (SMT) is the
translation of a sentence f = fifa... fjg from a given
source language and source vocabulary f; € X, to an equiv-
alenté = ejez .. . e|o from a certain target language and tar-
get vocabulary e; € I'. Typically this statement is formalised
by means of the so-called maximum entropy approach, under
a log-linear combination of several models [1, 2]:

M
€ = argmax Z Amhm (£, €), (1)
€ m=1

45

where h,, (f, e) is a score function representing an important
feature for the translation of f into e, M is the number of
models (or features), and)\, are the weights of the log-linear
combination. Typically, the weights \,,, are optimised during
the tuning stage. Under the N-gram-based SMT approach,
typically two of the combined models are N-gram Language
Models (LMs). The traditional N-gram LM is estimated by
counting over a text corpus, and it needs the use of smoothing
techniques for unseen patterns in the training material.

Continuous space representation of language deals better
with unseen patterns, and it has been successfully applied in
recent Neural Networks (NNs) approaches to language mod-
elling [3, 4, 5, 6]. However, the use of Neural Network Lan-
guage Models (NNLMs) [7, 8] in state-of-the-art SMT sys-
tems is not so popular. The only comprehensive works are
based in [9], where the target LM is presented in the form
of a fully-connected Multilayer Perceptron in an N-best list
rescoring decoupled step.

The presented system enhances a standard state-of-the-
art N-gram-based SMT system with NNLMs via log-linear
combination fully integrated in the core of the search proce-
dure of the system.

2. N-gram-based Machine Translation

The phrase-based translation approach is the most extended
state-of-the-art SMT solution, and Moses [10] implementa-
tion is the most extended decoder. Recently the N-gram-
based SMT approach has been presented [11, 12, 13], based
on the finite state machine translation framework. The
phrases are substituted by bilingual tuples, and the training
material is segmented in tuples in an unique way. A bilingual
N-gram language model is trained over those tuples, com-
puting the joint probability p(e, f), approximated at the sen-
tence level. This N-gram translation model is added to the

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

[

El dltimo acto de Musharraf ?

I

Musharraf ’s last act ?

Source reordering

€ Musharraf ’s last act ?
Extracted tuples
@ ; €)
(Musharraf , Musharraf)
(El de , ’s)
(altimo , last)
(acto , act)
¢ ; ?7)

Figure 1: Word alignment between two sentences of the
bilingual corpus. The set of extracted tuples is shown below
(e represents the empty string).

log-linear combination, in addition with an N-gram language
model for the target language, a word and tuple bonus mod-
els, lexicon direct and inverse translation models, a “weak”
distortion model, and lexicalized reordering models.

2.1. Extracting tuples

A unique segmentation in tuples is extracted from a word
alignment of the bilingual corpus following these steps [13]:

1. The source language part of each sentence is reordered
to take into account the target word order.

2. Tuples are extracted as the smallest bilingual unit that
is possible to define so that no word inside a tuple is
aligned with a word outside the same tuple.

3. The source part of each tuple is reordered in increas-
ing order, that is, the words are monotonous inside the
tuple, but there could be discontinuities.

This definition builds a segmentation of the reoredered
source sentence and the target sentence, where there could be
tuples with zero or more words in the source or in the target
parts. Zero words in the source part means that the search
procedure will need to insert tuples. This behaviour could
be hard to implement in the decoder. Then, for simplicity,
the target part of empty source tuples is added to the next or
the previous tuple maximizing the probability of the lexicon
direct and inverse models as described in section 2.2.3.

An example of tuple segmentation is presented in Fig-
ure 1. The tuple (E1 de, ’s) is an example of discon-
tinuous tuple. This kind of tuple needs a decoding search

that takes into account the source words reordering and the
discontinuities inside the tuples.

2.2. Modelling

To take into account the implemented constrained reordering
search and the tuple-based approach, a generalization of the
maximum entropy formula of Equation (1) is:

M
(T, @) = argmax > Ahom (T,), (2)

(T9) =1
where T = TiT>...Tj is a output tuple sequence with
each tuple T; = (z;,v;) € A, with z; € X (one or more
source words) and y; € I'* (zero or more target words).
The vocabulary A is the bilingual vocabulary of the N-gram

translation model. The function

o (L2, f} > {L2,...,|T]}

associates a tuple index to each source word position of the
sentence f. The model restricts the order of source words
inside a tuple to be always in an increasing order. The tar-
get sentence € is extracted from the sequence T taking into
account the target part y; of each tuple.

2.2.1. N-gram translation model

The N-gram translation model [13] computes the approxi-
mation of p(e, f) = p(T) over the composition of the source
and target sentences into a sequence of bilingual tuples, given
the sequence of tuples. This model is a Stochastic Finite
State Transducer trained from the bilingual tuple segmented
corpus, following the GIATI [12] (Grammar Inference and
Alignments for Transducer Inference) technique:

heu (T, @) = logp(T) = logp(TiTs ... Tit))
|T|
~ IOng(T”TifNJrl---Tifl)
=1

where N is the order of the NV-gram translation model.

2.2.2. N-gram target language model

The N-gram target language model computes the approxi-
mation of p(e) as:

le|

hem (T, @) =logp(e) = log Hp(ei|ei_N+1 e €io1)
i=1

where NV is the order of the N-gram target language model.

2.2.3. Lexicon direct and inverse translation models

The lexicon models are computed for the alignment of each
source word with each target word inside a tuple, based on
the IBM-1 models [14] computation, as:

46

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

I'T|
the(Tacp) = Zh’fZe
lyl ||
oo (2, = lo x;
f2€< y) g |$|+1 ‘y‘]]‘_[lg y]| [
IT|
her(Ta99> = ZhGQf
lz| [yl
h/le(may) = log | |+1 \;p| HZQ Tz|y.7
i=1 j=0

where ¢(y;|z;) and g(x;|y;) are the direct and inverse prob-
abilities for the alignment of words x; and ;.

2.2.4. “Weak” distortion model

The “weak” distortion model computes a penalization of the
reordering of the output hypothesis:

|'T|
ha(T, @) = Z)last(i -1)+1- first(i)‘

where last(i — 1) = max {j ’ wj)=1i-— 1} is the position
in the input sentence of]the last source word in the tuple 7;;_1,
and first(i) = min {j ‘ o(j) = z} is the position in the
input sentence of th]e first source word in the tuple 75, being
last(0) = first(0) = 0.

2.2.5. Lexicalized reordering model

The effect of the addition of this model was evaluated in the
experimentation section. Six different models were trained,
based on the Moses [10] lexicalized reordering model. Given
, the current tuple 7 and the previous tuple ¢ — 1, the orien-
tation oq between current tuple and previous tuple is:

M, iif first(i) —last(i —1) =1,
oq =¢S5, iif first(i) —last(i — 1) = —1,
D, iif |first(i) — last(i — 1)| # 1,
where M, S, and D indicate Monotonous, Swap, and Dis-

continuous orientation. The probability of that orientation
being t = T; is defined as:

Count(oq,t)
Zoé Count(0/,,t)
where 3 € [0,1] is a smoothing weight, and

Count(oq)

Zo; Count(0!,)
bution of oy).

Count(oq)

pa(tloa) = (1 = B) +8

a smoothing factor (“a priori” distri-

47

Zoé Count (o))’

It is possible to compute the same probability of the in-
verse orientation (previous tuple respect to the current tuple)
as p;(t|o;), defining o; as the orientation o4, and changing
first(i) with first(i — 1), and last(i — 1) with last(7), and
being t = T;_1. The three possible orientations, and the
two possible directions, define the six lexicalized reordering
models:

|T|

hri(T,¢) = Zlogpd(Ti‘Od:J\/[)
i=1
|T|

hpa(To@) = > logpa(T;log = S)
1=1
IT|

hrs(T,9) = Y logpa(Tiloa = D)
=1
|T|

hra(T, @) = Zlogpi(Tifﬂoz':M)
|T|

his(T,9) = Y logpi(Ti-1loi = S)
i=1
IT|

hiro(T,0) = > logpi(T; 1lo; = D)

When the orientation between the tuples is not the corre-
sponding, the value of the probability is 1.

2.2.6. Word and tuple bonus models

These two models penalize the number of inserted words
(WIP) and inserted tuples (TIP) generated by the system as
follows:

hwip(T) = e
hip(T) = [T

where e is the target language sequence of words correspond-
ing to the sequence of tuples T.

2.3. Decoding

The decoder has been implemented with the April
toolkit [15], developed in our research team for pattern
recognition and image processing tasks. The search proce-
dure was divided in three coupled steps:

e The source word constrained reordering graph was
generated in a topological order, following local con-
straints (a node is expanded covering every source
word position where the distance between the first un-
covered position and the last covered position is less
than a certain given value). This approach is inspired

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

by those presented in [16, 17, 18]. Our system scores
the reordering hypothesis in the core of the SMT sys-
tem. In this step it is possible to apply histogram prun-
ing, using an approximation of the future cost of each
reordering hypothesis based in Moses future cost com-
putation.

e This graph is extended by forming tuples: every se-
quence of source words is substituted with an edge be-
tween the first and last node of the sequence, tagged
with all the possible tuples that were found given the
source words. Source words order is restricted to be in
increasing order inside a tuple. The graph is generated
in a topological order. In this step the lexicon mod-
els, and word and tuple bonus models are added to the
graph edges. This step is based in the GIATI [12] tech-
nique.

e A Viterbi decoding with beam search and histogram
pruning, using the N-gram target language model(s),
N-gram bilingual translation language model(s), and
the reordering models, is performed. This step outputs
the 1-best, an N-best list, or a word graph. GIATI tech-
nique allows to use the N-gram bilingual translation
language model as a stochastic finite state transducer
that generate the output sentence e given the best se-
quence of tuples T.

The decoder could be extended with NNLMs during the
Viterbi decoding, or in a N-best list rescoring decoupled
stage. In this work, we explore the first approach.

3. Neural Network Language Models

Under a statistical framework, a language model is used to
assign to every possible word sequence s an estimation of
the a priori probability of being the correct system response
p(s) = p(s1...s)5). Statistical language models are usually
based on the prediction of each linguistic unit in the sequence
given the preceding ones [19]:

S

Is|
p(s) =[] p(silsi™), 3)

i=1
where sifl = 81 ...8;_1 denotes the history from which unit
s; has to be predicted. The number of parameters to estimate
becomes intractable as the length of the sentence increases.
N-gram models are the most extended method to reduce this
number approximating the probability of a word as if only

the last N —1 words have influence:

s
p(s) = [p(silsi—k 1) - 4)
=1

A Neural Network Language Model (NNLM) is a statis-
tical LM which follows the same Equation (4) as /NV-grams
and where the probabilities that appear in that expression are
estimated with a NN [3, 5, 7]. The model naturally fits under
the probabilistic interpretation of the outputs of the NNs: if

Hidden e ’
Layer Output
Layer

4 Projection Layer
R et * (Distributed Codification)

Codification
Figure 2: Architecture of the continuous space NNLM in the
training stage. The input words are s;_ 41, ...,8;—1 (in
this example, the input words are s;_3, s;_2, and s;_; fora
4-gram). I, P, H and O are the input, projection, hidden and
output layer, respectively, of the MLP.

a NN, in this case a Multilayer Perceptron (MLP), is trained
as a classifier, the outputs associated to each class are estima-
tions of the posterior probabilities of the defined classes [20].

The training set for a LM is a sequence s13 ... 55| of
words from a vocabulary 2. In order to train a NN to pre-
dict the next word given a history of length N — 1, each
input word must be encoded. A natural representation is a
local encoding following a “1-of-|Q2|” scheme. The problem
of this encoding for tasks with large vocabularies (as is typi-
cally the case) is the huge size of the resulting NN. We have
solved this problem following the ideas of [3, 7], learning a
distributed representation for each word. Figure 2 illustrates
the architecture of the feed-forward NN used to estimate the
NNLM:

e The input is composed of words s;_nN+1,...,5;—1 Of
Equation (4). Each word is represented using a local
encoding.

e P is the projection layer of the input words, formed
by Pi_n41,...,P;_1 subsets of projection units. The
subset of projection units P; represents the distributed
encoding of input word s;. The weights of this pro-
jection layer are linked, that is, the weights from each
local encoding of input word s; to the corresponding
subset of projection units P; are the same for all input
words j. Tipically the linear activation function is used
for this layer. After training, the codification layer is
removed from the network by pre-computing a table of
size |2 which serves as a distributed encoding.

e [denotes the hidden layer, with the hyperbolic tan-
gent as activation function.

48

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

e The output layer O has |§2| units, one for each word of
the vocabulary, with softmax as activation function.

This NN predicts the posterior probability of
each word of the vocabulary given the history, i.e.,
D(SilSi—N+1--.8i—1) is computed by feeding the encoded
input words $;_n41,-..,5;—1 to the input layer. A single
forward pass of the MLP gives p(w|s; n41...8;—1) for
every word w € ().

The advantages of the connectionist approach to lan-
guage modeling are due to their automatic estimation (as
with statistical LM), the lowest (in general) number of pa-
rameters of the obtained models and the automatic smooth-
ing performed by the neural networks estimators. Estimation
of NNLM in ambitious tasks is needed in order to fulfill these
advantages. This is not trivial: the larger the lexicon is, the
larger the number of parameters the neural network needs.
Using a distributed representation for each word of the vo-
cabulary is a successful approach for tasks with large lexica,
but the high computational cost of using NNLMs remains a
problem.

3.1. Fast evaluation of NNLMs

In order to compute the language model probability of a
given sentence, the number of N-gram conditional probabil-
ities to be computed is roughly the length (in words) of the
sentence. However, when the same language model is used in
speech or handwritten recognition or in translation tasks, the
number of language model look-ups is typically huge since
there are many different hypotheses to be considered.

The activation function of the hidden neurons is usually
the logistic or the hyperbolic tangent. The output units can
use the logistic or the softmax activation function whose val-
ues lie between zero and one. The softmax activation func-
tion [20] also ensures that the output values sum to one:

exp(a;)
Zj:L...,\Q\ exp(a;)’

being a; the activation value of the i-th output unit and o; its
output value.

The softmax gives much better results in term of perplex-
ity than the logistic function, but requires the computation of
every output value, even though only some of them are used,
due to the normalization term of Equation (5). The compu-
tation of the output layer dominates the cost of the forward
pass in a typical NNLM topology. This problem has been no-
ticed before in the literature and two solutions were proposed
to this regard [7]:

)

0; =

e To decrease the size of the output layer by removing
less frequent words. This sort list approach requires
smoothing language modeling techniques to estimate
the conditional probability of rare words.

e To collect and to group together all the N-grams which
share a common N — 1 prefix, since all of them require

49

the same forward pass. Note that this can also be use-
ful when other activation functions are used because
the number of hidden layers computations is anyway
reduced. Unfortunately, this is not always possible in
some on-line systems.

Our approach consists on pre-computing and storing the
softmax normalization constants most probably needed dur-
ing the LM evaluation, since the cost of retrieving this value
from a table is negligible compared with the cost of com-
puting it [21]. A space/time trade-off has to be considered:
the more space is dedicated to store pre-computed softmax
normalization constants, the more time reduction can be ob-
tained. When a given normalization constant is not found,
it can be computed on-the-fly or some kind of smoothing
must be applied. We have followed the latter idea: when
a softmax normalization constant is not found, another sim-
pler model (for instance, a lower order NNLM or statistical
N-gram model) is used.!

The implementation of NNLMs has been performed with
our pattern recognition toolkit April [15].

3.2. Unknown words probability estimation

In order to estimate the probability of unknown words, the
NNLMs needs to be trained over a restricted vocabulary
Q' C Q composed by the most frequent words in the training
corpora. This restricted vocabulary speeds up the training
and evaluation steps reducing the size of the neural network.
Then, every word in which does not belong to €’ is con-
sidered as an unknown word adding to the input and output
of the NNLM a new unit that represents this class. Using the
following function G : @ — Q'

g(s) _ Si, iif s; € Q/,
' Sunk, 1if s; & Q.

and asuming that all words in 2 — €)' are equally probable:

pn(8ilG (57N), iif s; €

i—1 _ o
P(silsi-N+1) = pan (sunklG' (57 Nr)) S
1] —] T
(6)

where py is the conditional probability function computed
by the NNLM and the G’ function was extended over se-
quences of words.

4. Experimentation
4.1. Corpus

Table 1 summarizes the size of the French-English BTEC-
IWSLT’ 10 task corpus in lowercase and tokenized form,
but preserving the punctuation marks. The tokenization

'Note that storing the softmax normalization constants for a bigram
NNLM only needs a |€2|-sized table.

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

Table 1: Statistics of the French-English IWSLT’ 10 bilingual corpora statistics in tokenized and lowercase form. Development
sets figures are calculated as the concatenation of the available 16 multiple references. The size of the N-gram bilingual corpus
is also shown.

French English
#lines #words # vocabulary | #lines # words # vocabulary
BTEC + CSTAR’03 (Train) 28K 273K 9954 28K 256K 7599
IWSLT 04 (Dev2) 8K 72K 3281 8K 67K 2191
IWSLT’05 (Dev3) 8K 72K 3144 8K 68K 2271
Total 44K 417K 11389 44K 392K 8394

N-gram bilingual translation corpus
#lines # tuples # vocabulary
41406

BTEC + CSTAR’03 (Train) 28K 214K

was done using the script tokenizer.perl from the
WMT’10. The French vocabulary was extracted from the
Train partition (9954 words), and the English vocabulary
from the concatenation of all available data (8 394 words).
The Dev2 partition was reserved for tuning parameters of all
the models. Dev3 was a internal test set for selecting the best
system. All the models were trained over the lowercased and
tokenized Train partition.

4.2. N-gram-based SMT baseline system

The training material for the baseline system is the
20K sentences from the BTEC training partition and the
16 references of the CSTAR’03 development set (Train
set). A 3-gram bilingual translation model was trained
over the tuple segmentation of the corpus obtained from
the Gizza++ [22] words alignments (using the heuristic
grow-diag-final-and). The lexicalized reordering
model was trained over the same material. A 3-gram target
language, result of the combination of two language models,
for BTEC and for CSTAR’03 English corpora, was trained.
For language model combination, the perplexity over the
Dev2 development set was optimized. The result with base-
line system for Dev2 development set was performed with
and without lexicalized reordering model (see Table 2). The
log-linear combination coefficients \,,, where optimized over
the Dev2 development set, maximizing the BLEU score by
means of the MERT [23] procedure. The local reordering
window was set to 6. The baseline system combines from 7
to 13 models in the log-linear search, depending of the use
or not of the lexicalized reordering models. The extension
of the baseline with NNLMs has 1 or 2 more models, de-
pending if the NNLM was only used for the target language
model, only for the bilingual translation model, or for both.
After all experimentation, the final primary submitted system
is composed of 15 models.

4.3. NNLMs set up

All the NNLMs were trained using the Stochastic Backprop-
agation algorithm, with replacement and weight decay, min-
imizing the cross-entropy error function.

A 3-gram NNLM to be used as translation model, Neural
Network Translation Model (NNTM), was trained over the
tuple segmentation of the training material. The training data
was randomly partitioned into two disjoint sets, a training set
with 24K sentences, and a validation set with 4K sentences.
The NNTM is a linear combination of 4 neural networks with
P; = 128,160,192,256 and H = 200, respectively. The
restricted vocabulary was set to the 9K most frequent tuples
from the |A| = 41K tuples.

A 4-gram NNLM to be used as LM for the target lan-
guage, Neural Network Target Language Model (NNTLM),
was trained over the English part of the training material.
The Dev2 development set was used as a validation set. The
NNTLM is a linear combination of 4 neural networks with
P; = 128,160,192,256 and H = 200, respectively. The
restricted vocabulary was set to the 5K more frequent words
from the vocabulary of |T'| = 8K words.

For these two NNLMs, the following extension of pyn
in Equation (6) was used:

4

prn(silsijig) = Z%‘ PN (8ilsinga)s (D
j=1

where pyv; is the conditional probability function of the j
NN, and «; its corresponding linear combination coefficient,
under the restrictions: ag + as + az + a4 = 1, a; € [0, 1].
The coefficients were optimized by means of an Expectation-
Maximization procedure to minimize the corresponding vali-
dation set perplexity. The Mert procedure was repeated from
the begining to tune the log-linear combination coefficients,
adding the new features to the baseline log-linear combina-
tion (keeping the standard /V-gram language models scores).

50

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

4.4. Results

Every result is shown in case+punc form. A
standard Moses recasing model, and the script
detokenizer.perl from the WMT’10 were used.
Table 2 summarizes the performed experiments for tuning
the system. Three different factors were evaluated:

o Effect of the lexicalized reordering model. For the
baseline system, the use of this reordering model only
gives a small improvement, 0.2 points of BLEU, the
same when the NNLMs are used in the rescoring step.
Nevertheless, when the NNLMs are integrated in the
decoder search, the improvement is larger, 0.8 points
of BLEU. This means that the integration of more data
in the decoding stage is positive.

e Effect of NNTLM and NNTM. The addition of
NNTLM to the log-linear combination achieves an im-
provement of 0.5 points of BLEU over our baseline.
The addition of NNTM achieves an improvement of
0.2 points. Nevertheless, the addition of both models,
NNTLM and NNTM, achieves an improvement of 1.1
points of BLEU. When the reordering model is also
added to the combination, this number goes up to 1.7
points of BLEU.

o Effect of NNLMs integrated in decoding vs. rescor-
ing. The results nearly are the same for both scenar-
ios when the reordering models are not in the log-
linear combination. But when the reordering models
are used, the integrated system achieves an improve-
ment of 0.5 points of BLEU over the rescoring system.
This could be explained because more models need a
better optimization in the MERT procedure. Compar-
ing the final integrated system with our baseline sys-
tem, 1.9 points of BLEU improvement were achieved.

4.5. Official results

Table 3 summarizes the official BLEU score obtained for the
baseline system and the best system. For this table two differ-
ent experimental frameworks were tested. The first set uses
the same systems than those in Table 2. The second set of ex-
periments uses the systems trained over all the available data
(BTEC training + 4 development sets with 16 multiple ref-
erences). The log-linear combination scores were the same
in the two sets, but the standard /NV-gram target LM was ob-
tained as the result of a combination of single /N-gram target
LMs for each of the 4 available sets. The combination co-
efficients were optimized with a cross-validation procedure
splitting each set in 10 parts. A stochastic backpropagation
algorithm with resampling, and with different resampling co-
efficient for each set, was used to train the NNTLM:s.

From the final results it is possible to observe that there
is a clear improvement when the NNLMs are added to the
log-linear combination in the integrated system, but it is not
clear the advantage of using all the available data for the final

51

Table 2: BLEU results for the Dev2 (tuning) and Dev3 (in-
ternal test set) partitions. The number of processed source
words per second was measured for each system. NNTM
is the addition of the NN for the N-gram translation model,
NNTLM is the addition of the NN for the /V-gram target lan-
guage model, and R is the addition of the lexicalized reorder-
ing model.

| System | Dev2 Dev3 | Wrds/Sec. |
N-gram-based 65.8 65.2 21
+R 65.8 654 21
Integrating NNLMs in the decoder
+ NNTLM 67.0 65.7 8
+ NNTM 66.6 654 10
+ NNTLM + NNTM 67.4 66.3 7
+NNTLM + NNTM +R | 67.7 67.1 7
Rescoring 1000-best list
+ NNTLM + NNTM 66.9 66.4 -
+ NNTLM + NNTM +R | 67.8 66.6 -

Table 3: Official BLEU results for the test sets IWSLT’09
(Testl) and IWSLT’ 10 (Test2) partitions, primary results are
bolded. Every result is with the integrated system.

| System | Testl Test2 |
N-gram-based + R 61.4 52.2
+NNTLM + NNTM +R | 62.5 54.3 ‘
Adding all available data
N-gram-based + R 61.8 51.2
+NNTLM + NNTM +R | 63.6 53.6 ‘

submission. The official result of our system is 63.6 and 53.6
for test09 and test10 respectively, 1.8 and 2.4 points of BLEU
over the baseline system.

5. Conclusions

An N-gram-based SMT system enhanced with NNLMs for
the French-English BTEC task of the IWSLT’ 10 evaluation
campaign was presented. An improvement between 1.8 and
2.4 BLEU points was obtained between the baseline system
and the official primary system. The performance in time of
the NNLMs integrated system only decreased 3 times over
the baseline, due to the NNLMs are integrated in the de-
coder search using a novel technique [21]. This integration in
the decoding stage achieves an improvement of 0.5 points of
BLEU over a rescoring of 1000-best list in the experimenta-
tion presented. Even the big improvement obtained over the
BLEU score, the use of all the available data was not clearly
a good idea for the IWSLT task, may be due to overtraining.
This system has been positioned as second in the automatic
evaluation of the IWSLT” 10 official results.

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

6. Acknowledgements

Thanks to Patrick Lambert for the tokenization configuration
file for French, and to the LIUM SMT team for their valu-
able discussions during the 2010 summer. Work partially
supported by the Spanish Ministerio de Ciencia e Innovacion
(TIN2010-18958).

7. References

[1] K. Papineni, S. Roukos, and T. Ward, “Maximum like-
lihood and discriminative training of direct translation
models,” in Proc. of ICASSP, 1998, pp. 189-192.

[2] F. Och and H. Ney, “Discriminative training and max-
imum entropy models for statistical machine transla-
tion,” in Proc. of ACL, 2002, pp. 295-302.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
Neural Probabilistic Language Model,” Journal of Ma-
chine Learning Research, vol. 3, no. 2, pp. 1137-1155,
2003.

[4] H. Schwenk and J.-L. Gauvain, “Connectionist lan-
guage modeling for large vocabulary continuous speech
recognition,” in Proc. of ICASSP, 2002, pp. 765-768.

[S] M. Castro-Bleda and F. Prat, “New Directions in
Connectionist Language Modeling,” in Computational
Methods in Neural Modeling, ser. LNCS. Springer-
Verlag, 2003, vol. 2686, pp. 598—-605.

[6] H. Schwenk, D. Déchelotte, and J.-L. Gauvain, “Con-
tinuous space language models for statistical machine
translation,” in Proceedings of the COLING/ACL, 2006,
pp. 723-730.

[7] H. Schwenk, “Continuous space language models,”
Comput. Speech Lang., vol. 21, no. 3, pp. 492-518,
2007.

[8] Y. Bengio, “Neural net language models,” Scholarpe-
dia, vol. 3, no. 1, p. 3881, 2008.

[9] H. Schwenk, “Continuous space language models for
statistical machine translation,” The Prague Bulletin of
Mathematical Linguistics, vol. 93, 2010.

[10] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst, “Moses: open-source toolkit for statis-
tical machine translation,” in Proc. of ACL, 2007, pp.
177-180.

[11] F. Casacuberta, E. Vidal, and J. M. Vilar, “Architec-
tures for speech-to-speech translation using finite-state
models,” in Proc. of the Workshop on Speech-to-Speech
Translation: Algorithins and Systems, 2002, pp. 39—44.

[12] E. Casacuberta and E. Vidal, “Machine translation with
inferred stochastic finite-state transducers,” Comput.
Linguist., vol. 30, pp. 205-225, 2004.

[13] J. B. Marifio, R. E. Banchs, J. M. Crego, A. de Gis-
pert, P. Lambert, J. A. R. Fonollosa, and M. R. Costa-
jussa, “N-gram-based machine translation,” Comput.
Linguist., vol. 32, pp. 527-549, 2006.

[14] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and
R. L. Mercer, “The mathematics of statistical machine
translation: parameter estimation,” Comput. Linguist.,
vol. 19, no. 2, pp. 263-311, 1993.

[15] S. Espaiia-Boquera, F. Zamora-Martinez, M. Castro-
Bleda, and J. Gorbe-Moya, “Efficient BP Algo-
rithms for General Feedforward Neural Networks,” in
IWINAC’07, ser. LNCS. Springer, 2007, vol. 4527,
pp- 327-336.

[16] C. Tillmann and H. Ney, “Word reordering and a dy-
namic programming beam search algorithm for statis-
tical machine translation,” Comput. Linguist., vol. 29,
no. 1, pp. 97-133, 2003.

[17] G. Sanchis and F. Casacuberta, “N-best reordering in
statistical machine translation,” in IV Jornadas en Tec-
nologia del Habla, Zaragoza, Spain, 2006, pp. 99-104.

[18] M. R. Costa-jussa, J. M. Crego, P. Lambert,
M. Khalilov, J. A. R. Fonollosa, J. B. Mari no, and
R. E. Banchs, “Ngram-based statistical machine trans-
lation enhanced with multiple weighted reordering hy-
potheses,” in WSMT’07, 2007, pp. 167-170.

[19] E Jelinek, Statistical Methods for Speech Recognition.
The MIT Press, 1997.

[20] C. M. Bishop, Neural networks for pattern recognition.
Oxford University Press, 1995.

[21] F. Zamora-Martinez, M. Castro-Bleda, and S. Espaifia-
Boquera, “Fast Evaluation of Connectionist Language
Models,” in IWANN, ser. LNCS. Springer, 2009, vol.
5517, pp. 33-40.

[22] F. J. Och and H. Ney, “A systematic comparison of var-
ious statistical alignment models,” Computational Lin-
guistics, vol. 29, no. 1, pp. 19-51, 2003.

[23] F. Och, “Minimum Error Rate Training in Statistical
Machine Translation,” in Proc. of ACL, Sapporo, Japan,
2003, pp. 160-167.

52

Proceedings of the 7 International Workshop on Spoken Language Translation
Paris, December 2nd and 3rd, 2010

