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Abstract

In this paper we give an overview of the ILLC-UvA(Institute
for Logic, Language and Computation - University of Am-
sterdam) submission to the 7th International Workshop on
Spoken Language Translation evaluation campaign. It out-
lines the architecture and configuration of the novel feature
we are introducing: a syntax-based model for source-side re-
ordering via tree transduction.

We have concentrated on the Chinese-to-English and
English-to-Chinese DIALOG translation tasks.

1. Introduction

This is the first time that ILLC-UvVA participates in the
IWSLT evaluation campaigns. In this paper, we describe the
2010 system’s architecture describing the distinguishing fea-
tures of our source permutation reordering model and issues
of its adaptation to the task of speech translation.

We exploit the idea of augmenting statistical machine
translation (SMT) by using a reordering step prior to transla-
tion that has proved to be successful in improving translation
quality [1, 2].

Our system consists of two independent steps. First, we
reorder the words of a sentence of the source language s with
respect to the word order of the target language and a given
source-side parse tree. Second, the reordered source sen-
tence s’ is monotonically translated into a target sentence ¢
by a standard phrase-based SMT system. The discriminative
reordering model based on syntax which is the core of our
system was presented in [3] and is summarized next.

Figure 1 depicts the translation from source string s to
target string ¢ with alignment a (solid line) and the alterna-
tive of source reordering s into s followed by the translation
s — t with alignment a (in dashed lines).

We define source permutation as the problem of learn-
ing how to transfer a given source parse-tree into a parse-
tree that minimizes the divergence from target word-order.
We model the tree transfer 7, — 7, as a sequence of local,
independent transduction operations, each transforming the
current intermediate tree 7./ into the next intermediate tree
o0 with 75, = 75 and 7/ = T4 . A transduction operation
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Figure 1: Translation schemes with and without a reordering
step.

merely permutes the sequence of m > 1 children of a sin-
gle node in an intermediate tree, i.e., unlike previous work,
we do not binarize the trees. The number of permutations
is factorial in m, and learning a sequence of transductions
for explaining a source permutation can be computationally
rather challenging (see [4]). Yet, from the limited perspec-
tive of source string permutation (s — s), another challenge
is to integrate a figure of merit that measures in how far s
resembles a plausible target word-order.

We contribute solutions to these challenging problems.
Firstly, we learn the transduction operations using a dis-
criminative estimate of P(m(ay) | Ny, oy, context,), where
() is a permutation of o, (the ordered sequence of node
labels under x), N, is the label of node (address) x, N, —
v is the context-free production under z, 7(ay;) is a permu-
tation of o, and context, represents a surrounding syntactic
context. As a result, this constrains {7 ()} only to those
found in the training data, and it conditions the transduction
application probability on its specific contexts. Secondly,
in every sequence sé) = 8.8, =5 resulting from tree

r n

transductions, we prefer those local transductions on 7,/

i—1
that lead to source string permutation s; that are closer to
target word order than 3;71; we employ s language model
probability ratios as a measure of word order improvement.

The remainder of the paper is organized as follows. Sec-
tion 2 provides some background on phrase-based SMT, Sec-
tion 3 presents the architecture and details of our reordering
system, Section 4 reviews related work, Section 5 reports on
the experiments done, and Section 6 concludes the article.
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2. Baseline system

Current state-of-the-art phrase-based SMT systems [5, 6]
start-out from a word-aligned parallel corpus working with
(in principle) arbitrarily large phrase pairs (also called
blocks) acquired from word-aligned parallel data under a
simple definition of translational equivalence [7].

The conditional probabilities of one phrase given its
counterpart is estimated as the relative frequency ratio of the
phrases in the multiset of phrase-pairs extracted from the par-
allel corpus and are interpolated log-linearly together with a
set of other model estimates:

M
é{ = argm?X{ Z Anth(e{a flJ) } (1)

1 m=1

where a feature function h,,, refers to a system model, and
the corresponding A, refers to the relative weight given to
this model.

A phrase-based system employs feature functions for a
phrase pair translation model, a language model, a reorder-
ing model, and a model to score translation hypothesis ac-
cording to length. The weights A,,, are optimized for system
performance [8] as measured by BLEU [9].

Apart from the novel syntax-based reordering model,
we consider two reordering methods that are widely used
in phrase-based systems: a simple distance-based reorder-
ing and a lexicalized block-oriented data-driven reordering
model [10].

3. Source reordering system

Given a word-aligned parallel corpus, we define the source
string permutation as the task of learning to unfold the cross-
ing alignments between sentence pairs in the parallel corpus.
Let be given a source-target sentence pair s — ¢ with word
alignment set a between their words. Unfolding the crossing
instances in a should lead to as monotone an alignment a’ as
possible between a permutation s of s and the target string
t. Conducting such a “monotonization” on the parallel cor-
pus gives two parallel corpora: (1) a source-to-permutation
parallel corpus (s — sl) and (2) a source permutation-to-
target parallel corpus (s — t). The latter corpus is word-
aligned automatically again and used for training a phrase-
based translation system, while the former corpus is used for
training our model for pre-translation source permutation via
parse tree transductions.

In itself, the problem of permuting the source string to
unfold the crossing alignments is computationally intractable
(see [4]). However, different kinds of constraints can be
made on unfolding the crossing alignments in a. A common
approach in hierarchical SMT is to assume that the source
string has a binary parse tree, and the set of eligible permuta-
tions is defined by binary ITG transductions on this tree. This
defines permutations that can be obtained only by at most in-
verting pairs of children under nodes of the source tree.

3.1. Source Permutation via Syntactic Transfer

Given a parallel corpus with string pairs s — ¢ with word
alignment a, we create a source permuted parallel corpus
s — s by unfolding the crossing alignments in a: this is
done by scanning the string s from left to right and moving
words involved in crossing alignments to positions where the
crossing alignments are unfolded). The source strings s are
parsed, leading to a single parse tree 7, per source string.
Our model aims at learning from the source per-
muted parallel corpus s — s a probabilistic optimization
arg maxX(s) P(m(s) | s,7s). We assume that the set of per-
mutations {7(s)} is defined through a finite set of local trans-
ductions over the tree 75. Hence, we view the permutations
leading from s to s asa sequence of local tree transductions
T T e T/,where sz) = s ands/ = s, and each

transduction T,  — T, is defined using a tree transduction
-1

operation that at most permutes the children of a single node
inT as defined next.

A local transduction 7, — 7,/ is modelled by an oper-
ation that applies to a smgle node Wlth address z in 7/ B la-

beled N, and may permute the ordered sequence of chlldren
a, dominated by node x. This constitutes a direct general-
ization of the ITG binary inversion transduction operation.
We assign a conditional probability to each such local trans-
duction:

P(T: | Ty 1) ~ P(n(ag) | Nx — oz, Cy) 2)
where 7(a;) is a permutation of o, (the ordered sequence of
node labels under x) and C,, is a local tree context of node x
in tree T One wrinkle in this definition is that the number
of possible permutations of «, is factorial in the length of
a,. Fortunately, the source permuted training data exhibits
only a fraction of possible permutations even for longer .,
sequences. Furthermore, by conditioning the probability on
local context, the general applicability of the permutation is
restrained.

Given this definition, we define the probability of the se-
quence of local tree transductions Ty . Ty 88

—re) =[Pyl ) 3)

i=1

P(ng — ...

The problem of calculating the most likely permutation un-
der this transduction model is made difficult by the fact that
different transduction sequences may lead to the same per-
mutation, which demands summing over these sequences.
Furthermore, because every local transduction conditions on
local context of an intermediate tree, this quickly risks be-
coming intractable (even when we use packed forests). In
practice we take a pragmatic approach and greedily select at
every intermediate point Ty Ty the single most likely
local transduction that can be conducted on any node of the
current intermediate tree TS, using an interpolation of the
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term in Equation 2 with string probability ratios as follows:

/ B

P(s;_1)

— @ —

P(n(ag) | No — ag, Cp)* x ( ) )
where « and (3 are heuristically adjusted binary values.

The rationale behind this log-linear interpolation is that
our source permutation approach aims at finding the optimal
permutation s of s that can serve as input for a subsequent
translation model. Hence, we aim at tree transductions that
are syntactically motivated that also lead to improved string
permutation. In this sense, the tree transduction definitions
can be seen as an efficient and syntactically informed way to
define the space of possible permutations.

We estimate the string probabilities P(s;) using 5-gram
language models trained on the monotonized corpus s
We estimate the conditional probability P(m(cy) | Ny —
o, Cy) using a Maximum-Entropy framework, where fea-
ture functions are defined to capture the permutation as a
class, the node label N, and its head POS tag, the child se-
quence o, together with the corresponding sequence of head
POS tags and other features corresponding to different con-
textual information.

We were particularly interested in those linguistic fea-
tures that motivate reordering phenomena from the syntactic
and linguistic perspective. The features that were used for
training the permutation system are extracted for every inter-
nal node of the source tree that has more than one child:

e Local tree topology. Sub-tree instances that include
parent node and the ordered sequence of child node
labels.

e Dependency features. Features that determine the POS
tag of the head word of the current node, together with
the sequence of POS tags of the head words of its child
nodes.

o Syntactic features. Three binary features from this
class describe: (1) whether the parent node is a child
of the node annotated with the same syntactic category,
(2) whether the parent node is a descendant of the node
annotated with the same syntactic category.

We did not use any language-specific features neither of
Chinese, nor for English first of all to provide scalability
of the reordering system. In the experiments with EuroParl
data (see [3]), we trained separate models for the categories
with high number of crossing alignments, along with com-
binatorial models piling isolated models in certain combina-
tions. One issue we addressed when constructing the maxi-
mum entropy reordering system is the adaptation of proposed
reordering technique to the task of speech translation. The
challenges we were trying to overcome were the specificity
of DIALOG corpus (short and ungrammatical sentences),
and high sparsity of the trained model. The preliminary re-
sults showed that system performance increases if all the fea-
ture functions are piled up into a single model.
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Example of syntactic reordering for a Chinese-to-English
translation can be found in Figure 2. It illustrates the
alignment-driven swapping of NP (that spans DN P and
NP) and VP (that spans V'V and NP) sub-trees on the
source (Chinese) side of the parallel corpus. The NP < V P
swapping leads to monotonization of the alignment.

IP

/\
NP VP

DNP

NP DEG NN CcC

| |
PN 5 \
fi /

| give you his telephone number and address

Figure 2: Example of the reordering algorithm application.

4. Related work

The integration of linguistic syntax into SMT systems of-
fers a potential solution to reordering problem. For example,
syntax is successfully integrated into hierarchical SMT [11].
In [12], a set of tree-string channel operations is defined
over the parse tree nodes, while reordering is modeled by
permutations of children nodes. Similarly, the tree-to-string
syntax-based transduction approach offers a complete trans-
lation framework [13].

The idea of augmenting SMT by a reordering step prior
to translation has often been shown to improve transla-
tion quality. Clause restructuring performed with hand-
crafted reordering rules for German-to-English and Chinese-
to-English tasks are presented in [2] and [14], respectively.
In [15, 16] word reordering is addressed by exploiting syn-
tactic representations of source and target texts.

In [1] source and target word order harmonization is done
using well-established SMT techniques and without the use
of syntactic knowledge. Other reordering models provide the
decoder with multiple word orders. For example, the MaxEnt
reordering model described in [17] provides a hierarchical
phrasal reordering system integrated within a CKY-style de-
coder. In [18] the authors present an extension of the famous
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MSD model [10] able to handle long-distance word-block
permutations. Coming up-to-date, in [19] an effective ap-
plication of data mining techniques to syntax-driven source
reordering for MT is presented.

Different syntax-based reordering systems can be found
in [20] and [21]. In both systems, reordering rules capable
to capture many important word order transformations are
automatically learned and applied in the preprocessing step.

Recently, Tromble and Eisner [4] define source permuta-
tion as learning source permutations; the model works with
a preference matrix for word pairs, expressing preference for
their two alternative orders, and a corresponding weight ma-
trix that is fit to the parallel data. The huge space of permuta-
tions is then structured using a binary synchronous context-
free grammar (Binary ITG) with O(n?) parsing complexity,
and the permutation score is calculated recursively over the
tree at every node as the accumulation of the relative differ-
ences between the word-pair scores taken from the prefer-
ence matrix. Application to German-to-English translation
exhibits some performance improvement.

Our work is in the general learning direction taken in [4]
but differs both in defining the space of permutations, us-
ing local probabilistic tree transductions, as well as in the
learning objective aiming at scoring permutations based on a
log-linear interpolation of a local syntax-based model with a
global string-based (language) model.

S. Experiments

In this section we report the experimental work conducted
for IWSLT 20010 shared task. ILLC-UvA participated in the
Chinese«English DIALOG tasks.

5.1. Corpus

The experiments with the Chinese to English MT were car-
ried out on the DIALOG Chinese-English data, briefly pre-
sented on the corresponding IWSLT 2010 web-page!. A de-
tailled statistics of the DIALOG corpus proposed to the par-
ticipants of the evaluation campaign can be found in Tables 1
and 2. ASL stands for average sentence length.

For Chinese-to-English task, a concatenation of dev8 and
dev10 was chosen to optimize log-linear weights in the sys-
tem, and dev9 was used as an internal test set. For English-to-
Chinese system, devI2 was used to optimize system weights,
and dev!1 for internal testing.

5.2. Corpus processing

For internal development work, the Chinese portion of the
corpus was provided segmented by words. The preprocess-
ing included deletion of punctuation marks. For the English
portion, true case and punctuation marks were removed from
all parallel corpora (train, develop, test, and references). For
the final evaluation test set, punctuation marks and true case

"http://iws1t2010.fbk.eu/node/33

| Data

| Sent. | Words | Voc. | ASL | Refs. |

train Zh | 10K | 102K | 1IK | 10.16 1
DIALOG | En | 10K | 118K | 6K | 11.77

1
train Zh | 20K | 172K | 8K 8.59 1
BTEC En | 20K | 153K | 13K | 7.66 1

devl Zh | 506 | 34K | 880 | 6.63 16

dev2 Zh | 500 | 3.5K | 920 | 6.90 16

dev3 Zh | 506 | 3.8K | 931 | 7.44 16

dev4 Zh | 489 | 577K | 1.1K | 11.69 7

dev5 Zh | 500 6K 1.3K | 12.13 7

dev6 Zh | 489 | 3.1K | 881 6.48 6
dev7 Zh | 507 33K | 888 | 6.61 16
dev8 Zh | 246 15K | 288 | 6.28 4
dev9 Zh | 504 | 3.0K | 392 | 6.01 7
dev10 Zh | 200 | 2.1K | 379 | 10.70 4

test09.ASR | Zh | 405 | 44K | 758 | 10.76 -

test09.CRR | Zh | 405 4.6K | 653 | 11.26 -

test]l0.ASR | Zh | 532 | 4.6K | 934 | 8.60 -

testl0.CRR | Zh | 532 | 43K | 900 | 8.20 -

| Data

Table 1: Chinese-English corpus.

| Sent. | Words | Voc. | ASL | Refs. |

train En | 10K | 118K | 6K | 11.77 1
DIALOG | Zh | 10K | 102K | 11K | 10.16

train En | 20K | 153K | 13K | 7.66
BTEC Zh | 20K | 172K | 8K 8.59

dev3 En | 506 31K | 1.LIK | 6.16

dev10 En | 251 13K | 1.3K | 5.14

devll En | 498 | 29K | 499 | 5.82

BN N N |

devl2 En | 210 | 25K | 619 | 11.77

test09.ASR | En | 393 44K | 631 | 11.28 -

test09.CRR | En | 393 | 43K | 569 | 10.99 -

test!0.ASR | En | 453 | 53K | 896 | 11.70 -

testl0.CRR | En | 453 59K | 870 | 11.05 -

Table 2: English-Chinese corpus.

were included by using the SRILM ‘disambig’ tool follow-
ing the instruction from the IWSLT 2010 web-page.

5.3. Training data selection

Apart from the bigger training corpora, there were several
small datasets used as development and test corpora in pre-
vious campaigns, which were proposed for the participants
of the evaluation. Selection of training data was one of the
core issues of system construction since these datasets were
provided with different numbers of reference translations.

We followed three alternative strategies to accurately se-
lect the training material:
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1. First, we used only the concatenations of BTEC and
DIALOG corpora only for training (system “Train
only”).

2. Second, we extracted individual phrase tables for sets
with coinciding number of references (for example,
one phrase table was extracted for devl, dev2, dev3,
dev7 for Chinese-to-English task, one for dev4 and
dev5; and one for dev6). We then used the Moses
capability to use of multiple translation tables during
decoding®. Two options are possible: (1) translation
options are collected from one table, and additional
options are collected from the other tables (system
“Phrase tables), and (2) there is an additional table
that consists of the intersection of the initial phrase ta-
bles, shared phrase pairs are removed from initial ta-
bles (system “Phrase tables+intersection”). In the sec-
ond case, the decoder uses the tables, if the bilingual
phrase can be found in them, otherwise it uses only the
table where it can find the phrase.

3. Third, we used the target-side language model trained
on the concatenation of the DIALOG and BTEC cor-
pora to select a single best reference among the sets
of all possible translations according to the high-
est perplexity. Then, the selected references and its
source counterpart is concatenated with the training
corpus and used to train the translation model (system
“Train+best reference”).

The BLEU scores (development and internal test
datasets) reflecting different strategies’ application can be
found in Tables 3 and 4. The systems were built follow-
ing instructions on the MOSES web-site (http://www.
statmt.org/moses/) as described in sub-section 5.4.

Strategy BLEU Dev | BLEU Test
Train only 42.16 33.39
Phrase tables 43.06 35.15
Phrase tables+intersection 42.73 32.35
Train+best reference 42.73 36.07

Table 3: Different strategies of training data selection. BLEU
scores. Chinese-to-English translation.

5.4. Experimental setup

The SMT system used in the experiments is implemented
with standard tools:

o GIZA++/mkcls [8, 22] for word alignment.

e SRI LM [23] for language modeling. A 3-gram tar-
get language model was estimated and smoothed with
modified Kneser-Ney discounting.

2http: //www.statmt.org/moses/?n=Moses.
AdvancedFeatures\#ntocl5
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‘ Strategy BLEU Dev | BLEU Test
Train only 29.15 32.07
Phr.tables all 27.84 31.53
Phr.tables intersection 28.10 31.02
Train+best reference 29.21 32.54

Table 4: Different strategies of training data selection. BLEU
scores. English-to-Chinese translation.

e MOSES [24] to build an unfactored translation system
with a MSD reordering model [10] enabled.

o the Stanford parser [25] was used as a source-side
parsing engine?.

e For maximum entropy modeling we used the maxent
toolkit*,

The discriminative syntactic reordering model is applied
to reorder training, development, and test corpora. A Moses-
based translation system (corpus realignment included) is
then trained using reordered input.

5.5. Experiments and submissions

For each translation task we submitted translations for 3 dif-
ferent systems, which we call “Primary”, “Secondary1”, and
“Secondary2”.

The parameters that we adjusted to fit the task were:

e « and f indexes, that adjust the involvement of Max-
Ent and language models into tree transduction;

o the order of the idealized source-side language model,
navigating the reordering process;

e the data selection strategy.

The ranking of submission was done according to the re-
sults shown on the internal testing.

Table 5 shows the configurations of the systems that we
experimented with, BLEU scores for the development and
test datasets, and our choice for submissions. It is worth-
while to mention that the average number of reorderings was
around 1.58 per sentence.

5.6. Official results

In Table 6 we report the BLEU scores obtained by our sys-
tems in the official evaluation.

Notice that we provide “no_case+no_punc” evaluation
specifications only. Along with our systems’ scores, we in-
dicate the best system’s score and the rank of our systems
among all primary runs.

3The parser was trained on the English treebank set provided with 14
syntactic categories and 48 POS tags.

4http ://homepages.inf.ed.ac.uk/lzhangl0/maxent_
toolkit.html
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| System | a | 3 | LM order |

Data selection

| Submission | BLEU Dev | BLEU Test |

Chinese-to-English

1 0|0 - Primary 42.73 36.07
2 011 _ Train+best reference ) 41.80 35.03
3 110 3 - 41.84 35.17
4 110 4 Secondary?2 42.12 35.61
5 1|1 4 Secondary 1 4191 35.61
English-to-Chinese
1 0|0 - Secondary 1 20.15 32.17
2 0|1 - - 28.52 31.84
3 011 - Train+best reference - 28.15 31.93
4 1|1 3 Primary 2991 32.76
5 1|1 4 Secondary?2 28.65 32.15

Table 5: Summary of experimental results and configurations of submitted systems.

| Task ‘ UvA-ILLC primary | Best | Rank |

Chinese-to-English

IWSLT09.ASR 23.14 34.01 | 10/11

IWSLT09.CRR 25.80 37.21 | 10/11

IWSLT10.ASR 14.31 2220 | 9/11

IWSLT10.CRR 15.25 24.58 | 9/11
English-to-Chinese

IWSLT09.ASR 24.94 38.57 | 9/11

IWSLT09.CRR 29.26 49.61 | 9/11

IWSLT10.ASR 17.27 30.80 | 9/11

IWSLT10.CRR 19.13 37.67 | 10/11

Table 6: Official BLEU scores for IWSLT 2010 Chinese-to-
English and English-to-Chinese DIALOG tasks.

6. Conclusions and future work

This paper has presented the ILLC-UVA translation system
for Chinese«<English DIALOG tasks proposed to the partic-
ipants of the IWSLT 2010 evaluation campaign.

The main novelty is that we introduced a tree-based
reordering model that aims at monotonizing the word or-
der of source and target languages as a pre-translation step.
Our model avoids complete generalization of reordering in-
stances by using tree contexts and limiting the permuta-
tions to data instances. From a learning perspective, our
work shows that navigating a large space of intermediate tree
transformations can be conducted effectively using both the
source-side syntactic tree and a language model of the ideal-
ized (target-like) source-permuted language.

The secondary distinguishing feature of our system is an
accurate training data selection, that shows clear improve-
ments in BLEU score over the baseline configuration.
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