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Abstract eration component, which determines the output
sentences.
This paper describes the transfer compo- The system can also be consideradla-based

nent of a syntax-based Example-based Ma- transfersystem, as it conforms to the general ar-
chine Translation system. The source sen- chitecture of a rule-based system, using source lan-
tence parse tree is matched in a bottom-up guage syntactic analysis, syntactic transfer rules
fashion with the source language side of a and a dictionary (lexical transfer rules), and a tar-
parallel example treebank, which resultsin  get language generation component. Both syntac-
a target forest which is sent to the target tic and lexical transfer rules are automatically in-
language generation component. The re- duced from a parallel corpus.

sults on a 500 sentences test set are com-

pared with a top-down approach to trans- 2 Related Work

fer of the same system, with the bottom-up  \yg compare the transfer component described in

approach yielding much better results. this paper with the transfer component of Van-
) deghinste and Martens (2009).
1 Introduction The general approach towards MT is quite sim-

In machine translation, the use of linguistics ha&'ar to Data-Oriented trapslqtion_ (DOT) (Poutsma,
1998; Hearne, 2005), differing in the fact that we

cal machine translation(SMT) paradigm, but as use rule-based or probabilistic context-free parsers
“oure” SMT is reaching its ceiling, the IoendulumWhereas they use Data-Oriented Parsing (Bod,
is swinging back towards the use of linguistics in-992): and the DOT approach was only tested on

MT, even within the SMT paradigm, as demon-sma” corpora and a limited domain, whereas we
strated by the Workshops on Syntax and Structur'@tend a general ngw_s d_o_mam_usmg large corpora.
There are also similarities with the work of Am-

in SMT (among others Wu and Chiang, 2009). .
ati et al. (2009). They usg/nchronous context-

The MT engine which is used in this paper is %) SCEGEAh 4 Ull 1969
syntax-baseaxample-based machine translation c° grammars ( $hho an man, ),

(EBMT) system which limit the depth of the transfer rules to 2,
Itis example-Base ds it uses a large set of trans-WhereaS the approach described in this paper does

. o not set a limit to the maximum depth of a trans-
lation examples (a parallel corpus) as training datfa

o base its decisions on and isgntax-baseds the er rule, just like thesynchronou.s tree_—substltutlon
) . . [grammars (STSGs), as described in Zhang et al.
data in the parallel corpus is annotated with synz

. 2007). The difference between our system and
tactic parse trees, both on the source and the tar : .
. . SGs is the fact that we build a target language
side. Input sentences are syntactically analysed,

and the svstem aenerates taraet lanauage a}r%e without using any ordering information, since
y g 9 guage p ﬂS‘IIS is handled in the decoding step: the tar-

trees where all ordering information is removed, ) )
. ﬂet language generation component (Vandeghin-
These serve as input for the target language ges,[-e 2009)

(© 2010European Association for Machine Translation. Our general approach is also similar to the

all but disappeared during the rise of thatisti-



example-based MT-engine described by Kurohashre recombined into target language trees. All pos-
(2009), differing in the fact that Kurohashi uses desible output trees of this component are merged
pendency trees and we combine information frornmto a target language forest.

phrase structure trees and dependency trees. Vandeghinste and Martens (2009) describe a
o top-downtransfer component which leads to unsat-
3 System Description isfactory results. We have investigatedattom-

up transfer component instead. As this paper is

The example-based machine translation systemyiny ahout this transfer component, we describe

has an architecture very similar to that of ruIe-It more thoroughly in section 4, and compare the

based transfer systems. An input sentence is 8sgreg of this bottom-up approach with the scores

alyzed by a source language parser. The SOUTGE \andeghinste and Martens (2009) on the top-
language parse tree is converted by the transfabwn approach, using the same test set.
component into a target language forest that rep- ’

reser_lts all p055|ble_target Iapguage parses that ayg Target language generation
considered translation candidates. The target lan- _ _
guage generation component turns this forest intbarget language generation (TLG) is the compo-

a ranked set of sentences, each with their weightnent that converts the target language forest into a
set of target language sentences, ordered by their

3.1 Syntactic Analysis confidence weight. The system uses the same tar-

.- et language generation component as Vandeghin-
The system reuses existing parsers for both sourg?e and Martens (2009). It is an improved version

and target language analysis. As we are rangs o & moqule of Vandeghinste (2009).

lating from Dutch to English, the system uses .

the Alpino parser (Van Noord, 2006) for Dutch, The target language forest, which is the output

which outputs results in an xml-format combiningOf the transfer component does not contain any tar-
get language ordering information. For each par-

phrase structure information with dependency in? tnode. th tual order of the dauahters is det
formation; and the system uses the Stanford pars%? node, the actual order ot the daughters 1s deter-

(Klein and Manning, 2003) for English, which mined by the target language model. It determines

gives a phrase structure tree and an additional d‘é’-ord and constituent ordering and plays an impor-

pendency tree (de Marneffe et al., 2006). Botltlamt role in lexical selection. ) )
parsers are freely available. The target language model is trained on the

English part of Europarl. From the parse trees
3.2 Preprocessing the parallel corpus in the treebank, a set of context-free rules is
, . extracted, using the phrase category labels on
The system was trained on the sentence-aligngQa |eft-hand side. The TLG model is not re-
Europarl corpus version 3 (Koehn, 2005). stricted to parts-of-speech, the phrase category la-
The source language parser is used to parse thgjs or the tokens on the right-hand side as differ-
source side of the parallel corpus in preprocesgn; apstraction levels are distinguished. For En-
ing, as well as the input sentence during actugjish, these are: dependency relations (Rels), syn-
translation. The target language parser is onbjctic categories for non-terminal nodes and the
used to preprocess the target side of the paralyts-of-speech for terminal nodes (Cat/Pos), the
lel corpus. This results in a parallel treebank, Oependency relations together with the syntactic
which more details can be found in Tiedemann angategories/parts of speech (Cat+Rel), the depen-
Kotzé (2009a). This treebank is word aligned withyency relations together with the syntactic cate-
GIZA++ (Och and Ney, 2003) and node alignedygries/parts of speech as well as the head token
using a discriminative approach to tree alignmenhformation (Cat+Rel+Token).
(Tiedemann and Kot 2009b). Traversing the target language trees in the for-
est depth-first the TLG module checks whether
it finds rewrite rules at the least abstract level
The transfer component takes the source langua@@at+Rel+Token). If this is not the case, it checks
parse tree and matches the nodes in that tree wigihthe next level and so on until a solution is found
nodes on the source language side of the parallallowing to estimate the probability of different or-
treebank. The corresponding target side fragmenderings of the daughter of the node it is looking at.

3.3 Bottom-up transfer



Depending on the beam size and a number of otherould be consulted, on the fly, to identify transla-
cutoff parameters, it selects thenost probable by tions at all levels.
looking at the relative frequency of occurrence of For lexicalized translations, where an entire
the different patterns in the training data. phrase that appears as a constituent in the parse
The parameters that allow us to investigate thiee also appears in the treebank, we deployed
trade-off between quality and time of processinghe solution originally proposed by Luccio et al.
are the following: (2004). Trees are reordered so that the children
of each node in the parse tree appear in a fixed
lexicographic order, ignoring the original word or-
der. These trees are then rewritten as strings, us-
ing what Luccio et al. (among others) refer to as a
e Maximum Combinationsets a limit to the depth-first order. If the tree under some node in the
number of combinations investigated, ordereg@arse tree is identical to the tree under some node
by weight. Imagine a node with three daughin the treebank, and if both are converted to depth-
ters, and for each daughter an average of tdiist format, then there is a substring in the tree-
solutions where found, then this combinedank that is identical to the one representing that
into 1000 combinations. portion of the parse tree. This is called bottom-up
subtree matching. Given two trees, a bottom-up
e Maximum Permutationsets a limit to the gyptree (Figure 1) match is one that, if it matches

number of permutations under investigationgny node, also matches all the descendants of that
when no solutions are found in the databasggde.

All permutations of that node are generated.
This can lead to very high numbers, as the

e Beam sizga.k.a. histogram pruning;

e Cutoff factor a.k.a. threshold pruning;

number of permutations is the faculty of the a
p y A _____
number of daughters of a node NP PP o
s AN
/
For each of these parameters, before any cutoff NNP - 71N NP \\
i i | N
happeng all alternatives are ordered according to Approvall of DT NNPS |
their weights. \ | \ /
N, the Minutes,”
4 Bottom-up Transfer S~ -

In response to the shortcomings of the top-down
model of Vandeghinste and Martens (2009), w&igure 1: “of the Minutes” is an example of a
proposed and implemented an alternative tran§ottom-up subtree
fer strategy, one that proceeds from the bottom
upwards, starting with translations of words and Performing bottom-up subtree matching is sim-
phrases and then selecting among the translatiott@r to the ideas behind subsentential translation
further up in the parse tree on the basis of thenemories: each match is to a linguistically moti-
translations discovered at the bottom. The logivated phrase within sentences, and where a match
of this approach is that it would be better to conis found and that match aligns to some subtree
fidently translate words and phrases in source sei-the target language, translation can proceed by
tences, and then use those translations to constr&i®pying that target language subtree.
the choice of structures above. In this way, er- Finding string matches quickly in large texts
rors might propagate upwards but not downward$ias a well-known solution: the suffix array, which
where they had proven to force the transfer enginidentifies matches in indexed strings in sublinear
to make unlikely and unacceptable translations. time (Manber and Myers, 1990). By converting the
_ problem of subtree discovery into a string match-
4.1 Indexed treebanks and virtual rules ing problem, we can extract transfer rules from the
To do this, we did not extract rules of predetreebank for any node very quickly.
termined depths of trees like Vandeghinste and For transfer of the upper portions of the parse
Martens (2009) but embarked on constructing tree, we found that we could generalize the rule
system of virtual rules, in which the treebank itselconstruction method described for top-down trans-
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Figure 2: Constructing and sorting breadth-first representations of the subtrees of the example parse from
Figure 1.

fer as described by Vandeghinste and Martenk962). Alternative and possibly more efficient
(2009) by modifying the string matching tech-strategies for indexing these representations are
niques used for bottom-up matching, and then diglso feasible, based on the expansive literature on
pensing with rule-sets and using the treebank teuffix tree and suffix array construction. These
perform those transfers as well. Instead of conwould be equivalent in terms of results, and come
verting trees into strings using depth-first represemwith various tradeoffs in preprocessing time and
tations, we took each non-leaf node in the sourcgpace.

language treebank and converted it into a string us-

ing a breadth-first method inspired by Chi et al4.2 Matching the source language tree with
(2005). the examples

Converting a tree to a breadth-first string repreThe system proceeds by, first, checking for
sentation (BFSR) requires two extra symbols - refsottom-up matches in the source language tree
resented here by “#” and “$” - one to indicate théndices. Finding one is equivalent to finding a
exhaustion of the children of some node, and theubsentential match in a translation memory sys-
second to indicate the exhaustion of the nodes atem. Figure 3 shows a possible set of bottom-up
particular depth in the tree. The process proceedsatches.
by reading breadth-first through the tree starting
at the root, appending node labels to an initially
empty string. When all the children of a node have NP
been exhausted, the “#” symbol is added, and when F Be
all the nodes at some depth have been exhausted,
the “$” is added. This maps each source language
node in the treebank to a string, as shown in Fig-
ure 2. These string representations can be trivially
converted back into trees and stand in a one-to-one
correspondence with the trees that generate them.
Note that BFSRs are sortable and that if any two
subtrees are identical from the root down to sompgigure 3: Bottom-up matching finds all phrases
particular depth, then the BFSRs of those two suland words that have matches in the treebank
trees share a common prefix. By organizing them
into a sorted array, we can quickly match any sub- The transfer engine then tries to identify top-
tree in a new parse tree to all subtrees in the tregiown matches for the remaining upper portion of
bank that share the same upper part. This mak@se tree, and rejects all matches that are incompat-
search using string indexing methods feasible. iple with the bottom-up matches already found, as

In this implementation, a BFSR was constructeth Figure 4. Top-down matching proceeds by con-
for each non-terminal node in the treebank, corstructing a BFSR for each unmatched node in the
suming space proportionate to the mean square sburce parse tree, as described in section 4. For
the size of each sentence. Then these string regach such BFSR, the transfer engine searches the
resentations were sorted usigicksort (Hoare sorted index of BFSRs from the treebank for the

’ /\
/ DT NNPS

| |
the Minutes



parts of parse trees may also fail to find a match.
In those cases, two strategies are considered.

First, a special target language index is con-
structed that contains the labels - phrase categories
or parts-of-speech - for each non-leaf node in
Approval of DT NNPS the target language treebank. When no top-down

mle Mmttes match can be found, this database is searched for
any target language node whose children are iden-
tical to the labels of bottom-up matches whose
Figure 4: Top-down matching looks for structuresoots are siblings in the source language parse
in the source language treebank matching the rend whose own label is a likely match for the
maining part of the translation. Note that thesource language phrase label that appears above
leaves of the subtree being matched using tophem. The transfer engine then uses that shallow,
down methods must all be at the same depth.  two level tree to translate the corresponding source

subtree.
NP For example, if there was no transfer found for
T~ the upper portion of the tree in Figure 4, the trans-
NP PP fer engine would look for nodes in the target lan-
| T guage index that have an IN and an NP as chil-
N':\IP "lN N1‘P dren, and that are likely to correspond to the Dutch
KIP K Np phra;e category label pp.
| | P This fall-back strategy tends to produce trees
Approval of DT NNPS that closely hew to the structure of the source.
\ When even this strategy fails, the transfer engine
the Minutes assumes that nodes that are siblings in the source

have translations that are siblings in the target lan-

Figure 5: Each top-down match is finally con-guage. So, when no other transfer rule is avail-
nected to the bottom-up matches able, it selects the target language node label that
most corresponds to the source language parent,
. _ . andthen guesses which of the target language child
entries that share the longest common prefix with, e is ikely to be the head of that phrase, based

It , _ _ _ on what labels are usually heads for that type of
The treebank alignment information dlscusseghrase.

n .3'2 Is used to align the_source .Iangua.ge nOdeSTranslating from the bottom-up in this manner is
pointed to by the sorted index with their corre-

) closely related to classical parsing strategies which
sponding target language nodes. Those target IaIQL'JiId tree structures up from the bottom.
guage parses are then directly searched for sub-

trees that can join together the bottom-up matches gy 51uation

already found. When there are too many match-

ing nodes, a random sample is searched. The rd/e evaluated our system, using well-known au-
sulting target language subtrees are then combin&mmated MT metrics, like BLEU (Papineni et al.
with the bottom-up matches already found to forn2002), NIST (Doddington 2002), and TER (Snover

a target language tree, as in Figure 5. et al. 2006), as well as WER (word error rate),
This procedure is performed recursively over th®ER (position independent word error rate), and
parse tree, until the entire tree is translated. CER (character error rate). We have used the same

Where a word is missing from the treebank, oevaluation test set as Vandeghinste and Martens
has no target language alignment, the fall-bac009) consisting of 500 Dutch sentences, with
translation strategy is the same as for the top-dowtwo reference translations for each sentence. To
approach from Vandeghinste and Martens (2009give an idea about the difficulty of the test set, it
The part-of-speech or other information is transscored 29.96 BLEU on Moses (Koehn et al. 2007)
lated and the word copied over directly. Howeverrained on the same sentences of Europarl as used
the search for structural translations of the uppén our system and 38.82 BLEU on Google trans-



late. that lexical selection is better bottom-up, even
We evaluated the bottom-up system in threwhen the influence of structural transfer has been
conditions: removed as is the case in tBemmycondition.
~ Concerning the beam size in target language
1. Smallbeam: In target language generatlorgeneration we can say that there is no significant
we use a beam size of 10, a cutoff factor Ofjitterence in results of the two conditions, but it is
50, a maxcomb of 100 and a maxperm of 10Qjqnificantly faster to process the sentence in target

2. Largebeam: In target language generatiorh?nguage generation for ttf@&mallbeantondition.

we use a beam size of 100, cutoff factor of .
500, maxcomb of 200 and a maxperm of 2006 Conclusions and Future Work

. An important conclusion from the results is the fact
3. Dummy: Only bottom-up transfer of match- . . . L
that in lexical selection, our results are similar to

ing words, as described in section 4.2. Sourc% : .
: . those of Moses. There are still a few differences,
word order is retained and the target lan: ™ .
: fgr instance in the treatment of separable verbs,

guage generation module favours orders tha ) . ) )
and we have implemented solutions for this which
are close to the source order, when all else IS . .
equal are not yet reflected in these results. This will re-

quire a complete reprocessing and realigning of the

The results are shown in Table 1. The results dgtarallel treebank, which is a very time consuming

Vandeghinste and Martens (2009) are added in tf#d computationally heavy process.
Top-downrow. The influence of the structural transfer is large

We also compared with Moses (Koehn et al.and positive, and therefore indicates that we should
2007) trained on the same data, and using thgork on that aspect of our engine more: we can
same word-alignments. Due to the source larfest different parameter settings, and in future ver-
guage parser of our system which puts all punctLﬁionS of the system, we also want to include patrtial
ation outside the actual parse tree, our system doggbtree matching, which should greatly improve
not handle punctuation (yet). To get a better conthe coverage of the parallel corpus with respect to
parison with the state-of-the art of Moses, in tastructural transfer.
ble 1 we remove all punctuation from its output as Improvements to the virtual transfer rule system
well. are a major research direction for this project. The

current scheme, which searches the aligned tree-

The results for the bottom-up approach to trandsank directly, using sampling in many cases, is in
fer are a lot better than the results for the top-dowthe worst case linear in performance time on the
system. There is a relative rise of 52.7% in BLEUsize of the treebank or the sample size where sam-
score when comparing the best conditions of thpling is used. Using subtree indexing (Chi et al.,
top-down and the bottom-up approach. 2005; Martens, 2009), we hope to reduce this time

Furthermore, we can see that the difference witbramatically.

Moses (without punctuation) has become very The virtual rule system implemented here con-
small when considering the PER metric, which institutes aregular tree grammar (RTG)which
dicates the position-independent word-error ratés weakly equivalent in generating capacity to
This is important as it indicates the fact that cona context-free grammar (CFG) (Thatcher, 1967,
cerning lexical selection our early prototype sysRounds, 1970), that is to say that the trees gener-
tem scores only marginally worse than the stateated by every RTG yield a set of strings for which
of-the-art. some CFG exists that generates them. Its princi-

Comparing the scores with tHeummycondi- pal benefit is that, by generating trees, it separates
tion gives an indication of the influence of structhe generation of target language strings from the
tural transfer in both lexical selection as well as reinduction of target language linguistic structures.
ordering of the output. All scores consistently in-However, the limitations of CFGs and comparable
dicate that structural transfer contributes substatree grammars are well-known. Context-free tree
tially to better lexical selection. When comparinggrammars are weakly equivalent to indexed gram-
the PER score of thBummycondition with the mars (Rounds, 1970), which provide a much larger
PER score of thdop-downapproach, it is clear set of options, at the cost of NP-complete process-



Condition BLEU NIST WER CER PER TER
Top-down 1353 5.70 76.20 61.91 52.39 70.36
Dummy 1249 6.01 78.75 63.83 50.05 70.69
Smallbeam 20.65 6.44 70.34 55.37 48.96 63.72
Largebeam 20.59 6.43 70.10 55.12 48.98 63.54
Moses No Punct] 26.72 6.94 60.53 45.65 47.82 58.07

Table 1: Evaluation Results

ing times, just like the indexed grammars. Theng the treebanks used, both parallel and monolin-

tree-adjoining grammar (TAG) formalism (Joshigual, including the translation memories we have

et al., 1975) limits context-sensitive generation teeceived from a translation company.

the monadic context-free tree grammars{Mich, In general, we can conclude that we have come

1997; Fujiyoshi,2004), and other subsets of tre® a point where we are reasonably satisfied with

grammars are available for linguistic formalismghe transfer engine, which can serve in the first ver-

(Knight and Graehl, 2005). sion of the MT system, but there is plenty that re-
Extending the machinery for syntactic transfemains to be done to further improve the system.

beyond RTGs to more powerful formalisms is a

major future research area for this project. No/ Acknowledgements
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