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Abstract

In this work we give a detailed comparison of
the impact of the integration of discriminative
and trigger-based lexicon models in state-of-
the-art hierarchical and conventional phrase-
based statistical machine translation systems.
As both types of extended lexicon models can
grow very large, we apply certain restrictions
to discard some of the less useful information.
We show how these restrictions facilitate the
training of the extended lexicon models. We
finally evaluate systems that incorporate both
types of models with different restrictions on
a large-scale translation task for the Arabic-
English language pair. Our results suggest
that extended lexicon models can be substan-
tially reduced in size while still giving clear
improvements in translation performance.

1 Introduction

Taking long-range dependencies into account is
still one of the main problems in today’s statisti-
cal machine translation (SMT). State-of-the-art sys-
tems comprise components like a phrase translation
model and n-gram language models that act effec-
tively within a local context and give reliable re-
sults as long as only information from a limited win-
dow is required. But reordering in translation be-
tween different languages, recursive embedding of
subphrases, as it is common in natural language, and
distant lexical interconnections are hard to model
and difficult to handle in a computationally efficient
way. 1

1(Knight, 1999) proofs that the decoding problem with un-
restricted reorderings is NP-complete.

The hierarchical phrase-based approach to SMT
promises to be able to capture translations whose
scope is larger than a few consecutive words (Chi-
ang, 2005; Chiang, 2007). By allowing gaps within
bilingual phrases that are indicated by correspond-
ing place-holders (i.e. co-indexed non-terminals),
the phrase table of a hierarchical phrase-based trans-
lation (HPBT) system can be considered to be the
production set of a synchronous context-free gram-
mar. This formal grammar usually does not com-
ply with a linguistically motivated grammar, but as
the search procedure is realized as a probabilistic
parser, the hierarchical phrase-based paradigm con-
nects somewhat closer to more linguistics-related
work in natural language processing than conven-
tional phrase-based translation (PBT). Several ef-
forts have been made recently to engineer syntac-
tically more informed SMT systems. Appropriate
models can be introduced into the log-linear frame-
work of modern SMT systems (Och and Ney, 2002)
without having to impose any hard contraints on the
translation process. Bringing different lines of re-
search together in a natural way by augmenting hi-
erarchical translation with syntactic knowledge has
primarily been done with the intent to be able to pro-
duce better structured outputs with the resulting sys-
tems.

On the other hand, conventional phrase-based
translation with left-to-right target generation has
proven very successful and robust by relying on
statistics learned purely on surface forms from huge
corpora. Such systems still outperform hierarchical
setups in many evaluations. (Galley and Manning,
2010) even show that conventional systems can be



extended in a way that they are able to make use
of phrases with gaps similar to the rule set of hi-
erarchical systems. In their experiments, a conven-
tional system with gappy phrases and lexicalized re-
ordering produces a significantly better output for
Chinese-English than a hierarchical one without any
syntactic enhancements.

(Auli et al., 2009) challenge the common assump-
tion that there are structural differences in the types
of outputs the two translation approaches can pro-
duce. Analyzing the search spaces of conventional
phrase-based and hierarchical systems, they find a
high overlap. They argue that the main difference is
in the parameterization, not in the expressiveness of
the translation models.

Recent research has demonstrated how two types
of extended lexicon models called triplet lexicon
model (we will abbreviate this simply as triplets in
many cases) and discriminative word lexicon (DWL)
can improve the translation results of conventional
phrase-based systems in n-best reranking as well
as directly in beam-search decoding (Mauser et al.,
2009). Both of them account for global source
sentence context to predict context-specific target
words. Their main advantage is that they promote
a better lexical selection than the baseline models
alone are able to achieve.

With the availability of DWL and triplet model
scoring implementations in a state-of-the-art hierar-
chical phrase-based translation system (Vilar et al.,
2010), we are now in a position to compare conven-
tional and hierarchical phrase-based setups — either
of them enriched with extended lexicon models —
against each other.

On the large-scale NIST Arabic-English transla-
tion task, we show that though a gap between the
BLEU scores of the baseline systems can be ob-
served, the two paradigms perform exactly the same
if triplet and DWL models are added to the se-
tups. Hierarchical and standard phrase-based statis-
tical machine translation currently seem to operate at
a comparable level, with advantages in some points
for each of them. A good parameterization is a cru-
cial aspect by all means.

Regrettably it is barely feasible to make use of the
full bilingual data that is available for language pairs
of wide interest like Arabic-English for the training
of triplet and discriminative word lexicon models.

The high computational demands compel to work
on corpora of a smaller size. Moreover, the trained
models are usually large, therefore yielding a notice-
able increase of memory requirements and runtime
during decoding. We investigate methods to tackle
these problems and examine in which ways extended
lexicon models can be restricted while still retaining
the most useful information they provide.

2 Overview

In Section 3, we give a short overview of the previ-
ously published work this paper builds on. We intro-
duce triplet lexicon and discriminative word lexicon
models in Section 4 and describe the modifications
we apply to reduce their computational demands in
training, and their final size.

The experimental evaluation is presented in Sec-
tion 5. We first give a characterization of the ex-
perimental setup and the main details of our sys-
tems. We then report on the different extended lex-
icon models we trained and proceed with a compar-
ison of the translation results using these models in
standard phrase-based and hierarchical translation.

3 Previous Work

(Hasan et al., 2008) proposed triplet lexicon models
for statistical machine translation for the first time.
Triplet lexicon models are related to the well-known
IBM-1 model (Brown et al., 1993) but extend it with
a second trigger. (Hasan et al., 2008) also intro-
duced the restrictions that are applied to triplets in
this work, they did however apply the models only
in an n-best list reranking framework. They evalu-
ated their methods on a small Chinese-English and
on a Spanish-English/English-Spanish task.

(Hasan and Ney, 2009) investigated triplet lexicon
scoring in a conventional phrase-based decoder and
compared translation performance of the so-called
path-constrained (or path-aligned) triplet models ap-
plied in reranking to an integrated application in
search on a large-scale Chinese-English task. They
did not evaluate different variants of the model.

The DWL model in a variant that is trained us-
ing seen features as well as unseen features was pre-
sented by (Mauser et al., 2009). We will compare
our new variant of DWL models to the model as de-
scribed by them. (Mauser et al., 2009) also com-



pared the effect of a triplet and a DWL model in
phrase-based decoding on a Chinese-English task
and on the Arabic-English task that we likewise
work on. They did not evaluate different variants of
the two extended lexicon models, nor did they apply
them in a hierarchical phrase-based system.

Implementations of triplet and DWL scoring
functionality in a hierarchical decoder were pub-
lished by (Vilar et al., 2010) recently.

4 Extended Lexicon Models with and
without Restrictions

4.1 Triplet Lexicon

The triplet lexicon relies on triplets which are com-
posed of two source language words triggering one
target language word, i.e. it models probabilities
p(e|f, f ′). The probability of a whole target sen-
tence eI1 given the source sentence fJ1 is thus calcu-
lated as

p(eI1|fJ1 ) =
I∏
i=1

p(ei|fJ1 )

=
I∏
i=1

2
J(J + 1)

J∑
j=0

J∑
j′=j+1

p(ei|fj , fj′). (1)

The so-called path-constrained (or path-aligned)
triplet model variant restricts the first trigger f to
the aligned target word e. The second trigger f ′

is allowed to range over all remaining words of the
source sentence. When {aij} denotes the alignment
matrix of the sentence pair eI1 and fJ1 , the probability
of a whole target sentence results in

p(eI1|fJ1 , {aij}) =
I∏
i=1

p(ei|fJ1 , {aij})

=
I∏
i=1

1
Zi

∑
j∈{ai}

J∑
j′=1

p(ei|fj , fj′). (2)

The double summation is normalized with the fac-
tor Zi = J · |{ai}|. j ∈ {ai} expresses that fj is
aligned to the current target word ei.

To further reduce the size of a triplet model, count
cutoffs can be applied. This means that triplets that
occur less than a fixed number of times in the corpus
are not considered in the training of the model.

Like the IBM-1 model, triplets are trained itera-
tively with the Expectation-Maximization (EM) al-
gorithm (Dempster et al., 1977).

4.2 Discriminative Word Lexicon
The discriminative word lexicon (DWL) model es-
timates the probability that the target sentence con-
sists of a set of target words e given a set of words
f in the source sentence. The set of target words e
can be coded in a binary vector E = (..., Ee, ...).
The indicator variable Ee is set to one if the word
e is contained in the target sentence, otherwise it is
set to zero. In the same way the counts Ff of the
source words can be represented as a count vector
F = (..., Ff , ...). Interdependencies between the
words on the target side as well as on the source side
are ignored. Thus the probability for the whole sen-
tence is made up of the individual and independent
probabilities over the target vocabulary VE

p(E|F) =
∏
e∈VE

p(Ee|F). (3)

The probability for a single target word is mod-
eled as a log-linear model

p(Ee|F) =
eg(Ee,F)∑

Ẽe∈{0,1}
eg(Ẽe,F)

(4)

with the function

g(Ee,F) = Eeλe +
∑
f

EeFfλef (5)

where λef represent the lexical weights and λe are
the prior weights.

Due to the independence of the probabilities
p(Ee|F) for each target word, it is easy to parallelize
the training procedure. The models are trained with
the improved RProp+ (Igel and Hüsken, 2003) in
contrast to (Mauser et al., 2009) where the L-BFGS
method is used. For each target word 100 iterations
of the training algorithm are carried out. Regulariza-
tion is done using Gaussian priors.

4.2.1 Feature Selection with Binary Training
Criterion

One straightforward way to reduce the size of a
DWL model is to apply threshold pruning to the fea-
tures associated with each target word. However,



this does not cut down the computational resources
needed for training as the lexical weights have to be
obtained first.

To reduce the training time we train only seen
pairs (e, f) and set the parameters λef for the unseen
pairs to zero. This approach is called sparse DWL
model in contrast to the full DWL model where we
train parameters λef for both the seen and unseen
pairs. Let S be the set of seen pairs, then the func-
tion from Equation (5) changes to

g(Ee,F) = Eeλe +
∑

f :(e,f)∈S

EeFfλef . (6)

Though training only seen pairs as in the sparse
variant of the model already greatly reduces the ef-
fort, supplementary techniques for an early restric-
tion of the number of features would be beneficial.

We therefore present an approach for feature se-
lection through estimation of the gain in conditional
log-likelihood

∆Gef̂ =
∑
n

log
pf̂ (Ee|F)

p0(Ee|F)
(7)

by adding a new feature (e, f̂) to a basic log-linear
model p0(Ee|F). Our approach has been motivated
by the work on feature induction for random fields
by (Della Pietra et al., 1997). In contrast to that work
a binary training criterion has been used to match
the criterion for the DWL model. We use the gain as
ranking criterion. For every target word e we get a
ranked list of features and select the n best of them
for the training of the sparse DWL model.

Let us assume for now that we have a basic log-
linear model p0(Ee|F). Adding a new feature (e, f̂)
will result in an additional term in nominator and
denominator of the new probability

pf̂ (Ee|F) =
eEeFf̂λef̂ p0(Ee|F)∑

Ẽe∈{0,1}
eẼeFf̂λef̂ p0(Ẽe|F)

. (8)

By means of the approximation log(1 + x) ≈ x
for small x and the restriction to binary features Ff
the information gain can be approximated. When
the base model p0(Ee|F) contains only one feature
it is possible to calculate its parameter analytically.
In our case the basic log-linear model p0(Ee|F) has

only one parameter for the prior λe and can be cal-
culated by using the logarithm of the relative fre-
quencies. Then we maximize the approximated gain
with respect to the parameter λef̂ to infer an approx-
imated, but closed-form solution for its value. As
result in this special case the information gain

∆Gef̂ ≥ Nef̂

(
log

Nef̂

Nf̂

1
Ne
N

− 1
)

(9)

+ N log(1 +
Ne

N
).

can be calculated simply by using the counts Nef̂ ,
Ne and Nf computed from the corpus.

It should be mentioned that this criterion can be
applied only to seen pairs. In the case of unseen
pairs the logarithm is undefined.

5 Experiments

5.1 Experimental Setup
We used a training corpus of 2.5M Arabic-English
sentence pairs to set up the hierarchical as well
as the conventional phrase-based systems. Word
alignments in both directions were produced with
GIZA++ and symmetrized according to the refined
method that was proposed by (Och and Ney, 2003).

Arabic English

Sentences 2 514 413

Running words 54 324 372 55 348 390

Vocabulary 264 528 207 780

Singletons 115 171 91 390

Table 1: Data statistics for the preprocessed Arabic-
English parallel training corpus. Numbers have been re-
placed by a special category symbol.

The scaling factors of the log-linear model combi-
nation have been optimized on the MT06 NIST test
corpus. MT08 was employed as held-out test data.
Detailed statistics about the parallel data are given in
Table 1, the characteristics of the development and
the test corpus are reported in Table 2.

All of the configurations use the same 4-gram
language model with modified Kneser-Ney smooth-
ing. It was created with the SRILM toolkit (Stol-
cke, 2002) and was trained on a large collection of



dev (MT06) test (MT08)

Sentences 1 797 1 360

Running words 49 677 45 095

Vocabulary 9 274 9 387

OOV [%] 0.46 0.35

Table 2: Data statistics for the preprocessed Arabic part
of the dev and test corpora. Numbers have been replaced
by a special category symbol.

monolingual data including the target side of the par-
allel corpus and the LDC Gigaword v4 corpus. We
measured a perplexity of 96.9 on the four reference
translations of MT06.

5.1.1 Hierarchical Systems
The hierarchical translation system we utilize has

been developed at RWTH and has recently been re-
leased as open source software (Vilar et al., 2010). It
implements the hierarchical phrase-based paradigm
that has been introduced by (Chiang, 2005).

We performed shallow search as defined in (Igle-
sias et al., 2009), i.e. we did not allow substitu-
tions of non-terminals by strings containing non-
terminals again, and ran the cube pruning algorithm
(Huang and Chiang, 2007) with 500-best generation.
Furthermore, we configured observation histogram
pruning at a value of 50.

Apart from the hierarchical phrase translation
model, the language model and the extended lex-
icon models, the log-linear model combination of
our systems comprises source-to-target and target-
to-source phrase translation probabilities, IBM-1
source-to-target and target-to-source lexical transla-
tion probabilities, two features that account for some
control about the application of hierarchical rules
as opposed to initial rules, length penalties on word
and phrase level and four binary features, essentially
simple count features.

5.1.2 Phrase-Based Systems
Our standard phrase-based machine translation

system operates in the way described by (Zens and
Ney, 2008). Phrase translation and word lexicon
models in both directions, phrase and word penal-
ties, a binary model that indicates a source phrase

length of 1, a distortion model and the language
model are incorporated in the log-linear model com-
bination. We use phrase level IBM reordering con-
straints (Zens et al., 2004).

5.1.3 Extended Lexicon Models

We trained triplet models and sparse DWL mod-
els on a manually selected high-quality subset of
the parallel data of 717 133 sentences. A full DWL
model was trained on an even smaller part of just
277 234 sentence pairs.

Triplet models. We prepared several triplet mod-
els of the variant denoted as path-constrained in Sec-
tion 4.1 as well as of the variant denoted as uncon-
trained. The number of EM iterations has been 6 in
all cases.

Four different path-constrained triplet models are
considered, one without any count cutoff and three
with cutoffs of 2, 3, and 4, respectively. Like for the
word alignments used for the phrase extraction, we
used symmetrized GIZA++ alignments in the train-
ing of the path-constrained triplet models.

We do not report on translation results for an un-
constrained triplet model without count cutoff be-
cause the computational costs for the application of
a large model like that in search would have been
very high. Instead we trained unconstrained triplet
models with cutoffs of 7 and 10, the former still be-
ing the triplet model with the maximum number of
triplets.

Details on the sizes of the models and on the com-
putional requirements for their training are shown in
Table 3.

DWL models. We prepared a sparse DWL model
without any feature selection and two sparse DWL
models using the feature selection as presented in
Section 4.2.1. The maximal number of features per
target word has been set to 1 000 and 100, respec-
tively. For comparison we also trained a full DWL
model of the type as present in (Mauser et al., 2009).
This model is denoted simply as DWL in the tables
throughout this paper. Because training runtimes
are considerably higher than for the sparse models,
we used a smaller training corpus, as already men-
tioned above. After training, the full DWL model
was pruned with a threshold of 0.1.



no. of triplets training time [h:min] training mem. [GB]

Triplets (cutoff 7) 140 401 010 34:48 7.1

Triplets (cutoff 10) 98 792 441 32:53 4.8

path-constrained Triplets 128 640 058 3:11 11.0

path-constrained Triplets (cutoff 2) 44 953 477 2:27 3.8

path-constrained Triplets (cutoff 3) 27 109 368 2:29 2.2

path-constrained Triplets (cutoff 4) 20 222 988 2:27 1.6

Table 3: Sizes and computational demands in training for the triplet models.

avg. no. of features avg. training time [s]

per target word per target word

DWL (full, pruned after training with threshold 0.1) 80 (unpruned: 122 592) 225

sparse DWL 510 64

sparse DWL (max. 1 000 features) 190 36

sparse DWL (max. 100 features) 61 32

Table 4: Average number of features per target word and average training time per target word for the DWL models.
Note that the model denoted as DWL has been pruned after training with a threshold of 0.1. The number of features per
target word which have to be considered during the training of this model is equal to the size of the source vocabulary
of the training corpus, i.e. 122 592 in this case. The measured differences in runtime should be considered as rough
approximations to the actual differences in computational demands as training has been carried out in a distributed
environment where some hardware specifications and the load on the machines vary. They still give a clue about the
required effort.

Details on the average number of features of each
model and on the computional requirements for their
training are given in Table 4.

5.2 Translation Results

The translation results of all our systems on the un-
seen test set and also on the development set are
listed in Table 5.

We observe that the HPBT baseline system is 0.6
BLEU points worse on the test set than the PBT
baseline.

The best result using a DWL model is in fact
achieved with the model denoted as DWL which has
been trained involving unseen features and pruned
after training with a threshold of 0.1. The sparse
DWL model and the sparse DWL model with selec-
tion of maximal 1 000 features give improvements
close to that. The sparse DWL model with a max-

imum of 100 features is barely helpful to the PBT
system but still gives some boost to the HPBT sys-
tem. The HPBT system altogether profits a bit more
of the additional models, but the relative differences
between systems with different DWL models are
rather consistent across the two SMT paradigms.

Looking at triplet models, we can observe that un-
constrained triplets perform better in the HPBT sys-
tem while path-constrained triplets are more helpful
in conventional PBT setups. Count cutoffs of 3 or
more do not make sense for path-constrained triplets
at the amount of data we employed.

The best performing systems overall integrate
triplet and DWL models at once. PBT and HPBT
are exactly on par with a best result of 46.0% BLEU
on MT08 each. If the models are combined, the
path-contrained triplet variant seems to interact bet-
ter with the DWL model.



dev (MT06) test (MT08)

HPBT PBT HPBT PBT

BLEU TER BLEU TER BLEU TER BLEU TER

Baseline 43.2 50.8 44.1 49.4 44.1 50.1 44.7 49.1

DWL 45.3 48.7 45.1 48.4 45.6 48.4 45.6 48.4

sparse DWL 44.9 49.3 44.8 48.8 45.4 48.8 45.3 48.7

sparse DWL (max. 1 000 features) 44.4 49.9 44.8 49.0 45.3 49.1 45.2 48.8

sparse DWL (max. 100 features) 44.5 49.4 44.6 49.0 45.1 49.1 44.8 49.0

Triplets (cutoff 7) 44.5 49.2 44.8 48.8 45.6 48.6 45.2 48.6

Triplets (cutoff 10) 44.4 49.1 44.6 49.2 45.3 48.8 44.9 49.0

path-constrained Triplets 44.3 49.4 44.7 49.1 44.9 49.3 45.3 48.7

path-constrained Triplets (cutoff 2) 44.2 49.6 44.8 48.9 44.8 49.3 45.4 48.8

path-constrained Triplets (cutoff 3) 43.4 50.0 44.5 49.3 44.1 49.8 45.0 49.1

path-constrained Triplets (cutoff 4) 43.5 50.6 44.5 49.5 43.8 50.2 44.9 49.3

DWL + Triplets (cutoff 10) 45.0 48.9 45.1 48.5 45.3 48.6 45.5 48.5

DWL + path-constrained Triplets 45.2 48.8 45.1 48.6 46.0 48.5 45.8 48.3

DWL + path-constrained Triplets (cutoff 2) 45.1 48.9 45.4 48.4 45.5 48.5 46.0 48.3

Table 5: Results for the NIST Arabic-English translation task. BLEU and TER results are in percentage.

6 Conclusions

We showed that the two types of extended lexicon
models — the triplet lexicon as well as the discrim-
inative word lexicon — yield nice improvements in
both a conventional phrase-based statistical machine
translation system and in a hierarchical phrase-based
system. A gap between the BLEU scores of the
baseline systems is diminished when well-trained
extended lexicon models account for an appropriate
parameterization.

In addition, we demonstrated that variations of the
triplet lexicon and DWL models require much less
computational effort but still significantly enhance
translation performance.
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