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Abstract

We present a general method for incorporating an
“expert” model into a Statistical Machine Transla-
tion (SMT) system, in order to improve its perfor-
mance on a particular “area of expertise”, and ap-
ply this method to the specific task of finding ade-
quate replacements for Out-of-Vocabulary (OOV)
words. Candidate replacements are paraphrases
and entailed phrases, obtained using monolin-
gual resources. These candidate replacements are
transformed into “dynamic biphrases”, generated
at decoding time based on the context of each
source sentence. Standard SMT features are en-
hanced with a number of new features aimed at
scoring translations produced by using different
replacements. Active learning is used to discrimi-
natively train the model parameters from human
assessments of the quality of translations. The
learning framework yields an SMT system which
is able to deal with sentences containing OOV
words but also guarantees that the performance
is not degraded for input sentences without OOV
words. Results of experiments on English-French
translation show that this method outperforms pre-
vious work addressing OOV words in terms of ac-
ceptability.

1 Introduction

When translating a new sentence, Statistical Ma-
chine Translation (SMT) systems often encounter
“Out-of-Vocabulary” (OOV) words, that is, words
for which no translation is provided in the system
phrase table. The problem is particularly severe
when bilingual data are scarce or the text to be
translated is not from the same domain as the data
used to train the system.

One approach consists in replacing the OOV
word by a paraphrase, i.e. a word that is equiv-
alent and known to the phrase-table. For instance,
in the sentence “The police hit the protester”, if

the source word “hit” is OOV, it could be replaced
by its paraphrase “struck”. In previous work such
paraphrases are learnt by “pivoting” through par-
allel texts involving multiple languages (Callison-
Burch et al., 2006) or on the basis of monolingual
data and distributional similarity metrics (Marton
et al., 2009).

Mirkin et al. (2009) go beyond the use of para-
phrase to incorporate the notion of an entailed
phrase, that is, a word which is implied by the
OOV word, but is not necessarily equivalent to
it — for example, this could result in “hit” being
replaced by the entailed phrase “attacked”. Both
paraphrases and entailed phrases are obtained us-
ing monolingual resources such as WordNet (Fell-
baum, 1998). This approach results in higher
coverage and human acceptability of the transla-
tions produced relative to approaches based only
on paraphrases.

In (Mirkin et al., 2009) a replacement for the
OOV word is chosen based on a score represent-
ing how well it fits the context of the input sen-
tence, combined with the global SMT score ob-
tained after translating multiple alternative sen-
tences produced by alternative replacements. The
combination of source and target language scores
is heuristically defined as their product, and en-
tailed phrases are only used when paraphrases are
not available. This approach has several short-
comings: translating each replacement variant is
wasteful and does not capitalize on the search ca-
pabilities of the decoder; the ad hoc combination
of scores makes it difficult to tune the contribution
of each score or to extend the approach to incorpo-
rate new features; and the enforced preference to
paraphrases may result in inadequate paraphrases
instead of acceptable entailed phrases.

We propose an approach which also takes into
account both paraphrased and entailed words and
uses a context model score, but differs from
(Mirkin et al., 2009) in several crucial aspects,
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mostly stemming from the fact that we integrate
the selection of the replacement words into the
SMT decoder. This has implications for both the
decoding and training processes.

At decoding time, when translating a source
sentence with an OOV word, besides the collec-
tion of biphrases1 stored in the system phrase ta-
ble, we generate a set of dynamic biphrases on the
fly, based on the context of that specific source
sentence, to address the OOV word. For exam-
ple, we could derive the dynamic biphrases (hit,
a frappé) and (hit, a attaqué) from the static ones
(struck, a frappé) and (attacked, a attaqué).

Such dynamic biphrases are assigned several
features that characterize different aspects of the
process that generated them, such as the appro-
priateness of the replacement in the context of
the specific source sentence, allowing for example
reach to be preferred to strike or attack in replac-
ing hit in “We hit the city at lunch time”. Dynamic
and static biphrases compete during the search for
an optimal translation.

At training time, standard techniques such as
MERT (Minimum Error Rate Training) (Och,
2003), which attempt to maximize automatic met-
rics like BLEU (Papineni et al., 2002) based on
a bilingual corpus, are directly applicable. How-
ever, as has been discussed in (Callison-Burch et
al., 2006; Mirkin et al., 2009), such automatic
measures are poor indicators of improvements in
translation quality in presence of semantic modifi-
cations of the kind we are considering here. There-
fore, we perform the training and evaluation on the
basis of human annotations. We use a form of ac-
tive learning to focus the annotation effort on a
small set of candidates which are useful for the
training.

Sentences containing OOV words represent a
fairly small fraction of the sentences to be trans-
lated2. Thus, to avoid human annotation of a
large sample with relatively few cases of OOV
words, for the purpose of yielding a statistically
unbiased sample, we perform a two-phase train-
ing: (a) the standard SMT model is first trained on
an unbiased bilingual sample using MERT and N-
best lists; and (b) this model is extended with ad-
ditional dynamic features and iteratively updated
by using other samples containing only sentences
with OOV words annotated for quality by humans.

1Biphrases are the standard source and target phrase pairs.
2In our experimental setting, in 50K sentences from News

texts, 15% contain at least one OOV content word.

We update the model parameters in such a way
that the new model does not modify the scores
of translations of cases without OOV words. This
is done through an adaptation of the online learn-
ing algorithm MIRA (Crammer et al., 2006) which
preserves linear subspaces of parameters. This ap-
proach consists therefore in learning an expert that
is able to improve the performance of the transla-
tion system on a specific set of inputs, while pre-
serving its performance on all other inputs.

The main contributions of this paper can be
summarized as follows: an efficient mechanism
integrated into the decoder for handling contextual
information; a method for adding expertise to an
SMT model relative to a specific task, relying on
highly informative, biased, samples and on human
scores; expert models that affect only a specific set
of inputs related to a particular problem, improv-
ing the translation performance in such cases.

In the remainder of this paper, we introduce the
framework proposed in this paper for learning an
expert for the task of handling sentence contain-
ing OOV words (Section 2), then present our ex-
perimental setup (Section 3) and finally our results
(Section 4).

2 Learning an expert for OOV words

Our approach to learning an OOV expert for
SMT is motivated by several general require-
ments. First, for efficiency reasons, we want the
expert to be tightly integrated with the SMT de-
coder. Second, we need to rely on human judg-
ments of the translations produced, since auto-
matic evaluation measures such as BLEU are poor
predictors of translation quality in the presence of
semantic approximations of the kind we are con-
sidering (Mirkin et al., 2009) . Third, because hu-
man annotations are costly, we need to use them
sparingly. In particular: (i) we want to focus the
annotation task on the specific problem of sen-
tences containing OOV words, and (ii) even for
these sentences, we should only hand the anno-
tators a small, well-chosen, sample of translation
candidates to assess, not an exhaustive list. Fi-
nally, we need to be careful not to bias training to-
wards the human annotated sample in such a way
that the integrated decoder becomes better on the
OOV sentences, but is degraded on the “normal”
sentences. We address these requirements as fol-
lows.

Integrated decoding The integrated decoder con-



sists of a standard phrase-based SMT decoder
(Lopez, 2008; Koehn, 2010) enhanced with the
ability to add dynamic biphrases at runtime and
attempting to maximize a variant of the stan-
dard “log-linear” objective function. The stan-
dard SMT decoder tries to find argmax(a,t)Λ ·
G(s, t, a), where Λ is a vector of weights, and
G(s, t, a) a vector of features depending on the
source sentence s, the target sentence t and the
phrase-level alignment a. The integrated decoder
tries to find

argmax(a,t)Λ ·G(s, t, a) +M ·H(s, t, a)

where M is an additional vector of weights and
H(s, t, a) an additional vector of “dynamic” fea-
tures associated with the dynamic biphrases and
assessing different characteristics of their associ-
ated replacements (see Section 2.2). The inte-
grated model is thus completely parametrized by
the concatenated weight vector. We call this model
Λ⊕M for short.

Human annotations We select at random a set of
OOV sentences from our test domain to compose
our OOV training set, and for each of these sen-
tences, provide the human annotators with a sam-
ple of candidate translations for different choices
of replacements. They are then asked to rank these
candidates according to how well they approxi-
mate the meaning of the source. In order not to
force the annotators to decide on fine-grained dis-
tinctions that they are not confident about, which
could be confusing and increase noise for the
learning module, we provide guidelines and an an-
notation interface that encourage ranking the can-
didates in a few distinct “clusters”, where the rank
between clusters is clear, but the elements inside
each cluster are considered indistinguishable. The
annotators are also asked to concentrate their judg-
ment on the portions of the sentences which are
affected by the different replacements. To cover
potential cases of cognates, annotators can choose
the actual OOV as the best “replacement”.

Active sampling In order to keep the sample of
candidate translations to be annotated for a given
OOV source sentence small, but still informative
for training, we adopt an active learning scheme
(Settles, 2010; Haffari et al., 2009; Eck et al.,
2005). We do not extract a priori a sample of
translation candidates for each sentence in the
OOV training set and ask the annotators to work

on these samples — which would mean that they
might have to compare candidates that have little
chance of being selected by the end-model after
training. Instead, This is an iterative process, with
a slice of the OOV training set selected for each
iteration. When sampling candidate translations
(out of a given slice of the OOV training set) to be
annotated in the next iteration, we use the transla-
tions produced by the model Λ ⊕M obtained so
far, after training on all previous samples. This
guarantees that we sample the overall best can-
didates for each OOV sentence according to the
current model. Additionally, we sample several
other translations corresponding to top candidates
according to individual features used in the model,
including the context model score, as we will de-
tail in Section 3. This ensures a diversity of candi-
dates to compare, while avoiding having to ask the
annotators to give feedback on candidates that do
not stand a chance of being selected by the model.

Avoiding bias We train the model Λ ⊕ M aim-
ing to guarantee that when the integrated decoder
finds a new sentence containing OOV words, it
will rank the translation candidates in a way con-
sistent with the ranks that the human judges would
give to these candidates; in particular it should out-
put as its best translation a candidate that the anno-
tators would rank in top position. However, if we
tune both Λ and M to attain this goal, the value of
Λ in the integrated decoder can differ significantly
from its value in the standard decoder, say Λ0. In
that case, when decoding a non-OOV sentence, for
which the dynamic featuresH(s, t, a) are null, the
integrated decoder would use Λ instead of Λ0, pos-
sibly degrading its performance on such sentences.
To avoid this problem, while training Λ ⊕M we
keep Λ fixed at the value Λ0, in other words, we al-
low only M to be updated in the iterative learning
process. In such a way, we preserve the original
behavior of the system on standard inputs. This
requires a learning technique that can be adapted
in a way that the parameter vector Λ ⊕M varies
only in the linear subspace for which Λ = Λ0; no-
tice that this is different from training Λ and M
separately and then learning the best mixing fac-
tor between the two models. One technique which
provides a mathematically neat way to handle this
requirement is MIRA (Crammer et al., 2006), an
online training method in which each learning step
consists in updating the current parameter vector
minimally (in the sense of Euclidian distance) so



that it lies in a certain subspace determined by the
current training point. It is then quite natural to
add the constraint that it also lies on the subspace
Λ = Λ0.

2.1 Learning to rank OOV candidates with
MIRA

Let us first write Ω ≡ Λ ⊕M , and F (s, t, a) ≡
G(s, t, a)⊕H(s, t, a), and also introduce notation
for the two projection operators π(Λ)(Λ⊕M) = Λ
and π(M)(Λ⊕M) = M .

Our goal when training from human annota-
tions is that, whenever the annotators say that the
translation candidate (s, t, a) is strictly better than
the translation candidate (s, t′, a′), then the model
scores give the same result, namely are such that
Ω · F (s, t, a) > Ω · F (s, t′, a′). Our approach to
learning can then be outlined as follows. Based
on the value of Ω learned on previous iterations
with other samples of OOV sentences, we ac-
tively sample, as previsouly described, a few can-
didate translations (s, tj , aj) for each source sen-
tence s in the current slice of the data, and have
them ranked by human annotators, preferably in
a few distinct clusters. We extract at random a
certain number of pairs of translation candidates
yj,k ≡ ((s, tj , aj), (s, tk, ak)), where (s, tj , aj)
and (s, tk, ak) are assumed to belong to two dif-
ferent clusters. We then define a feature vec-
tor on candidate pairs Φ(yj,k) ≡ F (s, tj , aj) −
F (s, tk, ak).

The basic learning step is the following. We
assume Ω to be the current value of the parame-
ters, and yj,k the next pair of annotated candidates,
with (without loss of generality) (s, tj , aj) being
strictly preferred by the annotator to (s, tk, ak).
The update from Ω to Ω′ is then performed as fol-
lows:

If Ω.Φ(yj,k) ≥ 0 then Ω′ := Ω
Else Ω′ := argminω‖ω − Ω‖2 (a)

s.t. ω.Φ(yj,k)− ω.Φ(yk,j) ≥ 1 (b)
and π(Λ)(ω) = Λ0 (c)

In other words, we are learning to rank the candi-
dates through a “pairwise comparison” approach
(Li, 2009), in which whenever a candidate pair
yj,k is ordered in opposite ways by the annota-
tor and the model, an update of Ω is performed.
This update is a simple variant of the MIRA al-
gorithm (as presented for instance in (Crammer,
2007)), where we update the parameter Ω mini-
mally in terms of Euclidian distance (a) such that

the new parameter respects two conditions. The
condition (b) forces the classification margin for
the pair to become larger with the updated model
than the loss currently incurred on that pair, con-
sidering that this loss is 0 when the model chooses
the correct order yj,k, and 1 when it chooses the
wrong order yk,j . The second condition (c), which
is our original addition to MIRA, forces the new
parameter to have an invariant Λ-projection. The
solution Ω′ to the constrained optimization prob-
lem above can be obtained through Lagrange mul-
tipliers (proof omitted). Assuming that we already
start from a parameter Ω such that π(Λ)(Ω) = Λ0,
then the update is given by:

Ω′ = Ω + τ π(M)(X),

where X ≡ Φ(yj,k) − Φ(yk,j) = 2 Φ(yj,k) and
τ ≡ 1−Ω.X

‖π(M)(X)‖2 .3 As is standard with MIRA, the
final value for the model is found by averaging the
Ω values found by iterating the basic learning step
just described.

2.2 Dynamic Features
Given an OOV word, similar to (Mirkin et al.,
2009), we search for a set of candidate replace-
ments in WordNet, considering both synonyms
and hypernyms of the OOV word which are avail-
able in the biphrase table. To this set we add the
OOV word itself to account for proper nouns and
potential cognates. Unlike previous work, we do
not explicitly give preference to any type of candi-
date (e.g. synonyms over hypernyms), but instead
distinguish them through features associated with
the new biphrases. Given a source sentence s with
an OOV word (oov), we compute several feature
scores for each candidate replacement (rep):

Context model score Score indicating the degree
by which rep fits the context of s. Following the
results reported by Mirkin et al. (2009) we apply
Latent Semantic Analysis (LSA) (Deerwester et
al., 1990) as the method for computing this score,
using 100-dimension vectors constructed based on
a corpus of the same domain as the test set. Given
s and rep, we compute the cosine similarity be-
tween their LSA vectors, where the sentence’s
vector is the average of the vectors of all the con-
tent words in it.

3Technically, this ratio is only defined for π(M)(X) 6= 0,
i.e. for cases where the pair of translations differ in their M
projections; in the rare instances where this might not be true,
we can simply ignore the pair in the learning process.



Domain similarity Score representing how well
rep can replace oov in general in texts of a given
domain. It is computed as the cosine similarity
between the LSA vectors of the two words and is
intended to give preference to replacements which
correspond to more frequent senses of the OOV
word in that domain (McCarthy et al., 2004).

Information loss Measures the distance in Word-
Net’s hierarchy, denoted d, between oov and rep:
S(unk, sub) = 1− ( 1

d+1), where the distance be-
tween synonyms is 0, and the further the hyper-
nym is up the hierarchy, the smaller the score. This
can be considered a simple approximation to the
notion of information loss, that is, the further the
rep is from the oov in a hierarchy, the fewer se-
mantic traits exist between the two, and therefore
the more information is lost if we use rep.

Identity Binary feature to mark the cases where
the OOV is kept in the sentence, what we call an
“identity” replacement.

Synonyms vs hypernyms Binary feature to dis-
tinguish between synonym and hypernym replace-
ments.

Static plus dynamic Dynamic biphrases for a
given source sentence can be derived from all
the static biphrases containing the chosen replace-
ment. For example, when replacing the OOV at-
tacked by accused, a number of static biphrases
having accused in the source side could be used
to generate (was attacked, a été accusé), (he was
attacked, il a été accusé), (attacked, a incriminé),
(attacked, le). Although these dynamic biphrases
are very different, they will be assigned the same
dynamic features values. To allow for the decoder
to distinguish among such biphrases, we define an
additional feature as the linear combination of the
feature values of the static biphrase from which the
dynamic biphrase was derived.

All static features are assigned a null value in the
dynamic biphrases, and all dynamic features are
assigned a null value in the static biphrases.4

3 Experimental Setting

Data We consider the English-French translation
task and a scenario where an SMT system is used

4Thus, what we have mnemonically called “dynamic
features” are features that are non-null only in dynamic
biphrases; some are contextual, others not.

to translate texts of a different domain from the
one it was trained on. We train a standard phrase-
based SMT system on Europarl-v4 (∼ 1M sen-
tence pairs) and use it to decode sentences from
the News domain. The standard log-linear model
parameters are tuned using 2K unseen sentences
from Europarl-v4 through MERT. A 3-gram tar-
get language model is trained using 7M sen-
tences of French News texts. All datasets are
taken from the the WMT-09 competition5. For
the learning framework, we take all sentences in
the News Commentary domain (training, devel-
opment and test sets) from WMT-09 (∼ 75K)
and extract those containing one OOV word that
is not a proper name, symbol or number (∼ 15%
of the sentences). Of these, we then randomly se-
lected 1K sentences for tuning the context model
(LSA tuning set), other 1K sentences for tuning
the SMT feature weights (SMT tuning set), and
500 sentences for evaluating all methods (test set).
The data used for computing the context model
and domain similarity scores is the Reuters Cor-
pus, Volume 1 (RCV1), which is also of the News
domain6.

We experiment with the following systems:

Baseline SMT The SMT system we use, MA-
TRAX (Simard et al., 2005), without any special
treatment for OOV words, where these are simply
copied to the translations.

Monolingual retrieval Method described in
(Marton et al., 2009) where paraphrases for OOV
words are extracted from a monolingual corpus
based on similarity metrics. We use their best-
performing setting with single-word paraphrases
extracted from a News domain corpus with 10M
sentences. The additional biphrases are statically
added into the system’s biphrase library and the
similarity score is used as a new feature. The log-
linear model is then entirely retrained with MERT
and the SMT tuning set.

Lexical entailment Two best performing meth-
ods described in (Mirkin et al., 2009). For each
sentence with an OOV word a set of alternative
source sentences is generated by directly replac-
ing each OOV word by synonyms from Word-
Net or – if synonyms are not found – by hyper-
nyms. These two settings do not add features to

5http://www.statmt.org/wmt09/.
6http://trec.nist.gov/data/reuters/reuters.html



the model, hence they do not require retraining:

• SMT All alternative source sentences are
translated using a standard SMT system and
the “best” translation is the one with the high-
est global SMT score.
• LSA-SMT The 20-best alternative source

sentences are selected according to an LSA
context model score and translated by the a
standard SMT system. The “best” translation
is the one that maximizes the product of the
LSA and global SMT scores.

OOV expert Method proposed in this paper, as
described in Section 2. The expert model with
all dynamic features is trained on the basis of hu-
man annotations using the SMT tuning set. At
each iteration of the learning process we sample
80 sentences for annotation by bilingual (English
and French) speakers. For a given source sen-
tence, the sampled options at each iteration con-
sist of a random choice of 8 dynamic biphrases
corresponding to different replacements, 4 addi-
tional dynamic biphrases corresponding to differ-
ent ways of translating those replacements, and the
top candidates according to each of our main dy-
namic features: 1-best given by the information
loss feature, 2-best given by the context model fea-
ture, 1-best given by the domain similarity feature
and 1-best given by the identity feature. In total
at most 17 non-identical candidates can be pro-
duced for annotation, but typically only a dozen
are found. The results reported in Section 4 are
obtained after only 6 iterations.

MERT Baseline with the same settings as the
OOV expert, but where the tuning of all model
parameters (both static and dynamic) is done au-
tomatically using standard MERT with reference
translations for the SMT tuning set, instead of our
learning framework and human annotations.

4 Results

Test set Following the same guidelines used for
the annotation task, two native speakers of French
(and fluent speakers of English) were asked to
judge translations produced by different systems
on 500 source sentences, according to how well
they reproduced the meaning of the source sen-
tence. They were asked to rank the translations in
a few clearly distinct clusters and to discard use-
less translations.

Features µ σ Best Acceptance
LID 2.477 1.465 0.4728 0.5252
ID 2.491 1.463 0.4668 0.5211
LI 2.547 1.457 0.4427 0.5050
I 2.561 1.463 0.4447 0.4970
D 2.924 1.414 0.3360 0.3722
LD 2.930 1.412 0.3340 0.3702
L 3.056 1.361 0.2857 0.3300
Baseline 3.219 1.252 0.2093 0.2918

Table 1: Comparison between different feature combina-
tions and the baseline showing the percentage of times each
combination outputs a translation that is acceptable, i.e. is
not discarded (Acceptance), a translation that is ranked in the
first cluster (Best), as well as the the mean rank (µ) and stan-
dard deviation (σ) of each combination, where the discarded
translations are conventionally assigned a rank of 5, lower
than the rank of any acceptable cluster observed among the
annotations. (L) context model score, (I) information-loss,
(D) domain similarity, (Baseline) SMT system.

We computed inter-annotator agreement con-
cerning both acceptance and ranking, for trans-
lations of 30 randomly sampled source sentences
that were evaluated by both annotators. For rank-
ing, we followed (Callison-Burch et al., 2008),
checking for each two translations, A and B,
whether the annotators agreed thatA = B,A > B
or A < B. This resulted in kappa coefficient
scores (Cohen, 1960) of 0.87 for translation ac-
ceptance and 0.83 for ranking.

Combinations of dynamic features In order to
have a picture of the contribution of each dynamic
feature to the expert model, we compare the per-
formance on the test set of different combinations
of our main features. The results are shown in Ta-
ble 1. The features not mentioned in the table,
such as the identity flag, are secondary features in-
cluded in all combinations.

The baseline SMT system (i.e., only identity
replacements) reaches 29.18% of acceptance (a
translation is said to be acceptable if it is not dis-
carded), which is related to the fact that, for the
given domain, copying an OOV English word into
the French output often results in a cognate. The
best performance is obtained with combination of
all features (LID).

Evolution of learning For the complete feature
vector LID we compared the performance (on the
test data) of models corresponding to different it-
erations of the online learning scheme. The results
are presented in Table 2. We see a large increase
in performance from M0 to M1, then smaller in-
creases. After two or three iterations the perfor-



Iterations µ σ Best Acceptance
M6 2.487 1.458 0.4628 0.5252
M5 2.491 1.459 0.4628 0.5231
M4 2.489 1.458 0.4628 0.5252
M3 2.493 1.455 0.4588 0.5252
M2 2.501 1.456 0.4567 0.5211
M1 2.519 1.456 0.4507 0.5151
M0 2.944 1.407 0.328 0.3642
Baseline 3.237 1.228 0.1932 0.2918

Table 2: Each iteration adds 80 annotated sentences to the
training set, from which the next vector of weights is com-
puted. The dynamic vector M0 was initialized with zero for
the replacement-related features and 1 for the source-target
feature. (Baseline) SMT system without OOV handling.

mance changes are negligible, indicating that an-
notation effort for training the system could be
roughly divided by two without affecting its end
performance.

Comparison with other systems We now com-
pare our LID model, in different decoding and
training setups, with the methods proposed in pre-
vious work and described in Section 3. Table 3
presents the results in terms of mean rank and stan-
dard deviation (note that the rank is relative to the
other systems in the comparison and is not directly
comparable to the rank of the same system in a dif-
ferent comparison), percentage of time each sys-
tem outputs a first-ranked translation and the per-
centage of time it outputs an acceptable one, using
the same conventions as in Table 1.

Let us first focus on the lines other than b-LID
in the table, corresponding to systems mentioned
in Section 3. These results are consistent across
different measures: acceptance, mean rank, or be-
ing ranked in the best cluster. In particular we
see that both the LID, trained on human annota-
tions, and LID-MERT systems, trained by MERT
from reference translations, considerably outper-
form the baseline and the Monolingual Retrieval
method, with LID being better than LID-MERT
particularly in terms of acceptability. A somewhat
disappointing result, however, is that LID is infe-
rior to both SMT-LSA and SMT on all measures.

By observing the outputs of SMT and SMT-
LSA, we noticed that, although they can theoret-
ically produce identity replacements, they never
actually do so on the test set. This is probably due
to the fact that the language model that is part of
the scoring function in both SMT and SMT-LSA
contributes to giving a very bad score to identity
replacements, unless they happen to belong to the

set of possible French forms (“exact” cognates),
and therefore these models tend to strongly favor
entailment replacements.

On the other hand, our LID model does actually
produce identity replacements quite often, some of
which are acceptable (perhaps even ranked first)
to the annotators, but a majority of which lead
to non-acceptability. This is due to the fact that,
at training time, the LID model actually learns
to score the identity replacements relatively well
(often overcoming the repulsion of the language
model feature in the underlying baseline SMT sys-
tem), due to the fact that many of them are ac-
tually preferred by the annotators, typically those
that correspond to approximate cognates of exist-
ing French words (the annotation guidelines did
not discourage them from doing so). Thus the LID
model has a tendency to sometimes favor identities
over entailments. However, it is not clever enough
to distinguish the “good” identities (namely, the
quasi-cognates) from the bad ones (namely, En-
glish words with no obvious French connotation),
given that all identity replacements are only identi-
fied by a binary feature (identity vs. non-identity)
instead of being associated with any features that
could predict their understandability in a French
sentence. Thus LID, when it selects an identity
replacement, often selects an unacceptable one.

Motivated by this uncertainty concerning the
use of identity replacements, we defined a sys-
tem b-LID which uses the same model as LID,
but the identity replacements are blocked at decod-
ing time. In this way the system is forced to pro-
duce an entailment replacement instead of an iden-
tity one, but otherwise ranks the different entail-
ment replacements in the same order as the origi-
nal LID. We can then see from Table 3 that b-LID
outperforms every other system by a large mar-
gin:7 it is excellent at distinguishing between true
entailments, and while it misses some good iden-
tity replacements, is not handicapped in this re-
spect relative to the other systems, which are also
unable to model them.

5 Conclusions

While our approach is motivated by a specific
problem (OOV terms), we believe that some of
the innovations we have introduced are of a larger

7A Wilcoxon signed rank test (Wilcoxon, 1945) shows
that b-LID is better ranked than its closest competitor SMT
with a p-value of less than 2%.



System µ σ Best Acceptance
b-LID 2.274 1.803 0.6258 0.7002
SMT 2.736 1.933 0.5172 0.5822
SMT-LSA 2.744 1.931 0.5132 0.5822
LID 3.018 1.913 0.4145 0.5252
LID-mert 3.153 1.928 0.4024 0.4849
Baseline 3.998 1.603 0.1549 0.2918
MonRet 4.107 1.584 0.1690 0.2495

Table 3: (LID) complete dynamic vector trained on the ba-
sis of human assessments; (b-LID) as LID, but blocking iden-
tity replacements; (LID-MERT) complete dynamic vector
trained on the basis of automatic assessments; (SMT, SMT-
LSA) and (MonRet or Monolingual retrieval) as described in
Section 3; (Baseline) SMT system without OOV handling.

general interest for SMT: our use of dynamic
biphrases and features for incorporating complex
additional run-time knowledge into a standard
phrase-based SMT system, our approach to in-
tegrating a MERT-trained log-linear model with
a model actively trained from a small sample
of human annotations addressing a specific phe-
nomenon, and finally the formal techniques used
in order to guarantee that the expert that is thus
learned from a focussed, biased, sample, is able
to improve performance on its domain of exper-
tise while preserving the baseline system’s perfor-
mance on the standard cases.
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