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Abstract

Source language reordering can be seen as
the preprocessing task of permuting the or-
der of the source words in such a way that
the resulting permutation allows as mono-
tone a translation process as possible. We
explore a simple but effective source re-
ordering algorithm that works as a cascade
of source string transforms, each consist-
ing of swapping the positions of a single
pair of adjacent words in order to unfold a
candidate pair of crossing alignments. The
decision to swap a pair of words is mod-
elled as a binary classification task formu-
lated as a log-linear model and trained un-
der maximum entropy (MaxEnt). We ex-
periment with features that consist of the
local neighborhood of both words as well
as lexico-syntactic representations known
as supertags. Our experiments on the
English-to-Dutch EuroParl translation task
show that the cascaded alignment unfold-
ing slightly improves the performance of
a state-of-the-art phrase translation system
that uses distance-based and lexicalized
block-oriented reordering.

1 Introduction

The word-order divergence (also called distortion)
between source-target sentence pairs is a major
research topic in statistical machine translation
(SMT). The problem of reordering in SMT has
been attacked from different angles. Standard
phrase-based translation models (Och and Ney,
2004) search for the best reordering option dur-
ing decoding within a limited distortion space de-
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fined using a local window of phrases, e.g., (Till-
man, 2004). Hierarchical approaches, based on In-
version Transduction Grammar (ITG), e.g., (Wu
and Wong, 1998; Chiang, 2005), explore yet a
wider range of reorderings defined by the choice of
swapping the order of sibling subtrees under each
node in a binary parse-tree of the source/target
sentence. Finally, source sentence reordering is a
preprocessing task that aims at finding a permuta-
tion of the words of the source sentence that con-
tains the least number of crossing alignments be-
tween source words and their target sentence coun-
terparts. This paper is concerned with the task
of source language reordering as a preprocessing
task. Figure 1 depicts the translation from source
string S to target string T with alignment a (solid
line) and the alternative of source reordering S into
S
′

followed by the translation S
′ → T with align-

ment a
′

(in dashed lines). Source reordering of S
is as successfull as much as it will yield a permu-
tation S

′
that has as monotone an alignment a

′
as

possible with T .

Figure 1: Translation schemes with and without a
reordering step.

This problem can be seen as the task of learn-
ing from a word-aligned parallel corpus a model
of source permutation from S to S

′
, where the lat-

ter has monotone alignment with T . The learning
task aims at learning a model that minimizes the
number of non-monotone alignments in the train-
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ing data and expected future data of the same sort.
However, this learning problem is hampered with
the intractable complexity of computing the most
probable permutation under a reasonable proba-
bilistic model of the permutations (see (Tromble
and Eisner, 2009) for the Linear Ordering Prob-
lem).

We look at an alternative view of source re-
ordering where we view this as a simple cascade
of string transforms. At the ith step of the cas-
cade, a single choice is made on the reordering of
words/phrases in the source string and this lead
to a permutation S

′
i . While this general frame-

work does not define a priori a constrained form
of the reordering graph (as, e.g., the ITG trees),
it has two attractive properties. Firstly, it is effi-
cient enough to allow exploring a variety of such
constraints on the order of reordering actions. For
example, if a binary tree of the source is given, it
is possible to define an ITG-constrained cascade
of transforms (but such a binary tree is usually not
available unless one commits to a certain source
language parser). And secondly, it allows the con-
ditioning of the ith step in the cascade on aspects
of previous permutation S

′
i−1. In this paper we

consider Swapping/Monotone as the main trans-
form, and in the reported experiments we limit
the swapping to individual words. The swapping
decisions are formulated as a binary classification
task trained under MaxEnt (Berger et al., 1996).
We explore a variety of lexical features of the pair
of words, including surrounding words, POS tags,
and supertags (Clark and Curran, 2003).

The present exploration is driven by the observa-
tion that the existing phrase-based models are quite
strong in local word reordering within a fixed win-
dow. In light of this observation, it becomes attrac-
tive to attempt bridging long distance reorderings
as those found in English-Dutch translation.

Figure 2 shows an example of typical difference
in word order between Dutch and English: in con-
trast to English, the Dutch verb normally appears
in the end of the relative clause.

... that he went to his house

... dat hij naar zijn huis ging

Figure 2: Example of long-distance reordering for
Dutch-to-English translation.

It seems reasonable to aim at bridging the long
distance reorderings by attempting resolving them
or simply bringing the crossing words within range
for phrase-based models. While our work aims at
the general problem of learning how to untangle all
crossing alignments, we do not a priori exclude the
more pragmatic option of narrowing the distance
between crossing alignments.

2 Related work

The idea of augmenting SMT by using a reorder-
ing step prior to translation has proved to be suc-
cessful in improving translation quality. Clause re-
structuring performed with hand-crafted reorder-
ing rules for German-to-English and Chinese-to-
English tasks are presented in (Collins et al., 2005)
and (Wang et al., 2007), respectively. In (Khalilov,
2009; Xia and McCord, 2004) the fundamental
problem of word ordering is addressed exploit-
ing syntactic representations of source and target
texts. In (Costa-jussà and Fonollosa, 2006) source
and target word order harmonization is done using
well-established SMT techniques and without the
use of syntactic knowledge.

Other reordering models operate in a non-
deterministic way providing the decoder with mul-
tiple word orders. For example, the MaxEnt re-
ordering model described in (Xiong et al., 2006)
provides a hierarchical phrasal reordering system
integrated within a CKY-style decoder. In (Galley
and Manning, 2008) the authors present an exten-
sion of the famous MSD model (Tillman, 2004)
able to handle long-distance word-block permuta-
tions. One more example of a system performing
reordering in this way can be found in (Crego and
Mariño, 2007), where syntactic structure on the
source side is exploited to reorder the input of a
word lattice in an unweighted manner, slightly ex-
panding the monotonic search space. In (Tromble
and Eisner, 2009) a O(n3) chart parsing algo-
rithm aimed to find the best reordering of possible
word permutations is described and applied for the
German-English language pair.

3 Source reordering by cascaded
transforms

For a translation system that employs source re-
ordering as preprocessing step, two training stages
are needed given a word-aligned parallel corpus of
source and target sentences {S − T}:



• Conceptually, creating a monolingual word-
aligned parallel corpus {S − a − S

′} from
{S − T} where S

′
is obtained by unfolding

the crossing brackets between S and T and
replacing every word ti in T with the word it
is aligned with sa(i) in S.1 Some heuristics
are needed to fully conduct this stage. We de-
scribe this step in subsection 3.1. The word-
aligned monotonized parallel corpus is used
for training our source reordering cascaded
system of transforms. We describe the pre-
processing system in subsection 3.2. Notice
that {S′} features are not used in the present
version of the system.

• Once the cascaded system of transforms is
available it is used to transform all training
source sentences in the original parallel cor-
pus {S−to−T} into {S′g−to−T}, where S

′
g

is the guessed permutation of S chosen by the
source reordering system. Word-alignment is
performed on the latter parallel corpus and
that corpus is used for training a phrase-based
SMT system.

In this section we describe our cascaded source re-
ordering system that employs MaxEnt classifiers.

3.1 Creating the monotonized parallel corpus
Monotonization of the parallel training corpus is
done on the basis of the ”grow-diag-final“ many-
to-many alignment. It is modified to one-to-one in
the way described in the next lines. If a source
word is aligned to two or more target words,
the most probable link given lexical probability
model (Brown et al., 1993) is chosen, while the
others are omitted. Source side words are per-
muted within the scope of a sentence such that all
the crossing links in the alignment are unfolded.
The resulting training corpus is called {S′}. It is
explicitly implied that the number and the set of
words in {S′} and in {S} coincide.

3.2 Cascaded source reordering by
classification

Initially, we formulate the problem of defining the
set of permutations and selecting the most likely
permutation given a source sentence as a condi-
tional probability that we break down into a cas-
cade of transforms where the final permutation S′

1Hereafter, we use brackets to refer to corpora and notations
without brackets to refer to sentences.

is the result of a sequence of permutations S
′
0 =

S, S
′
1, . . . , S

′
n = S

′
:

arg max
S′

P (S
′ | S) = arg max

S′

n∏

i=1

P (S
′
i | S

′
i−1) (1)

Three issues arise in this definition: (1) How to
define the transform S

′
i−1 to S

′
i for every i in this

cascade, (2) How to define the cascade order, and
(3) When to stop the cascade of transforms. For
defining each transform P (S

′
i | S

′
i−1) in the cas-

cade we narrow this down to a decision on swap-
ping only two words in S

′
i−1. The decision to swap

words is defined as a classification task using Max-
Ent which we discuss next (see Section 3.3). This
avoids calculating the probability P (S

′
i | S

′
i−1) ex-

plicitly by focusing on calculating the single deci-
sion probability (word pair probability) that leads
to S

′
i from S

′
i−1 as we will explain in more de-

tail next (subsection 3.3). For the second issue we
choose for a simple yet effective strategy by scan-
ning the current source sentence S

′
i−1 from the last

position where a word was swapped in the pre-
vious step in the cascade. In the model applica-
tion step, a pair of words belonging to “Swapped”
class swaps their order, while words marked with
“Monotone” label keep the original positions. The
algorithm stops once it reaches the end of the string
or there are no word swapping needed according to
the MaxEnt classifier.

3.3 A MaxEnt Classifier for Word Swapping
The MaxEnt classifier considers every adjacent
pair of words w1 and w2 in source sentence S and
assigns a conditional probability to conduct an op-
eration O ∈ {Swapped, Monotone}, as follows:

p(O|φ1(S), φ2(S)) (2)

where φ1({S}) and φ2({S}) are feature functions
of the context of w1 and w2, respectively.

The classification problem here is how to sepa-
rate pairs of words into “Swapped” or “Monotone”
categories, given a set of features describing word
preference to stay in the current position or swap
it with its counterpart. MaxEnt classifier operates
with conditional probabilities p(O|φ1(S), φ2(S)),
using reordering instances extracted from the train-
ing corpus.

The MaxEnt classifier was trained and applied
using open-source Maximum Entropy Modeling



Toolkit2.MaxEnt model is trained using 90 iter-
ations of the Limited-Memory Variable Metric
method.

Features Feature functions φ1(S) and φ2(S),
apart from the word instances themselves, include:

• Context-based features. Source-side context
3-grams, 2-grams, and 1-grams, describing
left- and right-hand side neighborhood of the
first and the second word. These features can
be seen as a contextual predictor describing
word preference to change its current loca-
tion.

• Morpho-syntactic features. Linguistic syntax
is believed to be helpful in MT, thoroughly
handling word order dependencies and accu-
rately modeling many systematic differences
between word orders of languages (Bonnie,
1994). Syntax is introduced into MaxEnt
reordering system using POS tags and su-
pertags which are assigned for each word ac-
cording to Lexicalized Tree-Adjoining Gram-
mar (Abeillè and Rambow, 2000) and Combi-
natory Categorial Grammar (Clark and Cur-
ran, 2003), as described in (Hassan et al.,
2007). In other words, supertags in compact
form describe the way to the highest node of
the parse tree.

On the one hand, introducing of syntax into
MaxEnt reordering system as a feature con-
tributes to consistency of reordering decisions
with grammatical representation of the natu-
ral language. On the other hand, it reduces
data sparseness by means of clustering words
according to their syntactic categories.

3.4 Ambiguous alignment
A high-precision alignment intersection matrix is
used to find word swapping examples in the train-
ing corpus. The use of intersection matrix al-
lows finding disambiguous crossings indicating
that their unfolding leads to monotonization of the
alignment matrix (see Figure 3).

However, there is a number of alignments in
which one or both words subject to swapping are
also aligned to a third word beyond the target-side
reordering limits. In some situations it shows that
proposed alignment unfolding can destroy a mono-
lithic bilingual unit.
2http://homepages.inf.ed.ac.uk/lzhang10/
maxent_toolkit.html

I    naturally  hope

Ik  hoop natuurl i jk

Figure 3: Example of a disambiguous alignment
crossing.

The extraction step involves taking a decision
on assigning swapping probability for those units.
For example, in Figure 4, swapping of “allow”
and “us” will possibly break a construction which
should be seen as a single and correct transla-
tion block (namely, “allows us/maakt het ons mo-
gelijk”)3.

Figure 4: Example of an ambiguous alignment
crossing.

We propose two alternative techniques to handle
this alignment ambiguity:

1. Exclude ambiguous crossings. The source
side words which are considered candidates
for swapping are always marked with “Mono-
tone” label.

2. Redistribution of probability mass. The
“strength” of alignment links is estimated
with lexical probabilities (Brown et al., 1993)
that shows how often a certain source-side
word is translated into a particular target-side
word. Total reordering probability mass is re-
distributed between “Swapped” and “Mono-
tone” depending on the values of lexical prob-
abilities.

For example provided in Figure 4 in case of first
strategy application, the probability of swapping or
keeping the words monotone are found as follows:

p(allows,us,”Monotone”) = 1
p(allows,us,”Swapped”) = 0

For the “redistribution of probability mass”
strategy, these probabilities are defined as follows:
3Dutch word “het” is aligned to NULL.



p(allows,us,”Monotone”) =

=
pLP (allows,maakt)

{(pLP (allows,maakt) + pLP (allows,mogelijk)}

p(allows,us,”Swapped”) =

=
pLP (allows,mogelijk)

{(pLP (allows,maakt) + pLP (allows,mogelijk)}
where pLP (word1, word2) is the lexical probabil-
ity of translating a source-side word1 by a target-
side word2.

In the following sections, we explore the impact
of this hard decision in reordering accuracy and in
translation quality.

4 Baseline translation system

Rather than translating single words, phrase-based
systems (Och and Ney, 2002) work with (in prin-
ciple) arbitrarily large phrase pairs (also called
blocks) acquired from word-aligned parallel data
under a set of constraints (Zens et al., 2002). A
bilingual phrase (which in the context of SMT
do not necessarily coincide with their linguistic
analogies) is any aligned pair of m source words
and n target words that satisfies two basic con-
straints: (1) words are consecutive along both sides
of the bilingual phrase and (2) no word on either
side of the phrase is aligned to a word outside the
phrase (Och and Ney, 2004). The probability of the
phrases is estimated by counts of their appearance
in the training corpus. The finite, fixed inventory
of phrases obtained from a parallel corpus is stored
in a “phrase-table".

The translation of a source sentence in phrase-
based system proceeds by “tiling" the source sen-
tence with source-side phrases in the phrase table.
Every tiling of the source sentence with a sequence
of source-side phrases provides a bag of aligned
target phrases, which can be reordered using a re-
ordering model and the language model statistics.
The different possible tilings of the source sen-
tence lead to a set (represented efficiently as a lat-
tice) of output hypotheses in the target-language.
The highest scoring hypothesis is selected using a
decoder that performs the optimization under strict
pruning regimes.

Two reordering methods are considered: a
distance-based distortion model (see 4.1) and lexi-
calized MSD block-oriented model (see 4.2).

4.1 Distance-based
A simple distance-based reordering model default
for Moses system is the first reordering technique
under consideration. This model provides the de-
coder with a cost linear to the distance between
words that should be reordered.

4.2 MSD
A lexicalized block-oriented data-driven MSD re-
ordering model (Tillman, 2004) considers three
different orientation types: monotone (M), swap
(S), and discontinuous (D). MSD model condi-
tions reordering probabilities on the word context
of each phrase pair and considers decoding pro-
cess a block sequence generation process with the
possibility of swapping a pair of word blocks. No-
tice that in the experiments conducted within the
framework of this study a MSD model was used
together with a distance-based reordering model.

5 Experiments and results

This section describes experiments carried out to
evaluate the proposed reordering model.

5.1 Data
The experiment results were obtained using the
English-Dutch corpus of the European Parliament
Plenary Session transcription (EuroParl). Basic
training corpus statistics can be found in Table 1.

Dutch English
Sentences 1.2 M 1.2 M

Words 32.9 M 33.0 M
Average sentence length 27.20 27.28

Vocabulary 228 K 104 K

Table 1: Basic statistics of the English-Dutch Eu-
roParl training corpus.

Development and test datasets were randomly
chosen from the corpus and consisted of 500 and
1,000 sentences, respectively. Both were provided
with 1 reference translation.

5.2 Experimental setup
SMT system used in the experiments is im-
plemented within the open-source MOSES
toolkit (Koehn et al., 2007). Standard train-
ing and weight tuning procedures which
were used to build our system are ex-
plained in details on the MOSES web page:



http://www.statmt.org/moses/. Word
alignment was estimated with GIZA++ tool4 (Och,
2003), coupled with the mkcls5 (Och, 1999) tool,
which allows for statistical word clustering for
better generalization.

N -gram target language model was estimated
using the SRI LM toolkit (Stolcke, 2002) and is
a 5-gram model with modified Kneser-Ney dis-
counting.

Evaluation conditions were case-sensitive and
included punctuation marks.

5.3 Systems
We contrast five alternative system configurations
differing in feature set and reordering example ex-
traction algorithm, along with two Moses-based
baseline systems (Table 2).

Both baseline systems implement non-
deterministic reordering algorithm providing
the decoder with multiple word order options.

5.4 Results
Source reordering analysis In the first step of
system evaluation we estimated the total number
of crossings found in the word alignment. Table 3
shows these values found in the last 10,000 lines
of the alignment intersection matrix between dif-
ferent variations of the source and the target lan-
guages6. All the numbers are calculated on the re-
aligned corpora.

The first row shows the number of alignment
crossings found in the original (unmonotonized)
corpus. There are 1.8 - 1.9 swappings per sentence
and the maximum reduction of crossings in com-
parison with the original corpus is relatively small

4code.google.com/p/giza-pp/
5http://www.fjoch.com/mkcls.html
6A smaller portion of the corpus is used for analysis in order
to reduce evaluation time.

(≈ 4 % for the {S′gMER + ST} corpus). How-
ever, moving words closer to each other can have a
positive impact on translation process, since it can
potentially bring them into the scope of the Moses
distance-based distortion system.

Source #of crossings
{S} 18,898
{S′gMER} 18,458
{S′gMER + Ext} 18,496
{S′gMER + LexProb} 18,590
{S′gMER + ST} 18,136
{S′gMER + POS + ST} 18,762

Table 3: Number of crossings in word alignment
intersection.

As the next step of analysis, we calculate BLEU
and NIST scores obtained on the basis of the
last 10,000 lines of the training corpus and using
monotonized parallel {S′g} corpus as a reference.
Table 4 reports the results of this evaluation.

Source BLEU NIST
{S′gMER} 75.40 15.33
{S′gMER + Ext} 75.41 15.33
{S′gMER + LexProb} 75.17 15.27
{S′gMER + ST} 75.38 15.31
{S′gMER + POS + ST} 76.39 15.44

Table 4: Automatic translation scores of {Sg}′ es-
timated with MaxEnt models vs. directly mono-
tonized corpus ({S}).

This evaluation can be seen as an alterna-
tive metric of reordering algorithm effectiveness.
MER+POS+ST systems outperforms the simplest
MaxEnt configuration by about 1 BLEU point.

It is worth noticing that the system config-

System Features Alignment ambiguity
Baseline 1 Moses + Distance-based
Baseline 2 Moses + Distance-based + MSD
MER Lexical -
MER+Ext Lexical Exclude ambiguous crossings
MER+LexProb Lexical Lexical probabilities
MER+ST Lexical + supertags -
MER+POS+ST Lexical + POS + supertags -

Table 2: Translation systems under consideration.



uration that provides better results in terms
both of reordering effectiveness (Table 4) and
translation performance (Table 5), namely
MER+POS+SuperTags, is the same that produces
a lesser reduction in the number of crossings
(Table 3). This observation supports the claim
that efficient alignment unfolding leads to a
higher-quality translation.

Figure 5 demonstrates an example of the sen-
tences that presumably benefitted from the mono-
tonization of the source part of the parallel cor-
pus. English infinitive “to lead” appears in the end
of the clause in the Dutch reference translation.
Moses-based system coupled with a MSD reorder-
ing model translates the verb as “om het voor-
touw te nemen” (“to take the initiative”), while
MER+POS+ST system is able to produce the cor-
rect translation, even if the particle “to” has not
been moved to the end of the clause.

Translation scores Table 5 shows the results of
translation, both starting with baseline configura-
tions, and contrasts them with the performance
shown by the MaxEnt systems. Best scores are
placed in cells filled with grey.

Neither of two algorithms intended to handle
alignment ambiguity manages to outperform the
baselines. However, according to results, “Exclude
ambiguous crossings” strategy is believed to be the
best way to resolve alignment ambiguity. Supertag
features do not lead to any gain in terms of transla-

tion scores, however when coupled with POS fea-
tures they allow outperforming the baseline system
by about 0.3 BLEU points.

6 Conclusions

In this paper we explored a cascaded approach to
source sentence reordering that works by swap-
ping adjacent pairs of words. The decision to
swap adjacent words is framed as a classification
task using the MaxEnt framework that works with
feature functions. The feature functions we em-
ployed are lexical as well as lexico-syntactic (POS
tags and supertags). Our English-Dutch best sys-
tem performs as well (or slightly better) than the
Moses baseline although our system did not suc-
ceed in monotonizing a large majority of the cross-
ing alignments. This hints at the fact that our
source reordering is simply bringing long-distance
crossing alignments into smaller neighborhoods
that can be tackled using standard phrase reorder-
ing mechanisms implemented in Moses.

In this exploratory work we employed a simple
cascaded approach that works from left to right
over the source sentence, and we limited the at-
tention to swapping pairs of words. Obviously
the cascaded framework we present can be imple-
mented in terms of phrases instead of words, and
it can incorporate ITG tree-driven inversion trans-
forms that might constrain the reordering space to
better motivated reorderings from a linguistic per-
spective. We intend to explore these ideas within

Src: it was not enough to reassure me that he would be the right person to lead the Commission during the next five years
Ref.: het heeft mij er niet van overtuigd dat hij de juiste persoon is om de komende vijf jaar de Commissie te leiden
Baseline 2: het niet genoeg is voor mij verzekeren dat hij de juiste persoon is om het voortouw te nemen in de Commissie
tijdens de komende vijf jaar
Rrd src: it was not enough to reassure me that he would be the right person to the Commission during the next five years lead
MER+POS+ST: het niet genoeg was voor mij verzekeren dat hij de juiste persoon is om de Commissie tijdens de komende
vijf jaar te leiden

Figure 5: Translation example.

System Internal reordering External reordering
Dev Test

BLEU BLEU NIST
Baseline 1 Distance-based - 23.88 24.04 6.29
Baseline 2 Distance-based + MSD - 24.07 24.04 6.28
MER Distance-based MER 23.59 24.27 6.30
MER+Ext Distance-based MER+external links 23.69 24.04 6.28
MER+LexProb Distance-based MER+LexProb 23.11 23.72 6.21
MER+ST Distance-based MER+ST 23.68 23.90 6.28
MER+POS+ST Distance-based MER+POS+SuperTags 23.89 24.34 6.31

Table 5: English-to-Dutch experimental results.



the next stages of this work and we will expand on
employing source-language syntactic structure for
this purpose.

A further extension of this approach is to em-
ploy language model features from S

′
to guide the

cascaded transforms towards better permutations
of source sentence S. We also intend to study al-
gorithms that aim at global optimization (Viterbi-
like) of the conditional probability P (S

′ | S) in-
stead of the current local classification approach
that isolated each step in the cascade.

References
Abeillè, A. and O. Rambow. 2000. Tree Adjoining

Grammars: formalisms, linguistic analysis and pro-
cessing. CSLI, Stanford, CA, USA.

Berger, A., S. Della Pietra, and V. Della Pietra. 1996. A
maximum entropy approach to natural language pro-
cessing. Computational Linguistics, 1(22):39–72.

Bonnie, B. 1994. Machine translation divergences: a
formal description and proposed solution. Computa-
tional Linguistics, 4(20):597–663.

Brown, P., V. Della Pietra, S. Della Pietra, and R. Mer-
cer. 1993. The mathematics of statistical machine
translation: parameter estimation. Computational
linguistics, 19(2):263–311.

Chiang, D. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL 2005, pages 263–270.

Clark, St. and J. R. Curran. 2003. Log-linear models
for wide-coverage CCG parsing. In Proceedings of
EMNLP 2003, pages 97–104.

Collins, M., P. Koehn, and I. Kučerová. 2005. Clause
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