
Bottom-up transfer in Example-based Machine Translation

Vincent Vandeghinste
Centrum voor Computerlinguı̈stiek

Katholieke Universiteit Leuven
Belgium

vincent@ccl.kuleuven.be

Scott Martens
Centrum voor Computerlinguı̈stiek

Katholieke Universiteit Leuven
Belgium

scott.martens@ccl.kuleuven.be

Abstract

This paper describes the transfer compo-
nent of a syntax-based Example-based Ma-
chine Translation system. The source sen-
tence parse tree is matched in a bottom-up
fashion with the source language side of a
parallel example treebank, which results in
a target forest which is sent to the target
language generation component. The re-
sults on a 500 sentences test set are com-
pared with a top-down approach to trans-
fer of the same system, with the bottom-up
approach yielding much better results.

1 Introduction

In machine translation, the use of linguistics had
all but disappeared during the rise of thestatisti-
cal machine translation(SMT) paradigm, but as
“pure” SMT is reaching its ceiling, the pendulum
is swinging back towards the use of linguistics in
MT, even within the SMT paradigm, as demon-
strated by the Workshops on Syntax and Structure
in SMT (among others Wu and Chiang, 2009).

The MT engine which is used in this paper is a
syntax-basedexample-based machine translation
(EBMT) system.

It is example-basedas it uses a large set of trans-
lation examples (a parallel corpus) as training data
to base its decisions on and it issyntax-basedas the
data in the parallel corpus is annotated with syn-
tactic parse trees, both on the source and the target
side. Input sentences are syntactically analysed,
and the system generates target language parse
trees where all ordering information is removed.
These serve as input for the target language gen-

c©2010European Association for Machine Translation.

eration component, which determines the output
sentences.

The system can also be considered arule-based
transfersystem, as it conforms to the general ar-
chitecture of a rule-based system, using source lan-
guage syntactic analysis, syntactic transfer rules
and a dictionary (lexical transfer rules), and a tar-
get language generation component. Both syntac-
tic and lexical transfer rules are automatically in-
duced from a parallel corpus.

2 Related Work

We compare the transfer component described in
this paper with the transfer component of Van-
deghinste and Martens (2009).

The general approach towards MT is quite sim-
ilar to Data-Oriented translation (DOT) (Poutsma,
1998; Hearne, 2005), differing in the fact that we
use rule-based or probabilistic context-free parsers
whereas they use Data-Oriented Parsing (Bod,
1992), and the DOT approach was only tested on
small corpora and a limited domain, whereas we
intend a general news domain using large corpora.

There are also similarities with the work of Am-
bati et al. (2009). They usesynchronous context-
free grammars (SCFGs)(Aho and Ullman, 1969),
which limit the depth of the transfer rules to 2,
whereas the approach described in this paper does
not set a limit to the maximum depth of a trans-
fer rule, just like thesynchronous tree-substitution
grammars (STSGs), as described in Zhang et al.
(2007). The difference between our system and
STSGs is the fact that we build a target language
tree without using any ordering information, since
this is handled in the decoding step: the tar-
get language generation component (Vandeghin-
ste, 2009).

Our general approach is also similar to the

[EAMT May 2010 St Raphael, France]



example-based MT-engine described by Kurohashi
(2009), differing in the fact that Kurohashi uses de-
pendency trees and we combine information from
phrase structure trees and dependency trees.

3 System Description

The example-based machine translation system
has an architecture very similar to that of rule-
based transfer systems. An input sentence is an-
alyzed by a source language parser. The source
language parse tree is converted by the transfer
component into a target language forest that rep-
resents all possible target language parses that are
considered translation candidates. The target lan-
guage generation component turns this forest into
a ranked set of sentences, each with their weight.

3.1 Syntactic Analysis

The system reuses existing parsers for both source
and target language analysis. As we are trans-
lating from Dutch to English, the system uses
the Alpino parser (Van Noord, 2006) for Dutch,
which outputs results in an xml-format combining
phrase structure information with dependency in-
formation; and the system uses the Stanford parser
(Klein and Manning, 2003) for English, which
gives a phrase structure tree and an additional de-
pendency tree (de Marneffe et al., 2006). Both
parsers are freely available.

3.2 Preprocessing the parallel corpus

The system was trained on the sentence-aligned
Europarl corpus version 3 (Koehn, 2005).

The source language parser is used to parse the
source side of the parallel corpus in preprocess-
ing, as well as the input sentence during actual
translation. The target language parser is only
used to preprocess the target side of the paral-
lel corpus. This results in a parallel treebank, on
which more details can be found in Tiedemann and
Kotzé (2009a). This treebank is word aligned with
GIZA++ (Och and Ney, 2003) and node aligned
using a discriminative approach to tree alignment
(Tiedemann and Kotźe, 2009b).

3.3 Bottom-up transfer

The transfer component takes the source language
parse tree and matches the nodes in that tree with
nodes on the source language side of the parallel
treebank. The corresponding target side fragments

are recombined into target language trees. All pos-
sible output trees of this component are merged
into a target language forest.

Vandeghinste and Martens (2009) describe a
top-downtransfer component which leads to unsat-
isfactory results. We have investigated abottom-
up transfer component instead. As this paper is
mainly about this transfer component, we describe
it more thoroughly in section 4, and compare the
scores of this bottom-up approach with the scores
of Vandeghinste and Martens (2009) on the top-
down approach, using the same test set.

3.4 Target language generation

Target language generation (TLG) is the compo-
nent that converts the target language forest into a
set of target language sentences, ordered by their
confidence weight. The system uses the same tar-
get language generation component as Vandeghin-
ste and Martens (2009). It is an improved version
of the TLG module of Vandeghinste (2009).

The target language forest, which is the output
of the transfer component does not contain any tar-
get language ordering information. For each par-
ent node, the actual order of the daughters is deter-
mined by the target language model. It determines
word and constituent ordering and plays an impor-
tant role in lexical selection.

The target language model is trained on the
English part of Europarl. From the parse trees
in the treebank, a set of context-free rules is
extracted, using the phrase category labels on
the left-hand side. The TLG model is not re-
stricted to parts-of-speech, the phrase category la-
bels or the tokens on the right-hand side as differ-
ent abstraction levels are distinguished. For En-
glish, these are: dependency relations (Rels), syn-
tactic categories for non-terminal nodes and the
parts-of-speech for terminal nodes (Cat/Pos), the
dependency relations together with the syntactic
categories/parts of speech (Cat+Rel), the depen-
dency relations together with the syntactic cate-
gories/parts of speech as well as the head token
information (Cat+Rel+Token).

Traversing the target language trees in the for-
est depth-first the TLG module checks whether
it finds rewrite rules at the least abstract level
(Cat+Rel+Token). If this is not the case, it checks
at the next level and so on until a solution is found
allowing to estimate the probability of different or-
derings of the daughter of the node it is looking at.



Depending on the beam size and a number of other
cutoff parameters, it selects then most probable by
looking at the relative frequency of occurrence of
the different patterns in the training data.

The parameters that allow us to investigate the
trade-off between quality and time of processing
are the following:

• Beam size, a.k.a. histogram pruning;

• Cutoff factor, a.k.a. threshold pruning;

• Maximum Combinationssets a limit to the
number of combinations investigated, ordered
by weight. Imagine a node with three daugh-
ters, and for each daughter an average of ten
solutions where found, then this combines
into 1000 combinations.

• Maximum Permutationssets a limit to the
number of permutations under investigation,
when no solutions are found in the database.
All permutations of that node are generated.
This can lead to very high numbers, as the
number of permutations is the faculty of the
number of daughters of a node

For each of these parameters, before any cutoff
happens all alternatives are ordered according to
their weights.

4 Bottom-up Transfer

In response to the shortcomings of the top-down
model of Vandeghinste and Martens (2009), we
proposed and implemented an alternative trans-
fer strategy, one that proceeds from the bottom
upwards, starting with translations of words and
phrases and then selecting among the translations
further up in the parse tree on the basis of the
translations discovered at the bottom. The logic
of this approach is that it would be better to con-
fidently translate words and phrases in source sen-
tences, and then use those translations to constrain
the choice of structures above. In this way, er-
rors might propagate upwards but not downwards,
where they had proven to force the transfer engine
to make unlikely and unacceptable translations.

4.1 Indexed treebanks and virtual rules

To do this, we did not extract rules of prede-
termined depths of trees like Vandeghinste and
Martens (2009) but embarked on constructing a
system of virtual rules, in which the treebank itself

would be consulted, on the fly, to identify transla-
tions at all levels.

For lexicalized translations, where an entire
phrase that appears as a constituent in the parse
tree also appears in the treebank, we deployed
the solution originally proposed by Luccio et al.
(2004). Trees are reordered so that the children
of each node in the parse tree appear in a fixed
lexicographic order, ignoring the original word or-
der. These trees are then rewritten as strings, us-
ing what Luccio et al. (among others) refer to as a
depth-first order. If the tree under some node in the
parse tree is identical to the tree under some node
in the treebank, and if both are converted to depth-
first format, then there is a substring in the tree-
bank that is identical to the one representing that
portion of the parse tree. This is called bottom-up
subtree matching. Given two trees, a bottom-up
subtree (Figure 1) match is one that, if it matches
any node, also matches all the descendants of that
node.

Figure 1: “of the Minutes” is an example of a
bottom-up subtree

Performing bottom-up subtree matching is sim-
ilar to the ideas behind subsentential translation
memories: each match is to a linguistically moti-
vated phrase within sentences, and where a match
is found and that match aligns to some subtree
in the target language, translation can proceed by
copying that target language subtree.

Finding string matches quickly in large texts
has a well-known solution: the suffix array, which
identifies matches in indexed strings in sublinear
time (Manber and Myers, 1990). By converting the
problem of subtree discovery into a string match-
ing problem, we can extract transfer rules from the
treebank for any node very quickly.

For transfer of the upper portions of the parse
tree, we found that we could generalize the rule
construction method described for top-down trans-



Figure 2: Constructing and sorting breadth-first representations of the subtrees of the example parse from
Figure 1.

fer as described by Vandeghinste and Martens
(2009) by modifying the string matching tech-
niques used for bottom-up matching, and then dis-
pensing with rule-sets and using the treebank to
perform those transfers as well. Instead of con-
verting trees into strings using depth-first represen-
tations, we took each non-leaf node in the source
language treebank and converted it into a string us-
ing a breadth-first method inspired by Chi et al.
(2005).

Converting a tree to a breadth-first string repre-
sentation (BFSR) requires two extra symbols - rep-
resented here by “#” and “$” - one to indicate the
exhaustion of the children of some node, and the
second to indicate the exhaustion of the nodes at a
particular depth in the tree. The process proceeds
by reading breadth-first through the tree starting
at the root, appending node labels to an initially
empty string. When all the children of a node have
been exhausted, the “#” symbol is added, and when
all the nodes at some depth have been exhausted,
the “$” is added. This maps each source language
node in the treebank to a string, as shown in Fig-
ure 2. These string representations can be trivially
converted back into trees and stand in a one-to-one
correspondence with the trees that generate them.
Note that BFSRs are sortable and that if any two
subtrees are identical from the root down to some
particular depth, then the BFSRs of those two sub-
trees share a common prefix. By organizing them
into a sorted array, we can quickly match any sub-
tree in a new parse tree to all subtrees in the tree-
bank that share the same upper part. This makes
search using string indexing methods feasible.

In this implementation, a BFSR was constructed
for each non-terminal node in the treebank, con-
suming space proportionate to the mean square of
the size of each sentence. Then these string rep-
resentations were sorted usingquicksort (Hoare

1962). Alternative and possibly more efficient
strategies for indexing these representations are
also feasible, based on the expansive literature on
suffix tree and suffix array construction. These
would be equivalent in terms of results, and come
with various tradeoffs in preprocessing time and
space.

4.2 Matching the source language tree with
the examples

The system proceeds by, first, checking for
bottom-up matches in the source language tree
indices. Finding one is equivalent to finding a
subsentential match in a translation memory sys-
tem. Figure 3 shows a possible set of bottom-up
matches.

Figure 3: Bottom-up matching finds all phrases
and words that have matches in the treebank

The transfer engine then tries to identify top-
down matches for the remaining upper portion of
the tree, and rejects all matches that are incompat-
ible with the bottom-up matches already found, as
in Figure 4. Top-down matching proceeds by con-
structing a BFSR for each unmatched node in the
source parse tree, as described in section 4. For
each such BFSR, the transfer engine searches the
sorted index of BFSRs from the treebank for the



Figure 4: Top-down matching looks for structures
in the source language treebank matching the re-
maining part of the translation. Note that the
leaves of the subtree being matched using top-
down methods must all be at the same depth.

Figure 5: Each top-down match is finally con-
nected to the bottom-up matches

entries that share the longest common prefix with
it.

The treebank alignment information discussed
in 3.2 is used to align the source language nodes
pointed to by the sorted index with their corre-
sponding target language nodes. Those target lan-
guage parses are then directly searched for sub-
trees that can join together the bottom-up matches
already found. When there are too many match-
ing nodes, a random sample is searched. The re-
sulting target language subtrees are then combined
with the bottom-up matches already found to form
a target language tree, as in Figure 5.

This procedure is performed recursively over the
parse tree, until the entire tree is translated.

Where a word is missing from the treebank, or
has no target language alignment, the fall-back
translation strategy is the same as for the top-down
approach from Vandeghinste and Martens (2009):
The part-of-speech or other information is trans-
lated and the word copied over directly. However,
the search for structural translations of the upper

parts of parse trees may also fail to find a match.
In those cases, two strategies are considered.

First, a special target language index is con-
structed that contains the labels - phrase categories
or parts-of-speech - for each non-leaf node in
the target language treebank. When no top-down
match can be found, this database is searched for
any target language node whose children are iden-
tical to the labels of bottom-up matches whose
roots are siblings in the source language parse
and whose own label is a likely match for the
source language phrase label that appears above
them. The transfer engine then uses that shallow,
two level tree to translate the corresponding source
subtree.

For example, if there was no transfer found for
the upper portion of the tree in Figure 4, the trans-
fer engine would look for nodes in the target lan-
guage index that have an IN and an NP as chil-
dren, and that are likely to correspond to the Dutch
phrase category label pp.

This fall-back strategy tends to produce trees
that closely hew to the structure of the source.

When even this strategy fails, the transfer engine
assumes that nodes that are siblings in the source
have translations that are siblings in the target lan-
guage. So, when no other transfer rule is avail-
able, it selects the target language node label that
most corresponds to the source language parent,
and then guesses which of the target language child
nodes is likely to be the head of that phrase, based
on what labels are usually heads for that type of
phrase.

Translating from the bottom-up in this manner is
closely related to classical parsing strategies which
build tree structures up from the bottom.

5 Evaluation

We evaluated our system, using well-known au-
tomated MT metrics, like BLEU (Papineni et al.
2002), NIST (Doddington 2002), and TER (Snover
et al. 2006), as well as WER (word error rate),
PER (position independent word error rate), and
CER (character error rate). We have used the same
evaluation test set as Vandeghinste and Martens
(2009) consisting of 500 Dutch sentences, with
two reference translations for each sentence. To
give an idea about the difficulty of the test set, it
scored 29.96 BLEU on Moses (Koehn et al. 2007)
trained on the same sentences of Europarl as used
in our system and 38.82 BLEU on Google trans-



late.
We evaluated the bottom-up system in three

conditions:

1. Smallbeam: In target language generation,
we use a beam size of 10, a cutoff factor of
50, a maxcomb of 100 and a maxperm of 100

2. Largebeam: In target language generation,
we use a beam size of 100, cutoff factor of
500, maxcomb of 200 and a maxperm of 200

3. Dummy: Only bottom-up transfer of match-
ing words, as described in section 4.2. Source
word order is retained and the target lan-
guage generation module favours orders that
are close to the source order, when all else is
equal.

The results are shown in Table 1. The results of
Vandeghinste and Martens (2009) are added in the
Top-downrow.

We also compared with Moses (Koehn et al.,
2007) trained on the same data, and using the
same word-alignments. Due to the source lan-
guage parser of our system which puts all punctu-
ation outside the actual parse tree, our system does
not handle punctuation (yet). To get a better com-
parison with the state-of-the art of Moses, in ta-
ble 1 we remove all punctuation from its output as
well.

The results for the bottom-up approach to trans-
fer are a lot better than the results for the top-down
system. There is a relative rise of 52.7% in BLEU
score when comparing the best conditions of the
top-down and the bottom-up approach.

Furthermore, we can see that the difference with
Moses (without punctuation) has become very
small when considering the PER metric, which in-
dicates the position-independent word-error rate.
This is important as it indicates the fact that con-
cerning lexical selection our early prototype sys-
tem scores only marginally worse than the state-
of-the-art.

Comparing the scores with theDummycondi-
tion gives an indication of the influence of struc-
tural transfer in both lexical selection as well as re-
ordering of the output. All scores consistently in-
dicate that structural transfer contributes substan-
tially to better lexical selection. When comparing
the PER score of theDummycondition with the
PER score of theTop-downapproach, it is clear

that lexical selection is better bottom-up, even
when the influence of structural transfer has been
removed as is the case in theDummycondition.

Concerning the beam size in target language
generation we can say that there is no significant
difference in results of the two conditions, but it is
significantly faster to process the sentence in target
language generation for theSmallbeamcondition.

6 Conclusions and Future Work

An important conclusion from the results is the fact
that in lexical selection, our results are similar to
those of Moses. There are still a few differences,
for instance in the treatment of separable verbs,
and we have implemented solutions for this which
are not yet reflected in these results. This will re-
quire a complete reprocessing and realigning of the
parallel treebank, which is a very time consuming
and computationally heavy process.

The influence of the structural transfer is large
and positive, and therefore indicates that we should
work on that aspect of our engine more: we can
test different parameter settings, and in future ver-
sions of the system, we also want to include partial
subtree matching, which should greatly improve
the coverage of the parallel corpus with respect to
structural transfer.

Improvements to the virtual transfer rule system
are a major research direction for this project. The
current scheme, which searches the aligned tree-
bank directly, using sampling in many cases, is in
the worst case linear in performance time on the
size of the treebank or the sample size where sam-
pling is used. Using subtree indexing (Chi et al.,
2005; Martens, 2009), we hope to reduce this time
dramatically.

The virtual rule system implemented here con-
stitutes a regular tree grammar (RTG), which
is weakly equivalent in generating capacity to
a context-free grammar (CFG) (Thatcher, 1967;
Rounds, 1970), that is to say that the trees gener-
ated by every RTG yield a set of strings for which
some CFG exists that generates them. Its princi-
pal benefit is that, by generating trees, it separates
the generation of target language strings from the
induction of target language linguistic structures.
However, the limitations of CFGs and comparable
tree grammars are well-known. Context-free tree
grammars are weakly equivalent to indexed gram-
mars (Rounds, 1970), which provide a much larger
set of options, at the cost of NP-complete process-



Condition BLEU NIST WER CER PER TER
Top-down 13.53 5.70 76.20 61.91 52.39 70.36
Dummy 12.49 6.01 78.75 63.83 50.05 70.69
Smallbeam 20.65 6.44 70.34 55.37 48.96 63.72
Largebeam 20.59 6.43 70.10 55.12 48.98 63.54
Moses No Punct. 26.72 6.94 60.53 45.65 47.82 58.07

Table 1: Evaluation Results

ing times, just like the indexed grammars. The
tree-adjoining grammar (TAG) formalism (Joshi
et al., 1975) limits context-sensitive generation to
the monadic context-free tree grammars (Mönnich,
1997; Fujiyoshi,2004), and other subsets of tree
grammars are available for linguistic formalisms
(Knight and Graehl, 2005).

Extending the machinery for syntactic transfer
beyond RTGs to more powerful formalisms is a
major future research area for this project. No-
tably, work is in progress to extend the virtual
transfer rule system to support non-deleting tree
rules (Knight and Graehl, 2005) which can be effi-
ciently extracted from aligned treebanks using data
mining techniques (Martens, 2009).

There is also room for improvement in subsen-
tential alignments. We will investigate whether
there are other alignments possible which will lead
to better results. For now we are using a first ver-
sion of the alignments, but the work we have done
up to now has given us a great deal of informa-
tion about how we might improve the alignment.
This is not reflected in the alignments as they are
now, as this requires to reapply the time consuming
alignment processing of the parallel data.

The evaluation of this system has shown some
encouraging results, and detailed error analysis has
shown some of the paths to follow in the future.

We will first of all try our approach on other lan-
guage pairs and see whether the conclusions still
hold.

Apart from that, we are working on an index-
ing system which will allow us to work with par-
tial subsentential matches instead of full subtree
matching, which will have a large effect on the
coverage of the parallel treebank, as well as on
the speed of the transfer engine, which is rather
slow as it is now. This will also solve a number of
translation issues for which the current system can-
not generate a correct translation unless the whole
phrase is found in the parallel treebank.

We will also investigate the effect of enlarg-

ing the treebanks used, both parallel and monolin-
gual, including the translation memories we have
received from a translation company.

In general, we can conclude that we have come
to a point where we are reasonably satisfied with
the transfer engine, which can serve in the first ver-
sion of the MT system, but there is plenty that re-
mains to be done to further improve the system.

7 Acknowledgements

The research presented in this paper was done in
the PaCo-MT project, sponsored by the STEVIN-
programme of the Dutch Language Union and by
the AMASS++ project sponsored by IWT - Vlaan-
deren.

References

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. (2004).
Replacing Suffix Trees with Enhanced Suffix Arrays.
Journal of Discrete Algorithms, 2(1):53-86.

Aho, A., and Ullman, J. (1969). Syntax directed translations
and the pushdown assembler.Journal of Computer and
System Sciences, volume 3(1):37-56.

Ambati, V., Lavie, A., and Carbonell, J. (2009). Extraction
of Syntactic Translation Models from Parallel Data us-
ing Syntax from Source and Target Languages. In:MT
Summit XII Proceedings of the twelfth Machine Trans-
lation Summit. Ottawa, Ontario, Canada. pp. 190-197.

Bod, R. (1992). A Computational Model of Language
Performance: Data-Oriented Parsing. InProceedings
of the fifteenth International Conference on Computa-
tional Linguistics (COLING’92). International Com-
mittee on Computational Linguistics. Nantes, France.
pp. 855-859.

Chi, Y., Nijssen, S., Muntz, R., and Kok, J. (2005). Fre-
quent Subtree Mining An Overview.Fundamental In-
formatics, Special Issue on Graph and Tree Mining. pp.
1001-1038.

de Marneffe, M., MacCartney, B., and Manning, C. (2006).
Generating Typed Dependency Parses from Phrase
Structure Parses. In:Proceedings of the 5th edition of
the International Conference on Language Resources
and Evaluation (LREC). Genoa, Italy.

Doddington, G. (2002). Automatic Evaluation of Ma-
chine Translation Quality using N-gram Co-occurrence



Statistics. In:Proceedings of the Second Human Lan-
guage Technology Conference (HLT). Morgan Kauf-
mann. San Diego, USA. pp. 138-145.

Fujiyoshi A. (2004). Epsilon-free grammars and lexicalized
grammars that generate the class of the mildly context-
sensitive languages. In:Proceedings of the 7th Interna-
tional Workshop on Tree Adjoining Grammar and Re-
lated Formalisms. Vancouver, pp. 16-23.

Hearne, M. (2005).Data-Oriented Models of Parsing and
Translation. PhD thesis. Dublin City University.
Dublin, Ireland.

Hoare, C. (1962) Quicksort,Computer Journal5, pp. 10-15.

Joshi, A., Levy, L., and Takahashi, M. (1975) Tree adjunct
grammars,Journal of Computer and System Sciences
10, pp. 136-163.

Kärkkäinen J., and Sanders P. (2003) Simple linear work
suffix array construction, In:Proceedings of the 30th
International Colloquium on Automata, Languages and
Programming (ICALP’03). Eindhoven, Netherlands.
pp. 943-955.

Klein, D., and Manning, C. (2003). Accurate Unlexicalized
Parsing. In:Proceedings of 41st Annual Meeting of the
Association of Computational Linguistics (ACL). Sap-
poro, Japan. pp. 423-430.

Knight, K. and Graehl, J. (2005). An Overview of Proba-
bilistic Tree Transducers for Natural Language Process-
ing. In: Proceedings of the Sixth International Confer-
ence on Intelligent Text Processing and Computational
Linguistics

Koehn, P. (2005). Europarl. A parallel corpus for statistical
machine translation. In:MT Summit X: Proceedings of
the tenth Machine Translation Summit X. Phuket, Thai-
land. pp. 79-97.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., Dyer D., Bojar, O., Constantin, A., and
Herbst, E. (2007). Moses: Open source toolkit for sta-
tistical machine translation. In:Proceedings of the 45th
Annual Meeting of the Association for Computational
Linguistics (ACL). Prague, Czech Republic. pp. 177-
180.

Kurohashi, S. (2009). Fully syntactic example-based ma-
chine translation (abstract). InProceedings of the 3rd
International Workshop on Example-based Machine
Translation (EAMT).Dublin City University, Dublin,
Ireland. p. 1.

Luccio, F., Enriquez, A., Rieumont, P., and Pagl, L. (2004).
Bottom-up subtree isomorphism for unordered labeled
trees. Technical Report TR-04-13, Universit Di Pisa.
Pisa, Italy.

Manber, U., and Myers, G. (1990). Suffix arrays: a new
method for on-line string searches. In:SODA 90: Pro-
ceedings of the first annual ACM-SIAM symposium on
Discrete algorithms. Philadelphia. pp.319-327.

Martens, S. (2009). Quantitative Analysis of Treebanks us-
ing frequent subtree mining methods. In:Proceed-
ings of the 2009 Workshop on Graph-based Methods
for Natural Language Processing (TextGraphs-4). pp.
84-92.

Mönnich, U. (1997). Adjunction as substitution. In: G.-J.
Kruiff, G. Morrill, and D. Oehrle (eds.)Formal Gram-
mar. pp. 169-178.

Och, F., and Ney, H. (2003). A Systematic Comparison of
Various Statistical Alignment Models.Computational
Linguistics29 (1), pp. 19-51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002).
BLEU: a method for automatic evaluation of Machine
Translation. In:Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics
(ACL). Philadelphia, USA. pp. 311-318.

Poutsma, A. (1998). Data-Oriented Translation. In: Ninth
Conference of Computational Linguistics in the Nether-
lands (CLIN). Leuven, Belgium.

Rounds, W. (1970). Tree oriented proofs of some theorems
in context-free and indexed languages. In:Proceedings
of the 2nd ACM Symposium on Theory on Computing,
109-116.

Snover, M., Dorr, B., Schwartz, R., Micciula, L, and
Makhoul, J. (2006). A study of translation edit rate with
targeted human annotation. In:Proceedings of the 7th
Conference of the Association for Machine Translation
in the Americas (AMTA). Cambridge, USA. pp. 223-
231.

Thatcher, J. (1967). Characterizing derivation trees of
context-free grammars through a generalization of fi-
nite automata theory”Journal of Computer and System
Sciences, volume 1, 317-322.

Tiedemann, J., and Kotzé, G. (2009a). Building a Large
Machine-Aligned Parallel Treebank. In:Proceedings
of the 8th International Workshop on Treebanks and
Linguistic Theories (TLT). Milan, Italy. pp. 197-208.

Tiedemann, J., and Kotzé, G. (2009b). A Discriminative Ap-
proach to Tree Alignment. In:Proceedings of Recent
Advances in Natural Language Processing. Borovets,
Bulgaria. pp. 33-39.

Vandeghinste, V., and Martens, S. (2009). Top-down Trans-
fer in Example-based MT. InProceedings of the 3rd
International Workshop on Example-based Machine
Translation. Dublin City University, Dublin, Ireland.
pp. 69-76.

Vandeghinste, V. (2009). Tree-based Target Language Mod-
eling. In: Proceedings of the 13th Annual Conference
of the European Association for Machine Translation
(EAMT). Barcelona, Spain. pp. 152-159.

van Noord, G. (2006). At Last Parsing Is Now Opera-
tional. In: Proceedings of Traitement Automatique des
Langues Naturelles (TALN), Leuven, Belgium. pp. 20-
42.

Weiner, P. (1973). Linear pattern matching algorithm. In:
Proceedings of the 14th Annual IEEE Symposium on
Switching and Automata Theory, pp. 1-11.

Wu, D., and Chiang, D. (2009).Proceedings of the 3rd
Workshop on Syntax and Structure in Statistical Trans-
lation.

Zhang, M., Jiang, H., Aw, A., Sun, J., Li, S., and Tan, C.
(2007). A tree-to-tree alignment-based model for statis-
tical machine translation. In:Proceedsing of MT Sum-
mit XI, pp. 535-542.




