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Abstract
With the steadily increasing demand for high-
quality translation, the localisation industry is 
constantly searching for technologies that 
would increase translator throughput, in par-
ticular focusing on the use of high-quality Sta-
tistical Machine Translation (SMT) supple-
menting the established Translation Memory 
(TM) technology. In this paper, we present a 
novel modular approach that utilises state-of-
the-art sub-tree alignment and SMT techniques 
to turn the fuzzy matches from a TM into near-
perfect translations. Rather than relegate SMT 
to a last-resort status where it is only used 
should the TM system fail to produce the de-
sired output, for us SMT is an integral part of 
the translation process that we rely on to obtain 
high-quality results. We show that the pre-
sented system consistently produces better-
quality output than the TM and performs on 
par or better than the standalone SMT system.

1. Introduction

As the world becomes increasingly interconnected, 
ideas, products and services need to be communi-
cated to the widest audience possible. This requires 
localisation for as many languages cultures and 
locales as possible, with translation being one of 
the main parts of the localisation process. Because 
of this, the amount of data that needs professional 
high-quality translation is continuing to increase 
well beyond the capacity of the world’s human 
translators.

Current efforts in the localisation industry are 
mostly directed at the reduction of the amount of 

data that needs to be translated manually from 
scratch. Such efforts mainly include the use of 
Translation Memory (TM) systems, where earlier 
translations are stored in a database and offered as 
suggestions when new data needs to be translated. 
As TM systems were originally limited to provid-
ing translations only for (almost) exact matches of 
the new data, the integration of Machine Transla-
tion (MT) techniques is often seen as the only fea-
sible development that has the potential to signifi-
cantly reduce the amount of manual translation.

Currently, the most widely used method to en-
hance TMs is to employ Example-Based Machine 
Translation (EBMT) techniques to suggest transla-
tions for new data by combining parts of sentences 
from the TM database, rather than simply looking 
for (almost) exact matches.1 With recent advances 
in the performance and quality of Statistical Ma-
chine Translation (SMT) systems, many commer-
cial TM systems offer the user the option to obtain 
SMT-generated translations for new data. Such 
translations, however, are usually only obtained for 
cases where the TM system could not produce a 
good-enough translation (cf. Heyn, 1996). Given 
that the SMT system used is presented with the 
“hard”  translation cases (strings not seen in the 
TM) and is usually trained only on the data avail-
able in the TM, it tends to have only few examples 
from which to construct the translation, thus often 
producing fairly low quality output. Because of 
this, and since translators are used to TMs as an 
integral part of their working environment but less 
so to MT, SMT output is still often scorned upon 
by professional translators.

Another major problem with the TM-SMT ap-
proach is the fact that, unlike the Fuzzy-Match 

1 See e.g. the Déjà Vu TM system (http://www.atril.com/overview), as well as Chapter 3 in (Carl and Way, 2003). For an in-
depth comparative review of TM systems and EBMT, see (Somers and Fernández Díaz, 2004).
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Scores (FMS) provided by TM systems, currently 
there is no reliable way to automatically ascertain 
the quality of SMT-generated translations, so that 
the user could at a glance make a judgement as to 
the amount of effort that might be needed to post-
edit the suggested translation (Simard and Isabelle, 
2009). Not having such automatic quality metrics 
also has the side effect of it being impossible for a 
Translation-Services Provider (TSP) company to 
reliably determine in advance the increase in trans-
lator productivity due to the use of MT and to ad-
just their resources-allocation and cost models cor-
respondingly.

We present a new system implementing a differ-
ent type of TM/MT integration. The system incor-
porates TM, SMT and automatic Sub-Tree Align-
ment (STA) backends. When a new sentence needs 
to be translated, first a Fuzzy-Match Score (FMS) 
is obtained from the TM backend, together with the 
suggested matching sentence and its translation. 
For sentences that receive a reasonably high FMS, 
the STA backend is used to find the correspon-
dences between the input sentence and the TM-
suggested translation, as well as the parts of the 
input sentence that still need to be translated, i.e. 
the parts of the input sentence that do not directly 
correspond to part of the TM-suggested translation. 
Using this information, the SMT backend is em-
ployed to obtain the final translation of the input 
sentence, which should be of higher quality than 
the translation originally suggested by the TM.

In Section 2, we present the technical details of 
the design of our system, together with motivation 
for the particular design choices we took. Section 3 
details the experimental setup we build and the 
data set we used for the evaluation results in Sec-
tion 4. In Section 5, we discuss some related re-
search employing similar TM/MT integration tech-
niques. We present improvements that we plan to 
investigate in further work in Section 6, and pro-
vide concluding remarks in Section 7.

2. Integration Framework

We present a system that uses an SMT backend to 
translate the mismatched parts of a TM-suggested 
translation, generating higher-quality output.

2.1. Translation Memory Backend
Although the intention is to use a full-scale TM 
system as the translation memory backend, to have 
complete control over the process for this initial 
research we decided to build a simple prototype 
TM backend ourselves.

We employ a database setup using the Post-
greSQL v.8.4.32  relational database management 
(RDBM) system. The segment pairs from a given 
TM are stored in this database and assigned unique 
IDs for further reference. When a new sentence is 
supplied for translation, the database is searched 
for (near) matches, using an FMS based on 
character-based Levenshtein edit distance (Leven-
shtein, 1965). To speedup the computation, we use 
a recursive wrapper around the PostgreSQL-
internal implementation of the levenstein() 
function, taken from the TinyTM project.3

In this way, for each input sentence, from the 
database we obtain the matching segment with the 
highest FMS, its translation and the score itself.

2.2. Sub-Tree Alignment Backend
The system presented in this paper uses sub-tree 
alignment (Zhechev, 2010) to discover parts of the 
input sentence that correspond to parts of the sug-
gested translation extracted from the TM database. 
This is done in a three-step process. First, the plain 
TM match and its translation are aligned, which 
produces a sub-tree aligned phrase-based tree pair 
with pseudo non-terminal nodes with the label ‘X’. 
We call this step bilingual alignment.

In the second step, called monolingual align-
ment, the phrase-based tree-annotated version of 
the TM match is aligned to the plain-text input sen-
tence. The reuse of the structure for the TM match 
allows us to use it in the third step as an intermedi-
ary to establish the available sub-tree alignments 
between the input sentence and the translation sug-
gested from the TM.

During this final alignment, we identify matched 
and mismatched portions of the input sentence and 
their possible translations in the TM suggestion 
and, thus, this step is called matching. Addition-
ally, the sub-tree alignments implicitly provide us 
with reordering information, telling us where the 

2 http://www.postgresql.org
3 http://tinytm.sourceforge.net/en/technology/fuzzymatch.html

http://www.postgresql.org
http://www.postgresql.org
http://tinytm.sourceforge.net/en/technology/fuzzymatch.html
http://tinytm.sourceforge.net/en/technology/fuzzymatch.html


portions of the input sentence that we translate 
should be positioned in the final translation.

The alignment process is exemplified in Figure 1. 
The tree marked ‘I’ corresponds to the input sen-
tence, the one marked ‘M’ to the TM match and the 
one marked ‘T’ to the TM translation. Due to space 
constraints, we only display the node ID numbers 
of the non-terminal nodes in the phrase-structure 
trees—in reality all nodes carry the label ‘X’. 
These IDs are used to identify the sub-sentential 
alignment links. The lexical items corresponding to 
the leaves of the trees are presented in the table 
below the graph.
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Figure 1. Example of sub-tree alignment between an 
input sentence, TM match and TM translation

The alignment process can be visually repre-
sented as starting at a linked node in the I tree and 
following the link to the M tree. Then, if available, 
we follow the link to the T tree and this leads us to 
the T-tree node corresponding to the I-tree node 
we started from. In Figure 1, this results in the I–T 
alignments I1–T18, I2–T2, I3–T1, I4–T32 and I6–
T34. The first three links are matches, because the 
lexical items covered by the I nodes correspond 
exactly to the lexical items covered by their M 
node counterparts. Such alignments provide us 
with direct TM translations for our input. The last 

two links in the group are mismatched, because 
there is no lexical correspondence between the I 
and M nodes (node I4 corresponds to the phrase 
sender email, while the linked node M10 corre-
sponds to sender ’s email). Such alignments can 
only be used to infer reordering information. In 
particular in this case, we can infer that the target 
word order for the input sentence is address email 
sender, which produces the translation adresse 
électronique de l’ expéditeur.

We decided to use sub-tree-based alignment, 
rather than plain word alignment (e.g. GIZA++ – 
Och and Ney, 2003), due to a number of factors. 
First, sub-tree-based alignment provides much bet-
ter handling of long-distance reorderings, while 
word– and phrase-based alignment models always 
have a fixed limit on reordering distance that tends 
to be relatively low to allow efficient computation.

The alignments produced by a sub-tree align-
ment model are also precision-oriented, rather than 
recall-oriented (cf. Tinsley, 2010). This is impor-
tant in our case, where we want to only extract 
those parts of the translation suggested by the TM 
for which we are most certain that they are good 
translations.

Out of the three currently available open-source 
sub-tree alignment systems, two can only operate 
when at least one language-side of the data that 
needs to be aligned is pre-parsed (Ambati et al., 
2009, Tiedemann, 2010) and one of them needs a 
hand-crafted parallel treebank as training data 
(Tiedemann, 2010).

As these requirements necessitate the acquisition 
of human-annotated data besides the data available 
in the TM, we decided to use the system described 
in (Zhechev, 2010) instead. It can produce aligned 
phrase-based-tree pairs from unannotated (i.e. un-
parsed) data. It can also function fully automati-
cally without the need for any training data.

The only resource necessary for the operation of 
this system is a probabilistic bilingual dictionary 
covering the data that needs to be aligned. For the 
bilingual alignment step, such a bilingual diction-
ary is produced as a byproduct of the training of 
the SMT backend and therefore available. For the 
monolingual alignment step, the required probabil-
istic dictionary is generated by simply listing each 
unique token seen in the source-language data in the 
TM as translating only as itself with probability 1.



2.3. Statistical Machine Translation Backend

Once the matching step is completed, we have 
identified the parts of the input sentence for which 
translations will be extracted from the TM sugges-
tions, as well as the parts that need to be translated 
from scratch. The lengths of the non-translated 
segments vary depending on the FMS, but are in 
general relatively short (one to three tokens). In the 
system presented in this paper, we explore two ap-
proaches to handling the translation of these out-
standing fragments.

The first approach is extremely straightforward, 
in that the non-translated segments of the input 
sentence are sent severally to the SMT backend for 
translation without any context information. The 
segments translated using TM data and the ones 
translated using the SMT backend are then simply 
concatenated in the target-language word order, as 
determined implicitly by the sub-tree alignment 
information. The most serious drawback of this 
approach is that translating the individual segments 
out of context might often lead to improper lexical 
choice by the SMT backend, which could have 
been properly resolved given the context of the 
whole input sentence. Also, for certain cases (par-
ticularly with low FMS) the target-language word 
order may not be discernible for all input-sentence 
segments and the translations of the segments with 
undetermined placement are simply appended to 
the end of the generated translation. Still, the sim-
plicity of this approach makes it a good baseline 
benchmark against which to evaluate improvements. 
This approach is referred to as comb below.

The second approach to handling non-translated 
input-sentence segments relies on a specific feature 
of the SMT backend we use, namely the Moses 
system (Koehn et al., 2007). We decided to use this 
particular system as it is the most widely adopted 
open-source SMT system, both for academic and 
commercial purposes. In this approach, we anno-
tate the segments of the input sentence for which 
translations have been found from the TM sugges-
tion using XML tags with the translation corre-
sponding to each segment given as an attribute to 
the encapsulating XML tag.4 The SMT backend is 
supplied with a string consisting of the concatena-
tion of the XML-enclosed translated segments and 

the plain non-translated segments in the target-
language word order, as established by the align-
ment process. The SMT backend is instructed to 
translate the string as a whole, while keeping the 
translations supplied via the XML annotation. This 
mode of operation provides the SMT backend with 
the necessary context information to come up with 
proper lexical choice for the non-translated frag-
ments and allows it to introduce reordering on its 
own, based on the SMT reordering models derived 
during training. We refer to this approach as xml.

2.4. Auxilliary Tools

It must be noted that in our approach the SMT 
backend sees the data it needs to translate in the 
target-language word order (e.g. it is asked to 
translate an English sentence that has French word 
order). This, however, does not correspond to the 
data found in the TM, which we use for deriving 
the SMT models. Because of this discrepancy, we 
developed a pre-processing tool that goes over the 
TM data performing bilingual alignment and out-
putting reordered versions of the sentences it proc-
esses by using the information implicitly encoded 
in the sub-tree alignments. In this way, we obtain 
the necessary reordered data to train a translation 
model where the source language already has the 
target-language word order. For translation in our 
system, we use both this model and the proper-
word-order model.

One specific aspect of real-world TM data that 
we need to deal with is that they often contain 
meta-tag annotations of various sorts. Namely, an-
notation tags specific to the file format used for 
storing the TM data, XML tags annotating parts of 
the text as appearing in Graphical User Interface 
(GUI) elements, formatting tags specific to the file 
format the TM data was originally taken from, e.g. 
RTF, OpenDoc, etc. Letting any MT system try to 
deal with these tags in a probabilistic manner can 
easily result in ill-formed, mistranslated and/or 
out-of-order meta-tags in the translation.

This motivates the implementation of a rudimen-
tary handling of meta-tags in the system presented 
in this paper, in particular handling the XML tags 
found in the TM data we work with, as described 
in Section 3. The tool we built for this purpose 

4 A similar strategy has been adopted by Smith and Clark (2009) for the integration of EBMT-derived translations in SMT.



simply builds a map of all unique XML tags per 
language and replaces them in the data with short 
placeholders that are designed in such a way that 
they would not interfere with the rest of the TM 
data.5 A special case that the tool has to take care 
of is when an XML tag contains an attribute whose 
value needs to be translated. In such situations, we 
decided to not perform any processing, but rather 
leave the XML tag as is, so that all text may be 
translated as needed. The proper treatment of meta-
tags is beyond the scope of the current paper and 
will be investigated separately.

We also had to build a dedicated tokeniser/de-
tokeniser pair to handle real world TM data con-
taining meta-tags, e-mail addresses, file paths, etc., 
as described in Section 3. Both tools are imple-
mented as a cascade of regular expression substitu-
tions in Perl. However, due to the nature of the 
data, the detokeniser is not always able to fully de-
tokenise the data, especially in cases that include 
quotation marks, and we expect this to have a 
slight impact on the evaluation results.

Finally, we use a tool to extract the textual data 
from the TM. That is, we strip all tags specific to 
the format in which the TM is stored, as they can 
in general be recreated and thus do not need to be 
present during translation. In our particular case, 
the TM is stored in the XML-based TMX format.6

2.5. Complete Workflow
Besides the components described above, we also 
performed two further transformations on the data. 
First, we lowercase the TM data before using it to 
train the SMT backend models. This also means 
that the alignment steps from Section 2.2 are per-
formed on lowercased data, as the bilingual dic-
tionary used there is obtained during the SMT 
training process.7

Additionally, the SMT and sub-tree alignment 
systems that we use cannot handle certain charac-
ters, which we need to mask in the data. For the 
SMT backend, this includes ‘|’, ‘<’ and ‘>’ and for 
the sub-tree aligner—‘(’ and ‘)’. The reason these 
characters cannot be handled is that the SMT sys-

tem uses ‘|’ internally to separate data fields in the 
trained models and ‘<’ and ‘>’ cannot be handled 
whilst using XML tags to annotate pre-translated 
portions of the input. The sub-tree aligner uses ‘(’ 
and ‘)’ to represent the phrase-based tree structures 
it generates and the presence of these characters in 
the data may create ambiguity when parsing the tree
structures. All these characters are masked by sub-
stituting in high-Unicode counterparts, namely ‘│’, 
‘﹤’, ‘﹥’, ‘﹙’ and ‘﹚’. Visually, there is a very 
slight distinction and this is intentionally so to 
simplify debugging. However, the fact that the 
character codes are different alleviates the prob-
lems discussed above. Of course, in the final out-
put, the masking is reversed and the translation 
contains the regular versions of the characters.

The complete pre-processing workflow is pre-
sented in Figure 2, where the rectangles with verti-
cal bars represent the use of open-source tools, 
while the plain rectangles represent tools devel-
oped by the authors of this paper. First, the textual 
data is extracted from the original TM format, pro-
ducing one plain-text file for each language side. 
These data can either be pre-loaded in a Post-
greSQL database at this time, or during the first run 
of the translation system.

Next, the meta-tag-handling tool is used to gen-
erate the substitution tables for the source and tar-
get languages, as well as new files for each lan-
guage with the tags substituted by the correspond-
ing identifiers (cf. Section 2.4). These files are then 
tokenised, lowercased and all conflicting characters 
are masked, as described in Section 2.4.

The pre-processed files are then used to produce 
a file containing pairs of sentences in the input 
format of the sub-tree aligner, as well as to gener-
ate the probabilistic dictionary required for the 
monolingual alignment and to train the SMT 
model on the data in the proper word order. The 
SMT training produces the necessary bilingual dic-
tionary for use by the sub-tree aligner, which is run 
to obtain a parallel-treebank version of the TM 
data. The parallel treebank is then used to retrieve 
bilingual alignments for TM data, rather than gen-

5 In the current implementation, the XML tags are replaced with the string <tag_id>, where <tag_id> is a unique numeric 
identifier for the XML tag that is being replaced.
6 http://www.lisa.org/fileadmin/standards/tmx1.4/tmx.htm
7 Currently, we do not use a recaser tool and the translations produced are always in lowercase. This component, however, will be 
added in a future version of the system.
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erate them on the fly during translation. This is an 
important design decision, as the complexity of the 
alignment algorithm is (very) high for plain-text 
alignment (cf. Zhechev, 2010).

Once we have generated the bilingual parallel tree-
bank, we run the reordering tool, which generates a 
new plain-text file for the source language, where the 
sentences are modified to conform to the target-
language word order, as implied by the data in the 
parallel treebank. This is then matched with the 
proper-order target-language file to train the SMT 
backend for the actual use in the translation process.

Once all the necessary files have been generated 
and all pre-processing steps have been taken, the 
system is ready for use for translation. The transla-
tion workflow is shown in Figure 3, ‘I’, ‘M’ and 
‘T’ having the same meanings as in Figure 1. The 
two translation approaches from Section 2.3 are 
represented by their labels comb  and xml, while tm 
and direct denote the unmodified outputs of the 
TM and SMT backends respectively.

During translation, the first step after an input 
sentence has been read in is to find the TM match 
with the highest FMS. This is done using the origi-
nal plain non-pre-processed data to simulate real-

life operation with a proper TM backend. After the 
best TM match and its translation are extracted 
from the TM, they—together with the input sen-
tence—are pre-processed by tokenisation, lower-
casing, meta-tag and special-character substitution.

Next, the corresponding tree pair is extracted 
from the bilingual parallel treebank to establish the 
tree structure for the TM source-language match. 
This tree structure is then used to perform the 
monolingual alignment, which allows us to per-
form the matching step next. After the matching  is 
complete, we generate two possible translations as 
described in Section 2.3. Finally, the translations 
are de-tokenised and the XML tags and special 
characters are unmasked.

3. Experimental Setup

We use real-life TM data provided by Symantec 
Ireland, an industrial partner of CNGL. The TM 
was generated during the translation of RTF-
formatted customer support documentation. The 
data is in TMX format and originally contains 
108 967 English–French translation segments, out 
of which 14 segments either have an empty lan-
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guage side or have an extreme discrepancy in the 
number of tokens for each language side and were 
therefore discarded.

A particular real-life trait of the data is the pres-
ence of a large number of XML tags. Running the 
tag-mapping tool described in Section 2.5, we gath-
ered 2 049 distinct tags for the English side of the 
data and 2 653 for the French side. Still, there were 
certain XML tags that included a label argument 
whose value was translated from one language to 
the other. These XML tags were left intact so that 
our system could handle the translation correctly.

The TM data also contain a large number of file 
paths, e-mail addresses, URLs and others, which 
makes bespoke tokenisation of the data necessary. 
Our tokenisation tool ensures that none of these 
elements are tokenised, keeps RTF formatting se-
quences non-tokenised and properly handles non-
masked XML tags, minimising their fragmentation.

Due to the nature of TM data, translation seg-
ments rarely occur more than once in the data set. 
This explains the high number of unique tokens 
(measured after pre-processing) that we observe 
for the two languages—41  379 for English and 
49 971 for French—out of 108 953 segment pairs. 
The average sentence length is 13.2 for English 
and 15.0 for French.

For evaluation, we use a data set of 4977 Eng-
lish–French segments that were obtained from a 
different set of documents than the ones, for whose 
translation the TM presented above was used. The 
sentences in the test set ​— ​ with average length 9.2 
tokens for English and 10.9 for French ​— ​ are sig-
nificantly shorter compared to the TM.

It must be noted that we used SMT models with 
maximum phrase length of 3 tokens, rather than 
the standard 5 tokens, and for decoding we used a 
3-gram language model. This results in much 
smaller models than the ones usually used in main-
stream SMT applications. (The standard for some 
tools goes as far as 7-token phase-length limit and 
7-gram language models.)

4. Evaluation Results

For the evaluation of our system, we used a number 
of widely accepted automatic metrics, namely BLEU 
(Papineni et al., 2002), METEOR (Banerjee and 
Lavie, 2005), TER (Snover et al., 2006) and inverse 
F-Score based on token-level precision and recall.

We setup our system to only fully process input 
sentences for which a TM match with an FMS over 
50% was found, although all sentences were trans-
lated directly using the SMT backend for control 
purposes (marked as direct). The TM-suggested trans-
lations were also output for all input sentences (tm).

The results of the evaluation are given in Figure 4, 
where the tm and direct scores are also given for 
the FMS range [0%; 50%)∪{100%}. Across all 
metrics we see a uniform drop in the quality of 
TM-suggested translations, which is what we ex-
pected, given that these translations contain one or 
more incorrect words. We believe that the rela-
tively high scores recorded for the TM-suggested 
translations at the high end of the FMS scale are a 
result of the otherwise perfect word order and lexi-
cal choice. For n-gram-match-based metrics like 
the ones we used, such a result is expected and 
predictable. Although the inverse F-score results 
show the potential of our setup to translate the out-
standing tokens in a 90%–100% TM match, it ap-
pears that the SMT system produces word order 
that does not correspond to the reference transla-
tion and because of this receives lower scores on 
the other metrics.

The inverse F-score results also confirm our pre-
diction that the comb translation approach is prone 
to lexical-choice errors due to the lack of context 
during translation. These errors seem to be the ma-
jor factor leading to significantly worse perform-
ance compared to the xml approach.

The unexpected drop in scores for perfect TM 
matches is due to discrepancies between the refer-
ence translations in our test set and the translations 
stored in the TM. We believe that this issue affects 
all FMS ranges, albeit to a lower extent for non-
perfect matches. Unfortunately, the exact impact 
cannot be ascertained without human evaluation.

We observe a significant drop-off in translation 
quality for the direct output below FMS 50%. This 
suggests that sentences with such low FMS should 
be translated either by a human translator from 
scratch, or by an SMT system trained on different/
more data.

The xml setup of our system clearly outperforms 
the direct SMT translation for FMS between 80% 
and 100% and has comparable performance be-
tween FMS 70% and 80%. Below FMS 70%, the 
SMT backend has the best performance. Although 
these results are positive, we still need to investigate



why our system has poor performance at lower 
FMS ranges. Theoretically, it should outperform 
the SMT backend across all ranges, as its output is 
generated by supplying the SMT backend with 
good pre-translated fragments. The Inverse F-
Score graph suggests that this is due to worse lexi-
cal choice, but only manual evaluation can provide 
us with clues for solving the issue.

The discrepancy between the results in the In-
verse F-Score graph and the other metrics suggests 
that the biggest problem for our system is produc-
ing output in the expected word-order.

5. Related Research

In this section, we look at earlier proposals for the 
use of MT (or MT techniques) to modify TM out-
put to produce better translations.

Kranias and Samiotou (2004) present research 
similar to the comb approach discussed in our pa-
per. Using automatically established alignments 
between the input sentence and the TM match, as 
well as between the TM match and the TM transla-
tion, they identify the transformations that need to 
be performed on the TM translation to obtain a 

translation of the source sentence. The operations 
are Insertion (during which an input-sentence seg-
ment is translated using MT and inserted in the 
translation), Deletion (during which words are de-
leted from the translation) and Replacement (dur-
ing which an input-sentence segment is translated 
using MT and the result replaces a segment in the 
translation). The described algorithm, however, 
relies on the word-alignment information used to 
find the correspondences between the TM match 
and its translation being present as part of the TM. 
The handling of reordering is rudimentary and re-
lies on the quality of the word-alignment data. 
Kranias and Samiotou also use heuristics to in-
crease the FMS of the translation with each modi-
fication to represent the improvement in quality.

The system of Feiliang et al. (2007) also oper-
ates similarly to the comb approach. Here, once the 
necessary modifications required to produce a 
translation from the TM suggestion are identified, 
they are compiled into a Finite-State Transducer 
(FST), which is then used for the fast generation of 
the output. The biggest difficulties Feiliang et al. 
come across are with the handling of insertions, 
where they need a complex system of states to de-

Figure 4. Evaluation results for English-to-French translation, broken down by FMS range
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cide at what position to insert a word in the transla-
tion and how to handle the lexical choice properly 
so that the resulting translation is fluent.  The prob-
lem is exacerbated by the fact that they only use 
simple dictionary lookup for the translation of 
mismatched fragments. The system from (Feiliang 
et al., 2007) uses a purpose-built algorithm for 
finding the best TM match for the pair Chinese–Ja-
panese, which makes it difficult to integrate with 
an existing TM system.

Hewavitharana et al. (2005) and Simard and Isa-
belle (2009) present systems akin to our xml ap-
proach. They, however, do not work with an exist-
ing SMT system that can handle pre-translated 
fragments and need to implement the functionality 
themselves. Therefore and due to the complexity of 
the translation task, Hewavitharana et al. (2005) 
only evaluate their system on exact TM matches 
and TM matches where only one word differs from 
the input sentence.

Simard and Isabelle (2009) also concentrate in 
their evaluation on the case where the TM match is 
used only if it is a perfect match and otherwise the 
MT output is used. However, they also present re-
sults, where the matching translation segments are 
supplied to an SMT system as a heavily biased ad-
ditional phrase table. This, however, does not guar-
antee the use of the TM suggestions and they im-
plement additional features that guide the SMT 
system towards producing a translation that maxi-
mally exploits information from the TM suggestion. 
Their features, however, proved costly to compute.

Biçici and Dymetman (2008) come very close to 
our xml system, with the difference that they ex-
tract at most one matched source-target segment 
(possibly containing a limited number of gaps), 
which is simply given as an option to the SMT 
backend, while we fix as many segments as possi-
ble before translation. It also relies on the proprie-
tary MATRAX SMT system (Simard et al., 2005) 
to handle gapped phrases for translation.

6. Future Work

First, our main goal is to integrate our system 
with a standalone commercial or open-source TM 
system so that it can become a part of a fully inte-
grated localisation workflow. Our system would be 
first evaluated on a small, but representative, set of 
data to establish the FMS level at which the system 

performs at its best and set the appropriate thresh-
olds accordingly for the further use of the system. 
This can be linked to a translation-quality estima-
tor, when such tools become available.

In addition, the reordering tool needs to be de-
veloped further, with emphasis on properly han-
dling situations where the appropriate position of 
an input-sentence segment cannot be reliably es-
tablished.

Finally, a user study evaluating the effect of the 
use of our system on post-editing speeds should be 
performed. We expect the findings of such a study 
to show a significant increase of throughput that 
will significantly reduce the costs of translation for 
large-scale projects.

7. Conclusions

In this paper we presented a novel modular ap-
proach to the integration of MT and TM techniques 
for use in localisation workflows.

The system we developed uses precise sub-tree-
based alignments to reliably determine correspon-
dences between an input sentence and a TM-
suggested translation, which ensures the utilisation 
of the high-quality translation data stored in the 
TM database. It uses an SMT backend to translate 
the mismatched parts of the input sentence and 
produce a complete translation with higher quality 
than the TM suggestion.

Our evaluation shows that the system presented 
in this paper significantly improves the quality of 
SMT output when using TM matches with FMS 
above 80% and produces results on par with the 
pure SMT output for SMT between 70% and 80%. 
Still, further investigation is needed to properly 
diagnose the drop in quality for FMS below 70%. 
We expect improvements to the reordering func-
tionality of our system to result in higher-quality 
output even for lower FMS ranges.
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