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Abstract 

This paper describes successful applications of 

discriminative lexicon models to the statistical 

machine translation (SMT) systems into mor-

phologically complex languages. We extend the 

previous work on discriminatively trained lex-

icon models to include more contextual informa-

tion in making lexical selection decisions by 

building a single global log-linear model of 

translation selection. In offline experiments, we 

show that the use of the expanded contextual in-

formation, including morphological and syntac-

tic features, help better predict words in three 

target languages with complex morphology 

(Bulgarian, Czech and Korean). We also show 

that these improved lexical prediction models 

make a positive impact in the end-to-end SMT 

scenario from English to these languages. 

1 Introduction
*
 

Statistical machine translation (SMT) aims to cap-

ture the process of translating content from one 

language to another in a statistical model. This has 

several potential advantages over rule-based ap-

proaches, including the ability to quickly build sys-

tems in new languages and domains, assuming the 

existence of parallel data. The question of how to 

model this process remains, however. 

Initial models (Brown et al. 1993) treated each 

word as an independent unit in the channel model, 

leaving contextual modeling to a target language 

model. Subsequent approaches achieved substan-

tial improvements by modeling over larger units 

such as phrases (e.g. Koehn et al. 2003). Translat-

ing multiple words with a single phrase can lead to 
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better translation quality when such matches can 

be found, but have significant issues with data 

sparsity. This problem is exacerbated when trans-

lating with morphologically complex languages, as 

the number of word tokens is inflated. Furthermore, 

if we treat each word as an independent unit, we 

fail to share information between related stems. 

Also, the correct inflection of a word might be de-

termined by syntactic context rather than lexical 

context, which may extend across phrase bounda-

ries.  

Our paper investigates discriminative lexicon 

models to address these problems within the con-

text of syntax-based MT. By building discrimina-

tive, feature-rich models for selecting translations, 

we can capture the behavior of lemmas, affixes, 

and surface forms as separate parameters. There-

fore we have the ability to pick the appropriate 

stem based on lexical context and the appropriate 

affix based on morphological or syntactic context. 

In addition, these models allow for modeling con-

textual information without requiring the harsh 

partitioning commonly used in phrase-based and 

syntax-based systems. Many systems first partition 

the input into blocks, then translate each block in-

dependently. Instead, we carve the input into its 

smallest non-decomposible units, and pick a trans-

lation for each unit according to not only the 

source side, but also any additional conditioning 

information. This may be helpful in language pairs 

without complex morphology due to its increased 

robustness and generality of parameters. 

We are not the first to investigate discriminative 

lexicon models. Approaches in the past include 

treating lexical selection as a word sense disam-

biguation problem, as a re-ranking problem, or by 

breaking the translation into separate factors; we 

will review these approaches in Section 2. Our ap-

proach is novel in that we build a single global log-



linear model of translation selection that allows 

parameter sharing between different source sides, 

and integrates this directly into translation. By hav-

ing a single log-linear model, we can learn more 

general parameters about affix selection indepen-

dent of the words involved, or learn information 

about the best lemma translation of a given word 

regardless of its context. Integrating this informa-

tion directly into the decoder helps prevent poten-

tial search errors introduced by re-ranking while 

leading to a faster overall pipeline. 

For the rest of the paper, we first give a review 

of the literature in Section 2. Section 3 describes 

our approach in more detail. We describe our expe-

riments with several feature sets and language pairs, 

both with intrinsic evaluations of lexical selection 

and in end-to-end BLEU scores in Sections 4 and 5. 

2 Related Work 

Much of the work on discriminative lexicon 

models has focused on target word selection, under 

the assumption that sentence-level global 

information is useful in finding good translation 

candidates. Bangalore et al. (2007) framed the 

problem of selecting translated words from a target 

lexicon as a binary classification task, where each 

word in the target vocabulary included in or 

excluded from the translation according to its 

binary decision. In a similar vein, Mauser et al. 

(2009) integrated discriminative and trigger-based 

lexicon models into phrase-based Chinese-English 

MT system, showing an improvement of the BLEU 

score. The goal of both of these papers on lexicon 

modeling was to propose appropriate translated 

words, looking beyond word- and phrase-based 

translation pairs by including source context 

information as bag-of-words features and trigger-

based models. 

The same objective has motivated work on word 

sense disambiguation (WSD) for machine 

translation, in which different senses of a word in 

the source language are defined as its possible 

translations in the target language (Berger et al., 

1996). Again the correct sense, and therefore the 

correct translation, depends on the specific 

meaning of the word in context. Recently there has 

been quite a bit of research on integrating 

discriminatively trained WSD systems into SMT 

(Cabezas and Resnik, 2005; Carpuat and Wu, 2005; 

Vickrey et al., 2005; Chan et al., 2007). Although 

their integration efforts have shown promising 

results, none of these works have focused on the 

problem of translating from morphologically poor 

languages into morphologically rich languages. 

Since such languages generally have complicated 

rules for generating inflections, modeling a 

morphologically rich lexicon and disambiguating 

its senses is particularly challenging. 

In SMT in general, there has only been a limited 

amount of work applying morphological 

processing for translating from English to 

morphologically rich languages. Of those, Bojar 

(2007) and Avramidis and Koehn (2008) used 

morphological features in the factored representa-

tion of words implemented in the Moses system. 

However, this approach is difficult to apply when 

the syntax-based SMT framework is used, and it 

tends to focus on simple generative translation 

models that partition the input into chunks, along 

with target language models to help model fluency, 

rather than discriminative models for picking as-

pects of translation based on varying amounts of 

context. Other studies closely related to ours are 

the works on Japanese case-marker generation 

(Toutanova and Suzuki, 2007) and morphological 

inflection prediction for Russian and Arabic (Tou-

tanova et al., 2008). They built probabilistic mod-

els for morphology generation and applied them to 

rescore n-best outputs from an SMT engine, aug-

menting those outputs with additional inflectional 

variations. In contrast, we focus on direct integra-

tion of our discriminative lexicon model with a 

dependency tree-to-string translation system, in 

which syntatic features obtained from an English 

parser are naturally incorporated in the first-pass 

SMT decoder.  

3 Discriminative Lexicon Model  

This section describes our discriminative lexicon 

model for a tree-to-string translation system. The 

strength of our model over a plain tree-to-string 

translation system is that a discriminative model 

can easily incorporate rich contextual features, 

such as neighboring words and dependency rela-

tions, which are often absent in the generative 

translation models. 

3.1 Treelet Translation System 

In this work, we build a discriminative lexicon 

model over a treelet translation system, a depen-



dency tree-to-string SMT system (Quirk et al., 

2005). A treelet is defined as a connected subgraph 

of a dependency tree, which acts as a unit in the 

channel model for decoding much like phrases in 

phrasal SMT models (Koehn et al., 2003). A tree-

let translation pair is a pair of source and target 

language treelets, which are extracted from word-

aligned sentence pairs. Figure 1 shows an example 

of an aligned English-Korean sentence pair: a di-

rected arc indicates a dependency relation, which is 

derived from an English dependency parser and is 

projected onto the Korean side. For instance, from 

the phrase “to run this query” in Figure 1, we can 

extract the following two treelet pairs: (to (run)) → 

(실행하려면), and ((this) query) → ((이) 쿼리를). 

By extracting all treelet translation pairs from the 

entire training corpus, we can build a treelet table 

which will be used to form the possible translations 

at runtime. As we will describe below, we also use 

this table to generate candidates for our discrimina-

tive lexicon model.  

3.2 Log-linear Ranking Model 

Formally, we define our discriminative lexicon 

model as follows. Assume we are given a source 

sentence e, a target sentence f, and an alignment 

relation function, ALIGN(f) which defines the set 

of source words aligned to each target word f. For 

each target word f in the target sentence, our model 

predicts the word f given the set of words from e 

aligned to f, as well as surface and syntactic con-

text from the sentence e. Each target word f is pre-

dicted independently from other words in the target 

sentence.  

Our model is defined using a candidate genera-

tor function GEN, which computes a set of target 

words which are possible translations of a given set 

of POS-tagged aligned source words.  For most 

words f in the target sentence, there is exactly one 

aligned source word, but groups of two or more 

source words are also possible. The GEN function 

is computed by considering all translation options 

that appear in the MT system’s treelet table, with 

significance pruning using a log-odds significance 

test. 

For example, given the group of tagged source 

words “the/DT necessary/JJ” our English-to-

Bulgarian system learns a GEN function value 

{необходимия, необходимата, необходимият,  

необходимото}, which are the forms of the adjec-

tive necessary in Bulgarian that differ in gender 

and definiteness. 

Our discriminative lexicon model estimates the 

conditional probability of a target word f given 

ALIGN(f), and additional context from e. It is de-

fined as follows:  

                 

 
                      

                                 
 

where   is a feature mapping and   is a corres-

ponding real-valued weight vector. We do not cur-

rently model null-aligned target words. 

The features we used in this work are listed in 

Table 1. There are three types of features: (i) basic 

local context features that use the orthographic 

form and POS tags of source-aligned words and 

their neighboring contexts; (ii) dependency tree-

based features, including dependency relations, 

modifier positions, and tree paths; (iii) morpholog-

ical features of source and target words. The fea-

tures are binary and compute predicates from the 

source context and candidate target translations.  In 

the table below, if the feature descriptions do not 

mention a condition on the target word, they impli-

citly include the identity of the target word. If pre-

dicates on the target are explicitly mentioned, they 

are separated from the predicates on the source by 

&. Conjunctions of predicates for the source or 

target are denoted with a + symbol. 

For the morphology-based features, we used 

manually curated lexicons of the source and target 

languages. The lexicons contain information about 

the lemma and the set of language-specific gram-

matical features of words. In case of ambiguity, we 

used an arbitrary analysis, namely the first analysis 

appearing in our lexicon. For the words that are not 

in the lexicon, we used the suffix of a word as a 

grammatical feature by considering the last three 

characters as the suffix, and the word itself as its 

 

Figure 1: Aligned English-Korean sentence pair 

to run this query , enter values for its parameters .

이 쿼리를 실행하려면 매개 변수 값을 .입력하십시오
[this] [query] [to run] [parameter] [value] [enter]



lemma. The function GramFeat(w) in Table 1 de-

notes a conjunction of all values of grammatical 

features as well as the POS tag. For Bulgarian, we 

created the lexicon from the Multext-East (Version 

3) data (Erjavec, 2004), which contains about 41K 

distinct surface word forms and 23K lemmas. Our 

Czech lexicon was created using the training and 

development section of the CzEng corpus data 

(Bojar and Žabokrtský, 2009), resulting in about 

800K distinct word forms and 431K lemmas. For 

English, we used the lexicon of the dependency 

parser, which includes about 150K unique word 

forms and 72K lemmas.
 1
  

The main difficulty in learning our log-linear 

ranking models is scalability. Training with a large 

amount of parallel data is the norm in modern 

SMT systems; therefore, our model needs to ac-

commodate a large set of training examples and 

features. To do this, we used an online learning 

approach, namely stochastic gradient descent 

(SGD) with L1-regularization. In this learning pro-

cedure, each example is evaluated sequentially for 

parameter updates so that the learning algorithm 

requires a minimal memory footprint. In addition, 

using an L1-regularizer in the log-linear model has 

the desirable property of reducing the number of 

parameters (Gao et al., 2007). We adopt an effi-

cient gradient calculation method for L1-

regularized log-linear model proposed in (Langford 

et al., 2009; Tsuruoka et al., 2009). Two hyper-

parameters, learning rate and regularization prior, 

are determined using a development set in our ex-

periments. 

The training time depends on the number of fea-

tures of the model. On the biggest Korean dataset, 

using a single CPU, training took about 12 hours 

per iteration for the local feature set, and about 24 

hours per iteration for the local+deptree+morph 

feature set. About 2 to 4 iterations were sufficient 

for good performance. The independent models 

can be straightforwardly parallelized on thousands 

of CPUs and can thus be much faster. We are cur-

rently working on parallelizing the single-global 

model; batch optimization may be effective.  

4 Experiments: Word Translation Task 

4.1 Data and Settings 

                                                 
1
 Due to the large training data size, we have not yet com-

pleted the Korean experiment that uses morphological features.  

Local context features (Local) 
Conjunction of all AlignedWords with POS tags  

AlignedWord, AlignPOSTag  

PreviousWord+POS, Word-2+POS, NextWord, Next-

Word+POS,Word+2+POS 

PreviousWord+POS+AlignedWord 

NextWord+POS+AlignedWord 

Word-2+POS+AlignedWord 

Word+2+POS+AlignedWord 

POS -2 through +2 +AlignedWord 

Bag of words: AlignedWord and Words -1 and +1 without 

indication of position with respect to AlignedWord 

Dependency tree-based features (Deptree) 
Computed with respect to AlignedWord:  

Leftmost-child-Word+POS 

Leftmost-child-Word+POS+AlignedWord 

Parent-Word+POS+PreOrPostPosition 

Parent-Word+POS+PreOrPostPosition+AlignedWord 

Grandparent-Word+POS 

Grandparent-Word+POS+AlignedWord 

POS tags of parent,grandparent, left-child, 

aligned+AlignedWord 

POS tags of parent,grandparent, left-child, 

aligned+AlignedWord+ParentWord 

Morphology-based features (Morph) 

GramFeat(AlignedWord)+GramFeat(Word-1) 

+GramFeat(Word+1)+GramFeat(Parent)+GramFeat(Grand

parent) & TargetWord 

GramFeat(AlignedWord)+GramFeat(Word-1) 

+GramFeat(Word+1)+GramFeat(Parent)+GramFeat(Grand

parent)+AlignedWord & TargetWord 

GramFeat(AlignedWord)+GramFeat(Word-1) 

+GramFeat(Word+1)+GramFeat(Parent)+GramFeat(Grand

parent) & GramFeat(Target) 

GramFeat(AlignedWord)+GramFeat(Word-1) 

+GramFeat(Word+1)+GramFeat(Parent)+GramFeat(Grand

parent)+AlignedWord & GramFeat(Target) 

Lemma(AlignedWord) & Lemma(Target) 

Lemma(Word-1) & Lemma(Target) 

Lemma(Word+1) & Lemma(Target) 

Table 1:Features for discriminative lexicon model 

 Train Dev Test Random/ 

Oracle Acc@1 

Bulgarian 345K 

(4.4M) 

2K 

(51K) 

3K 

(72K) 

5.8 / 96.2 

Czech 138K 

(2.5M) 

2K 

(39K) 

3K 

(60K) 

7.8 / 90.5 

Korean 2.8M 

(24M) 

2K 

(15K) 

3K 

(25K) 

6.0 / 95.7 

Table 2: Parallel data for discriminative lexicon train-

ing statistics: # sentence pairs (extracted example size 

in parentheses) 



In order to test our hypothesis that the discrimina-

tive method can take advantage of contextual fea-

tures, we first evaluated our model on a word 

translation task, which is a simpler task than the 

end-to-end MT task. In this setting, our goal is to 

predict the target word for each target word posi-

tion, given the aligned source word(s) and its con-

text, compared with the reference word selection.  

Table 2 shows the data we used for testing our 

models in three target languages. This data is a 

subset of the data used for MT system training, 

which is described in detail in Section 5 in Table 7. 

We used 2K sentences for development and 3K 

sentences for testing for each language.  In the ta-

ble we report the number of sentence pairs in each 

set, as well as the number of examples available 

for the model, as there is a training/test example 

for each target word. The size of the GEN set for 

each source word group defines the accuracy at 

random of our model. Because we do some prun-

ing in the definition of the GEN function, which is 

in addition to pruning performed by the MT system, 

we have an upper bound (oracle) accuracy of less 

than 100%. The random and oracle accuracies are 

also included in the table. 

4.2 Results 

Tables 3 through 5 summarize the result of apply-

ing our model to this task. In addition to the ran-

dom baseline, we compare the results of our mod-

els with another baseline: a model in which the 

only feature type is the identity of the aligned 

source group of words with their POS tags. As 

evaluation metrics, we used the accuracy at the top 

k outputs (Acc@k for k=1,3), and the mean reci-

procal rank of the correct target candidate (MRR).  

The tables show the performance of the base-

line model (labeled source), the model that addi-

tionally uses the local context features (+local), 

dependency tree features (+deptree) and morpho-

logical features (+morph). The feature additions 

are cumulative in this order; the number of features 

for each model (also cumulative) is also found in 

the tables. The number of features roughly doubles 

from the local to local+deptree and local+deptree 

to local+deptree+morph feature sets. Depending on 

the size of the training set, a model using the full 

feature set has between 30 and 100 million features. 

According to all of these performance metrics, our 

model performs substantially better than the two 

baselines. In addition, we see that the features 

based on the syntactic analysis of the source and 

the morphological features bring significant addi-

tional gains, as compared to a model using only 

local word and POS tag context. 
 

Model Acc@1 Acc@3 MRR 

source 56.76 77.91      67.74 

+local 66.47 83.92 75.38 

  +deptree 66.70 83.91 75.54 

    +morph 67.03 84.17 75.77 

Table 3: Results on word translation task for 

English-Bulgarian 

 
Model Acc@1 Acc@3 MRR 

source     43.74 63.08 54.03 

+local 47.91 66.46 57.69 

  +deptree 48.36 66.79 58.02 

    +morph 48.69 67.21 58.38 

Table 4: Results on word translation task for 

English-Czech 

 
Model Acc@1 Acc@3 MRR 

source 59.16 77.98 69.25 

+local 70.05 85.03 77.76 

  +deptree 71.05 85.75 78.55 

Table 5: Results on word translation task for 

English-Korean 

 

4.3 Single Log-linear Model versus Indepen-

dent Models 

In previous work on word sense disambiguation 

for MT, the disambiguation problem is solved in-

dependently for each distinct source word group 

(or phrase).  In contrast, our model makes use of 

features which are shared among source word 

groups. This makes it possible to learn generalized 

knowledge: for example, if there is a definite ar-

ticle in the local neighborhood of the source word, 

the target word is more likely to be inflected for 

definiteness. Such information is learned from all 

training examples and not only the ones limited to 

a particular source word group. Other kinds of 

shared features are the ones that predict the target 

word from a bag-of-words representation of the 

context around the source word, without any indi-

cation of the particular aligned source word, which 

is expected to add some robustness to alignment 

errors; and features which share information across 

source groups sharing one or more words in com-

mon. 



To test the impact of having a single global 

model versus having separate models for each 

source group, we performed an experiment testing 

the two model set-ups using the same set of feature 

templates. We can train separate models for each 

source word group either by estimating and doing 

inference with thousands of models trained sepa-

rately, or by still training a single log-linear model 

but appending the identity of the source word 

group to each feature template. We used the latter 

implementation. 

Table 6 lists the 1-best accuracy and MRR of 

models using different templates on a smaller Eng-

lish-Bulgarian training/test split with 30K training 

sentences and 3K test sentences. Lines labeled with 

–g denote runs of the global model. Lines labeled 

with –i denote runs of a model with independently 

trained features. As seen from the table, the gains 

due to training a single global model are significant 

and consistent across feature sets.  

5 Integrating the Discriminative Lexicon 

Model with SMT 

5.1 Baseline System 

We integrated the discriminative lexicon models 

explained so far in the framework of tree-to-string 

SMT system (Quirk et al., 2005) to measure their 

contribution in an end-to-end SMT scenario. In the 

treelet translation model, decoding is a process of 

syntax-directed translation. First the input sentence 

is broken into tokens, each token is assigned a part-

of-speech tag, and finally the sentence is parsed to 

produce a single dependency tree (or a forest of 

dependency trees; though in this work we use only 

the one-best parse). Next, we find all treelet trans-

lation pairs from the treelet table where the source 

side of the treelet matches some contiguous sub-

graph of the dependency parse. These treelet trans-

lation pairs are combined with order templates to 

produce sentence-specific tree transduction rules. 

Finally the decoder searches for the best translation 

of the input according to these transduction rules 

using a CKY-style decoder. Let us explore the 

baseline method in a bit more detail. 

From the word-aligned training corpus, we ex-

tract two distinct types of translation information. 

The first type of unit is the treelet translation pair. 

Here, a treelet is a connected subgraph of the de-

pendency tree. Therefore, a treelet translation pair 

is a source and target treelet pair that is consistent 

with the word alignment. All such pairs are ga-

thered from each training sentence pair, aggregated, 

and counted to form a set of possible translation 

units. 

Lexical translations are provided by these pairs, 

as is the relative ordering of the target words with-

in the pair. However, the ordering of target words 

from different treelets is not well specified. To or-

der separate treelets, we rely on a set of order tem-

plates, which are single level tree transduction 

rules relying on part of speech tags. In English to 

Korean translation, for instance, a common order 

template specifies that a verb with a right subtree 

headed by a noun should be reordered to place the 

noun first: ( /V (x1:N))   ((x1)  ). 

At translation time, then, we first look up all 

treelet translation pairs that match the input.  Next 

we construct a sentence-specific transduction rule 

from every treelet. Starting with a single treelet, we 

visit every source word to find an order template 

that determines the target ordering of all its child-

ren.  Note that this template must be consistent 

with the input tree and with the ordering of the tar-

get words in the treelet.  Unifying the treelet trans-

lation pair with the set of order templates produces 

a transduction rule that specifies both the lexical 

translations and the relative ordering of all children. 

As an example, consider the input sentence 

“Run this query.” This can be parsed as the tree 

(run/Verb ((this/Det) query/Noun))), parentheses 

are used to denote tree structure.  Say we also have 

the following treelet translation pairs: 

run   실행하시오 

query   쿼리를 

this   이 

Also we have the following order templates, which 

specify post-modifying nouns become premodifi-

ers, and premodifying determiners remain premo-

difiers: 

(  /Verb (x1: /Noun))   ((x1)   ) 

((x1: /Det)   /Noun)   ((x1)   ) 

Model Acc@1 MRR 

Source      56.2 67.10 

local-g 

local-i 

     65.66 

     65.08 

74.21 

73.63 

+deptree-g      65.87 74.43 

+deptree-i      65.11 73.67 

+morph-g  

+morph-i     

     66.11 

     65.34 

74.69 

74.00 

Table 6: Results on global vs. independent log-

linear models on English-Bulgarian 



These treelet translation pairs and order templates 

can be combined to form the following transduc-

tion rules: 

(run/Verb (x1: /Noun))   ((x1) 실행하시오) 

((x1: /Det) query/Noun)   ((x1) 쿼리를) 

(this)   (이) 

Given rules of this form, finding the best transla-

tion is a matter of searching for the best derivation 

according to a sentence specific grammar. In the 

absence of a language model or other models that 

score based on context, we may simply use a stan-

dard parsing algorithm such as CKY to find the 

best derivation. In the presence of context sensitive 

features, we resort to the approximate search tech-

nique of cube pruning (Chiang, 2007).  

The baseline treelet system scores candidates 

with a weighted linear combination of features, 

with weights trained by Minimum Error Rate 

Training (Och, 2003), hereafter referred to as 

MERT. The baseline set of feature functions are: 

log probabilities of the source treelet given the tar-

get treelet and vice versa (maximum likelihood 

estimates); forward and backward lexical weight-

ing; a target language log probability from a Knes-

er-Ney smoothed language model; word and 

phrase count feature functions, and order template 

log probabilities (maximum likelihood estimates). 

For all features except the language model, we 

may pre-compute the weighted score of each mod-

el. Then, during decoding, we only need to update 

the score of the language model as larger hypothe-

sis are composed together. This allows for more 

efficient search: we pay the computational cost of 

computing a context-independent feature value 

only once, regardless of how often that rule is ap-

plied during translation. Here, context-independent 

implies that a feature’s value does not change re-

gardless of its greater target context. The source is 

fixed at this point during search, therefore we may 

safely compute source-dependent functions prior to 

decoding.  

5.2 Integration of Discriminative Lexicon 

Model 

Two new features based on the discriminative lex-

icon model were added to the baseline system: (i) 

for all target words that were in the GEN set for 

their aligned source words, the log-probability of 

the target word according to the model, and (ii) for 

all target words that were not seen with their 

aligned source words, an indicator of this event. 

Since both feature values can be computed inde-

pendently of the target context, we compute the 

feature values once for each transduction rule in-

stead of during the search, saving computation 

cycles. These features participate in the search and 

optimization as would any other feature: as stated 

above, we use MERT over a development set to 

find the feature weights that optimize the BLEU 

score of this development set. 

5.3 Data 

Our full datasets for the three languages are de-

scribed in Table 7. They consist of training sets 

(train), dev sets for tuning the weights of the MT 

component models (MERT dev), and final test sets 

for evaluating the translation performance (test). 

As mentioned earlier, the training data for the dis-

criminative lexicon models is a subset of the MT 

training data: it includes almost all MT training 

data, excluding 5K sentences for development and 

testing. 

For Bulgarian, we used a 300K sentence subset 

of the JRC-Aquis corpus (Steinberger et al., 2006) 

for training. The MERT development set and the 

test sets are from a variety of sources from more 

general domains and are thus out-of-domain with 

respect to the training set.  The MT system for 

Bulgarian used a maximum treelet size of 4. 

For Czech we used data from the EACL 2009 

fourth workshop on SMT. Our test set is news-

dev2009b, our MERT dev set is 500 sentences 

from news-dev2009a, and our training set is the 

union of the news-commentary09 corpus and the 

news portion of the CzEng corpus data (Bojar and 

Žabokrtský, 2009) from sections 0 to 7, with dupli-

cates removed. The MT system used a maximum 

treelet size of 7. 

For Korean we used data from a technical do-

main of software manuals. We used 2.8 million 

sentence pairs for training, 500 sentences as a de-

 Train MERT Dev Test 

Bulgarian 350K 

(28.8) 

500     

(23.9) 

1000  

(18.4) 

Czech 143K 

(23.4) 

500     

(24.6) 

1026  

(21.3) 

Korean 2.8M 

(15.4) 

500     

(19.0) 

1000 

(15.2) 

Table 7: Data for MT experiments: number of 

sentence pairs (average number of English 

words per sentence) 



velopment set for MERT, and 1K sentences for a 

test set. The MT system used a maximum treelet 

size of 4. 

5.4 Results and Discussion 

BLEU score results for the baseline model (Base-

line) and the model including the discriminative 

lexicon model (+DL) are shown in Table 8. We 

used case-insensitive four-gram BLEU. The table 

shows that the use of discriminative lexicon mod-

els improve the end-to-end MT results in all lan-

guages we experimented.  

Although the BLEU gains on each test set are 

not gigantic, we find it very encouraging that the 

system can achieve considerable gains on a broad 

range of datasets for the languages with rich and 

diverse morphology. Furthermore BLEU may not 

be sensitive to some of the gains.  Say the baseline 

translation system selects a lemma different than 

that of the reference translation with an incorrect 

surface form.  If the system with the discriminative 

lexicon model succeeds in picking the correct sur-

face form but does not change the stem, the BLEU 

score will not improve. Given that we see BLEU 

improvements even in the presence of such issues, 

we think the model is very likely to be helpful. 

In terms of intrinsic accuracy, we find that 

across all language pairs the set of surface features 

is the single most important feature set to include. 

After some reflection we were not overly surprised 

by this result: as in n-gram language modeling, the 

neighboring words provide powerful and robust 

contextual indicators, especially because they are 

not subject to the error rate of any parser or mor-

phological analyzer. That said, we found that in-

cluding additional features about syntactic and 

morphological information produced consistent 

and notable gains in intrinsic accuracy; it would be 

interesting to note the impact of parser accuracy 

here. Including features from multiple parses or 

from the collapsed forest might lead to improve-

ments by softening the impact of error rate. 

One of the original motivations for the research 

in this paper was to improve the generation of 

complex morphology via better translation selec-

tion. An automatic assessment of the impact to the 

morphology generation is difficult – as mentioned 

above, the BLEU metric may not capture im-

provements in this regard. One possible automatic 

evaluation, however, is to measure the BLEU im-

provements in fully inflected forms as compared 

with the gains in the selection of word lemmas on-

ly. In other words, if the discriminative lexicon 

model helps select the correct word stems (as in 

WSD) rather than the correct inflection of the 

stems, the BLEU gain is expected to be larger 

when we lemmatize both the reference and the sys-

tem output. We therefore computed the BLEU 

scores in the lemmatized versions of the reference 

and system output, where lemmatization was pro-

vided by the lexicons described in Section 3.2.  

The results are shown in Table 9. They show 

different patterns for the three languages: the 

BLEU improvement is larger for the lemmatized 

version in Czech, while it is smaller in Bulgarian. 

In Korean, they are about the same. This suggests 

that in Bulgarian, much of the gains in the transla-

tions are due to picking the correct morphological 

ending, which we find very encouraging. A manual 

inspection of the English-Bulgarian results sug-

gested that about half of the improvements were in 

grammar and half were in word sense disambigua-

tion. One class of morphological ending errors that 

were reduced by the model was the errors in defi-

niteness of nouns and adjectives: definiteness is 

marked by a suffix in Bulgarian and can be well-

predicted by surface and syntactic context in the 

source sentence. For example, if a source noun is 

preceded the “the”, this makes it more likely that 

the Bulgarian corresponding word will have a de-

finite suffix. 

For Czech, on the other hand, the lemmatized 

gains are much greater. This may be due to the fact 

that Czech morphology is quite complex: it has 

many more surface word forms per lemma, due to 

both a larger case system and a larger number of 

morphological features. Therefore it may be diffi-

cult to get all of these features correct at once, 

which is required to improve the fully inflected 

BLEU number. In the future, it may be interesting 

to inspect specific attributes of the morphology, to 

see if our model is more effective in predicting 

individual morphological features such as case, 

number and gender.  

Finally in Korean, our results indicate that the 

improvements include both in the selection of 

 MERT Dev Test 

 Baseline +DL Baseline +DL 

Bulgarian 21.78 22.44 19.00 19.63 

Czech 11.87 12.45 11.90 12.38 

Korean 61.23 62.04 59.04 59.52 

Table 8: Results (BLEU) on MT task 



lemmas as well as in predicting the correct inflec-

tion. Since our current model for Korean does not 

use morphological features, it is also interesting to 

see the difference when such features are used in 

the model in the future.   

6 Conclusion and Future Work 

We have presented a discriminative lexicon model 

that improves over the prior state of the art in two 

substantial ways. First, we focus on models of 

morphologically rich languages, using feature rich 

methods to capture contextual and syntactic de-

pendencies in translation. Especially in languages 

where the syntactic or thematic roles of words are 

indicated with morphological endings (such as 

Czech and Korean), we find the addition of fea-

tures from the source language dependency tree 

helpful. Although this result is perhaps to be ex-

pected, we were gratified to find that this relatively 

simple linear model could effectively capture some 

of these generalizations and improve the accuracy 

of translation selection. 

Second, we found that using a single global 

model, as opposed to a host of independently 

trained per-word classifiers, leads to additional 

improvements in translation quality. Therefore the 

model appears to learn some generalizations that 

are portable across input words. This result is par-

ticularly encouraging as we hope to scale these 

models to cover very broad domains – the portabil-

ity of classifiers will be very useful. 

Along these lines, our treelet table and GEN 

function are currently limited to the forms of data 

seen at training time. For common words this is no 

particular limitation: given even a moderately sized 

corpus, we are likely to see all the morphological 

forms in heavy use. As we find words toward the 

tail of the distribution, though, we are quite likely 

to encounter words for which only a very few 

forms were seen in training data. Of course this 

issue is only exacerbated as the richness of the 

morphology increases. Thus we are investigating 

methods of expanding both the treelet table and the 

GEN function to cover forms not seen in the paral-

lel data, perhaps confirming these forms using mo-

nolingual data. We believe that more substantial 

gains will be achieved once this expansion is in-

corporated into the mainline system. 

We have also not fully exploited the power of 

our feature-rich approach. Using features that de-

pend solely on the source side has computational 

advantages, but it is likely that target-side features 

will garner further improvements. Especially rele-

vant to morphologically rich languages is that phe-

nomena such as head-modifier agreement are most 

easily modeled in terms of target contextual infor-

mation. We plan to include some of these features 

in future work. 

Using an online L1-regularized training method 

has its advantages. Learning sparse vectors is very 

helpful for training, as it reduces the size and com-

putational requirements of the runtime system. It is 

also easy to use for single processor systems. 

However, for greater scalability, we would prefer 

to use methods that scale to take advantage of 

more processors, either within the same machine 

with low-latency access to memory, or in a cluster 

scenario where communicating parameter updates 

between threads is potentially very expensive. We 

have performed some initial investigation in this 

area, and hope to achieve significant gains in train-

ing speed. 
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