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Abstract

The quality of statistical machine translation
systems depends on the quality of the word
alignments that are computed during the trans-
lation model training phase. IBM align-
ment models, as implemented in the GIZA++
toolkit, constitute the de facto standard for
performing these computations. The resulting
alignments and translation models are how-
ever very noisy, and several authors have tried
to improve them. In this work, we propose a
simple and effective approach, which consid-
ers alignment as a series of independent binary
classification problems in the alignment ma-
trix. Through extensive feature engineering
and the use of stacking techniques, we were
able to obtain alignments much closer to man-
ually defined references than those obtained
by the IBM models. These alignments also
yield better translation models, delivering im-
proved performance in a large scale Arabic to
English translation task.

1 Introduction

The translation quality of phrase-based machine
translation systems depends heavily on the quality
of the translation model, the so-called phrase table
consisting of a set of aligned phrase-pairs in mu-
tual translation relationship. Since finding the op-
timal phrase alignment in parallel sentences is NP-
hard (DeNero and Klein, 2008), most practical ap-
proaches rely on pre-computed word alignments to
restrict the search space and use a heuristic to extract
phrase pairs that are consistent with them (Och and
Ney, 2003). Phrase extraction therefore boils down
to the problem of word alignments, that consists
in finding a many-to-many correspondence between

source and target words of a bilingual sentence-pair.
Many approaches have been proposed to solve this
problem. The most widely used in practice are gen-
erative IBM models (Brown et al., 1993) which al-
low to construct directional one-to-many alignments
in both translation directions. Theses alignments are
then symmetrized during a post-processing step to
obtain a many-to-many symmetric alignment. Train-
ing these models only requires sentence-aligned bi-
text and is performed in an unsupervised way with
the EM algorithm. This approach has two main
caveats, leaving room for improving the alignment
quality and, consequently, the translation quality.
Firstly, the generative paradigm is not well suited
to incorporate arbitrary and possibly interdependent
information sources. Secondly, the symmetrization
heuristic acts locally at the sentence-pair level and
lacks a global view of the entire training corpus.

A natural remedy to the first problem is to use dis-
criminative models, which are able to consider arbi-
trary features of the involved words. In this frame-
work, the alignment task is casted as a classifica-
tion problem: a binary classifier predicts, for each
possible assignment, whether it should be included
or not in the alignment. Discriminative models can
also consider predictions provided by other align-
ment models as features, and therefore constitute a
solution to the second problem: by applying these
features to learn symmetrization decisions in light
of a global view of the data. By applying these ideas
(Ayan and Dorr, 2006) obtained promising results.
However, their model remains unable to model inter-
actions between alignment decisions which are, in-
tuitively, of great help to correctly prevent or encour-
age certain configurations in the predicted align-
ment. To overcome this shortcoming, we propose to



extend their model by introducing a stacked classi-
fication layer (Wolpert, 1992) that operates globally
and, hence, enables arbitrary features, describing in-
teractions between alignment decisions, to be taken
into consideration.

The main contribution of this work is a reexami-
nation of (Ayan and Dorr, 2006) work which we ex-
tend in several ways. On the one hand, we present a
careful study of the impact of several novel features
on the performance; on the other hand, we investi-
gate the use of the stacking technique to improve the
alignment quality. By conjoining these techniques,
we were able to greatly reduce the AER as compared
to previously published work, and to achieve better
BLEU results. In this paper, we also contrast align-
ments obtained by the symmetrization heuristic with
those obtained by the discriminative matrix model,
in the light of their Alignment Error Rate (AER) and
their impact on translation quality as measured by
BLEU (Papineni et al., 2002) on NIST MT08 large-
scale task.

The rest of the paper is organized as follows: after
reviewing the related work in Section 2, we present
our approach in Section 3, focusing on the design of
our feature set, and on our implementation of stack-
ing. We then present experimental results both in
terms of AER and BLEU in Section 4.

2 Related Work

Several discriminative approaches of word align-
ment have been carried out recently (Cherry and
Lin, 2003; Ittycheriah and Roukos, 2005; Liu et
al., 2005), attempting to reach a good balance be-
tween the expressivity of the model and its com-
plexity (in terms of tractability and the possibility
of performing exact inference and learning). In one
type of approaches, a word alignment between two
sentences is evaluated with a global score using a
non-decomposable discriminative scoring function.
This scheme enables to take into consideration the
complete observation of the sentence-pair and the
hypothesized word alignment when extracting fea-
tures (Moore, 2005). However, as no restriction on
the form of considered alignments is imposed, the
size of the resulting search space makes the search
intractable and requires the application of a heuris-
tic beam search. In (Taskar et al., 2005), tractabil-

ity of the search problem is achieved by casting the
word alignment task as a maximum weighted match-
ing problem. This comes at the price of constrain-
ing possible alignments to one-to-one matchings and
making local decisions with no global interactions.
These limitations are fixed in (Lacoste-Julien et al.,
2006), by modeling alignment as a quadratic assign-
ment problem which is NP-hard in general.

In another type of approaches, word alignment is
viewed as a classification problem of the cells in the
alignment matrix. The scoring function, which is
usually the probability of the hypothesized align-
ment, is decomposable under some independence
assumptions. In (Blunsom and Cohn, 2006) word
alignment is considered as a sequence labeling prob-
lem, in which, source words are tagged with target
positions using a linear chain conditional random
field (CRF). The linear chain assumption enables
exact inference and training. However the underly-
ing graphical structure is similar to the directed hid-
den Markov model (HMM) used in generative align-
ment, hence only one-to-many alignments can be
obtained, and the symmetrization step is still need-
ful. In (Niehues and Vogel, 2008), the alignment
matrix is directly modeled by a more complex CRF
structure, which allows to get rid of the symmetriza-
tion step, at the expense of an approximate inference
and a complicated two-step training. Many of these
discriminative models do not entirely dispense with
the generative models, but rather integrate their pre-
dictions as supplementary features.

3 Maximum Entropy for Alignment
Matrix Modeling

In this section, we present the task of word align-
ment as a binary classification problem, in which we
model the alignment matrix directly. We also ex-
plain how to improve the expressivity of the model
using a stacked generalization approach.

3.1 Word Alignment as a Classification
Problem

The task of word alignment is to find a many-to-
many correspondence between the words of a source
sentence f I1 = f1, f2, . . . , fI , and a target sentence
eJ1 = e1, e2, . . . , eJ . Alignment information be-
tween both sentences are represented by an align-



ment matrix A = {li,j : 1 ≤ i ≤ I, 1 ≤ j ≤ J}, in
which a particular link li,j is considered to be active
if the source word fi is aligned to the target word ej ,
and inactive otherwise. Word alignment can be seen
as a binary classification task, in which the goal is
to predict a class y ∈ {active, inactive} for every
candidate link li,j ∈ A.

Since the alignment matrix is typically sparse,
with a majority of inactive links, the classification
task we consider is unbalanced. To avoid learning
a biased classifier with high tendency toward label-
ing all links as inactive, we use a set of input align-
ments to reduce the set of links to be predicted to a
subset of the alignment matrix: a point that has not
been proposed by at least one input alignment will
be labeled as inactive; the others are labeled by the
classifier. The union of all input alignments is hence
used to reduce the search space and avoid biasing the
classifier as in (Ayan and Dorr, 2006; Elming and
Habash, 2007). Input alignments are pre-computed
separately using GIZA++.

During inference, the model assigns a probability
to each proposed alignment link. The final output
matrix consists of active links whose probability ex-
ceeds a threshold p (optimized on a development set
using a grid search). This parameter is used to con-
trol the density of the resulting alignment and there-
fore the balance between its precision and recall.

In this work, we used a maximum entropy (ME)
classifier to estimate the probability of a link of A:

p (y|x) =
1

Z(x)
exp

(
K∑
k=1

λkfk (y,x)

)
,

where x denotes the observation, Z(x) is a nor-
malization constant, (fk)Kk=1 defines a set of feature
functions, and each fk is associated with a weight,
λk.

3.2 Features

In our discriminative models, we consider two kinds
of features: word and alignment matrix features,
some of them are illustrated in Figure 1.

Word features aim to describe the linguistic con-
text of a given link, and depend on the sentence-
pair in which it occurs, augmented by part-of-speech
tags and related corpus statistics. They include (1)
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Figure 1: Features extracted to label the link pointed to
by the arrow.

part-of-speech tags (WPOS) for a window of words,
with variable size1, surrounding the source and tar-
get words. POS tags for English are generated us-
ing the Stanford Tagger2, while a POS tagger pro-
vided by ArabicSVMTools is used for Arabic; (2)
surface lexical form (WLex) which is active if the
source/target word is one of the N most frequent
words1; (3) monotonicity (WMon) of the link li,j
which includes the difference between source and
target absolute positions |i− j| and their relative po-
sitions to the sentence length i

I , jJ and | iI −
j
J |.

Alignment matrix features characterize the set of
input alignment matrices, in addition to their union
matrix A∪. They include (1) predictions (AAlign)
of individual input alignment systems (and their
union A∪) for the current link and its neighborhood
(a window of size w × w)1. These features include
whether a particular link in this neighborhood ex-
ists according to each input alignment and the total
number of input alignments supporting it. Neighbor
features are used to inform the current link about
its surrounding points, motivated by the fact that
alignments are usually centered around the diago-
nal in adjacent points; (2) source/target word fertil-
ity (AFert) which represents the number of target
(source) words aligned to the current source (target)
word according to a given input alignment and/or the
union alignment; (3) distance features (ADist) de-
scribing the minimum/maximum distance between

1This variable introduces a model parameter to be used to
optimize AER on a development set.

2http://nlp.stanford.edu/software/tagger.shtml



the current link and the previous/following links of
same line/column according to the union alignment
matrix. (4) jump features (AJump) characterizing
the absolute distance between the current word and
closest aligned one, on both source and target side
according to the union alignment matrix. Most of
these features have been already proposed (Ayan and
Dorr, 2006; Elming and Habash, 2007; Blunsom
and Cohn, 2006), exceptions are ADist and AJump,
which are novelties of this work.

In (Ayan and Dorr, 2006), each feature function
is conditioned twice on the POS tags of the source
word and the target word. We add another con-
ditioning criterion on their conjunction. Thus, we
learn a separate weight for each feature for each
source,target and source/target POS tags, allowing
the model to pay more or less attention to each fea-
ture depending on the related tags.

3.3 Stacked Generalization

A problem with the ME framework, is that structure
is not taken into account and labels are assumed to
be independent. While this keeps the model simple,
interactions between individual predictions cannot
be modeled, and global decisions cannot be made.
In order to incorporate structure and dependencies
into the ME model, without sacrificing efficient,
model-optimal predictions, we use a stacked gener-
alization method (Wolpert, 1992). Stacked general-
ization is an approximation approach to structured
learning. It allows to indirectly model dependen-
cies between predicted labels at a low computational
cost. It has been successfully applied to NLP prob-
lems, like dependency parsing (Martins et al., 2008),
named entity recognition (Krishnan and Manning,
2006) and sequential partitioning problems (Cohen
and Carvalho, 2005).

In stacked learning, all labels are jointly predicted
in two steps. (1) For each training example (xi, ỹi),
the entire set of observations x = [x1, . . . , xn] is
considered to extract features, that are then fed to a
first-level classifier. This classifier is used to assign
a label yi to each observation xi without taking de-
pendencies between labels into consideration; then
(2) observations are augmented with predictions of
the local classifier y = [y1, . . . , yn] to generate an
extended representation of the training corpus, on
which, a second-level classifier is trained. This clas-

sifier is able to make global decisions, using fea-
tures that characterize the dependency between la-
bels, produced by the first-level classifier.

A K-fold selection process When building train-
ing data for the global classifier, a K-fold selec-
tion process is used to avoid getting trapped in a
label-bias problem. The entire training dataset is
divided into K blocks, and K first-level classifiers
are trained, each on a different subset (of K − 1
blocks) of training data. Each of these classifiers is
then used to label the held-out block. These predic-
tions, along with the original data, constitute train-
ing examples for the second-level classifier. Stack-
ing avoids explicit joint modeling of labels and is
thus merely an approximation method of structured
learning. Nevertheless, it allows any type of depen-
dency to be taken into account without complicating
the model. The runtime of the training algorithm is
O(KTf + Ts) where Tf and Ts are the individual
runtimes required for training a first- and a second-
level classifier respectively.

Stacking for word alignment For the task of
word alignment as presented in this paper, the use
of stacking consists in augmenting input alignments
by one additional matrix, which is the output of the
first-level classifier. Over this matrix, features char-
acterizing the interactions between links in the final
output alignment can be computed. The same set of
features used for the first-level classifier is also used
for the second-level one. That is we label the data
with a first pass aligner and then we train another
model using its prediction as features. Features like
ADist and AJump are more suitable to capture char-
acteristics of symmetric alignment matrices like the
union alignment and the output of the first-level clas-
sifier, and hence, are calculated exclusively for them.

4 Experiments

In this section, we present several experiments to
compare different word alignment strategies. We
start by stating the experimental setup and then
report AER results, as well as translation perfor-
mances.

4.1 Experimental Setup and Metrics
We experimented the various models with the
Arabic-English language pair using data described



Data source #Sent #Ar tok #En tok

IBMAC
test 663 16K 19K
dev 3,486 71K 89K

train 10K 215K 269K

MT’08 test set 1,360 43K 53K

MT’06 dev set 1,797 46K 55K

MT’09 constrained track 5M 165M 163M

Table 1: Experimental data: number of sentences and
running words.

in Table 1. The IBM Arabic-English aligned corpus
(IBMAC) (Ittycheriah et al., 2006) provides man-
ual word alignments. It includes a training set that
we split into disjoint train and dev sets, used re-
spectively for training and tuning our discriminative
models. We use the IBMAC test set (NIST MT
Eval’03) to evaluate different alignments in terms
of Alignment Error Rate (AER). For ME training
we used a freely available toolkit3. The model pa-
rameters are estimated using L-BFGS (Byrd et al.,
1994) to maximize the regularized log-likelihood on
a training corpus. A Gaussian prior is used during
optimization to prevent overfitting. GIZA++ (Och
and Ney, 2003) is used to train our generative align-
ments, with the additional parallel data made avail-
able by NIST MT Eval’09 constrained training con-
dition. We used Moses4 with SRILM5 with the
same data in our translation experiments. A 4-gram
back-of language model is estimated using all En-
glish available data. Minimum Error-Rate Train-
ing (Och, 2003) is carried on to tune the parameters
of the translation system on the NIST MT’06 test
set. Translations are evaluated on NIST MT’08 test
set.

Arabic pre-processing scheme and remappings
Arabic is a morphologically complex, highly-
inflected language. This makes normalization nec-
essary to reduce the sparsity of the data. We use
MADA+TOKAN6 for morphological analysis, dis-
ambiguation and tokenization for Arabic. Given
previous experiments on the NIST MT’09 task, we
use the D2 tokenization scheme that showed to per-
form best under large resource conditions (Habash

3http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
4http://www.statmt.org/moses/
5http://www-speech.sri.com/projects/srilm/
6http://www1.ccls.columbia.edu/ cadim/MADA.html

and Sadat, 2006). For example, the Arabic phrase
“wsyktbhA!”7 (“and he will write it!” in English)
is tokenized according to the D2 scheme as follows:
“w+ s+ yktbhA !”.

Since the hand-aligned IBMAC corpus is not to-
kenized with this scheme, two issues arise. (1)
For evaluation, the IBMAC manual alignments and
the ones estimated on D2-tokenized data should be
compatible. Hence all words need to be mapped
back (remapped) to the original form before pre-
processing. In the previous example, an aligner will
link the tokens in “w+ s+ yktbhA !” to different
words on the English side. In the remapping step,
the union of these links is assigned to the original
word “wsyktbhA!”. (2) For training, it is the other
way around. The IBMAC manual alignments are
split to match the tokenized words. When tokenizing
an Arabic word, aligned to some English word(s), all
resulting tokens are assumed to have the same set of
alignment links as the original word. For instance,
suppose that the word “wsyktbhA!” is aligned to all
English words in “and he will write it!” in the IB-
MAC corpus. After applying the D2 tokenization
scheme, we link each of the resulting tokens to all
the English words. Although this assumption results
in noisy reference alignments, it is still the easiest
way to obtain reference alignments for D2 tokenized
training data.

Metrics Alignment models described in this paper
are compared and evaluated using two families of
metrics. In the first one, the alignment under evalu-
ation is compared to a gold standard, while, in the
second one, its impact on the quality of the final
translation is directly assessed.

When comparing alignments to a gold standard,
the most commonly used metric is the alignment er-
ror rate (AER) (Och and Ney, 2003). Usually gold
alignments are marked with “sure” or “possible” la-
bels, but since the IBMAC corpus we are using has
only sure ones, the AER reduces to balanced 1−Fα
measure with α = 0.5:

Fα =
Pr Rc

αRc+ (1− α)Pr

where Pr denotes the precision and Rc the recall.
We also use Fα with different values for α in the Fα

7All Arabic transliterations are provided in the Buckwalter
transliteration scheme



Model Direction Pr% Rc% AER%

IBM1
Ar→ En 56.4 66.2 39.1
En→ Ar 41.3 64.8 49.6

gdfa 70.2 71.0 29.4

HMM
Ar→ En 66.8 78.4 27.9
En→ Ar 51.0 72.6 40.1

gdfa 73.9 81.3 22.6

IBM3
Ar→ En 68.5 80.4 26.0
En→ Ar 56.5 77.3 34.8

gdfa 75.2 83.8 20.7

IBM4
Ar→ En 71.0 83.3 23.3
En→ Ar 58.9 79.8 32.3

gdfa 75.0 86.3 19.8

Table 2: AER, precision and recall results for GIZA++
alignments with gdfa symmetrization heuristic.

measure formula to vary the trade-off between pre-
cision and recall as desired: α less (greater) than 0.5
weights recall (precision) higher (Fraser and Marcu,
2007). The quality of the translation is evaluated
with BLEU (Papineni et al., 2002).

4.2 Alignment Error Rate Results

In this section we present precision, recall and AER
results calculated using the IBMAC MT’03 test set,
for generative and discriminative alignments.

4.2.1 GIZA++ Generative Alignments
Table 2 summarizes our baseline results obtained

with three classical generative alignment models,
as estimated by GIZA++, in both translation direc-
tions, and symmetrized using the grow-diag-final-
and heuristic. Each step from IBM1 to IBM4
through HMM and IBM3 expectedly results in a
better performance. The HMM model achieves a
big error reduction over IBM1, with limited added
computational complexity. While IBM3 and IBM4
continue to improve the quality of the alignments
over HMM, they are much more computationally
expensive (learning them takes a few days instead
of a few hours) with smaller relative error reduc-
tion. Ar → En alignments are always better than
En → Ar, which is due to differences in morphol-
ogy between Arabic and English. For all the mod-
els, the symmetrization heuristic is able to improve
both precision and recall, therefore AER, over the
combined alignments.

Input Al.[#] st Pr% Rc% AER%

IBM1 [2]
7 90.4 71.1 20.4
3 90.9 72.9 19.6

HMM [2]
7 90.5 80.7 14.7
3 91.0 81.0 14.3

IBM3 [2]
7 91.1 81.4 14.0
3 91.0 81.9 13.8

IBM4 [2]
7 91.9 83.1 12.7
3 92.4 83.0 12.6

IBM1+ 7 91.0 81.7 13.9
HMM [4] 3 92.9 81.5 13.2

ALL [8]
7 92.3 84.0 12.1
3 92.1 84.4 11.9

IBM4 gdfa 75.0 86.3 19.8

Table 3: Precision, recall and AER results for different
sets of input alignments and stacking. [#] is the number
of input alignments, st. denotes stacking.

4.2.2 Input Alignments and Stacking

Table 3 shows precision, recall and AER results
for different set of input alignments. The best align-
ment with maximum entropy approach, augmented
with stacking, achieves a much better precision than
the best generative alignment, with worst recall and
yields a 11.9% AER (a relative error reduction of
39.9% over the best GIZA++ alignment).

Since, in our approach, the alignment links con-
sidered by the ME classifier are only those proposed
by the union of the input GIZA++ alignments, the
recall of the latter is an upper bound on recall for the
ME alignments. This explains the decrease in recall
for our best alignment over IBM4. The same rea-
son lies behind improvements seen when combining
8 input alignments instead of only 2: the more input
alignments, the bigger their union is. Hence, the ex-
plored search space is wider, and more correct align-
ment links are allowed to be fetched, which leads to
a higher recall. Table 4 shows the oracle AER for
different sets of input alignments. The combination
of the four generative models (IBM1, HMM, IBM3,
IBM4) yields further improvement with an AER of
12.1% (11.9% with stacking). Stacking systemati-
cally improves the performance and achieves a state-
of-the-art AER of 11.9% on the IBMAC test set. We
also note that the difference between the worst pre-



Input Align. Union Rc% Oracle AER%

IBM1 [2] 75.9 13.7
HMM [2] 85.2 8.0
IBM3 [2] 86.4 7.3
IBM4 [2] 88.7 6.0

IBM1+HMM [4] 87.3 6.8
ALL [8] 90.8 4.8

Table 4: Union’s recall and the corresponding AER’s or-
acle for different set of input alignments.

cision (90.4%) and the best precision (92.9%) for all
ME alignments, is much smaller than the difference
between the worst recall (71.1%) and the best recall
(84.4%). This result suggests that while the ME ap-
proach easily achieves a good precision even when
using noisy input alignments, it is more difficult to
improve its recall because of the upper bound im-
posed by the recall of the union of these input align-
ments.

The discriminative model systematically outper-
forms IBM models and the symmetrization heuris-
tic. First, when combining two IBM1 directional
alignments, an AER of 20.4% is achieved (19.6%
with stacking) which is a big improvement com-
pared to an AER of 29.4%, the result of combining
the same two alignments with the symmetrization
heuristic (a relative error reduction of 33.3%, when
stacking is used). This result is quite impressive
since the best input alignment from IBM1 has an
AER of 39.0%, which means that even when using
noisy input alignments, the ME model is able to per-
form a good error correction. Further more, the ME
model, using only IBM1 alignments, allows to ob-
tain comparable performance with the symmetriza-
tion heuristic using IBM4 alignments. This result is
interesting since IBM4 is much more computation-
ally expensive than IBM1 and HMM. Moreover, we
can use more accurate input alignments to increase
the gain: combining HMM alignments yields to an
AER relative reduction of 28%.

4.2.3 Analysis of the Training Set Size

The discriminative approach requires hand-
aligned data that are expensive to obtain. Hence,
we are interested in knowing how many aligned sen-
tences we need to train a model that performs rea-
sonably. Figure 2 depicts AER as a function of the
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Figure 2: Relation between AER and the number of sen-
tences in the training set when combining two IBM4
alignments).

size of the training set (number of sentences) when
using IBM4 input alignments. Although the big-
ger the training set the better the model, only small
improvements are achievable when using more than
2000 sentences. It is worth noting that with only
10 training sentences (392 training examples), we
get an AER of 18.5% which is lower than the
AER obtained with the gdfa symmetrization heuris-
tic (19.8%).

4.2.4 Analysis of Features Contributions
To assess the impact of different kinds of features,

a contrastive experiment is reported in table 5. The
basic set of feature families includes the features
previously used in (Ayan and Dorr, 2006), slightly
modified. The allF set of features includes three ad-
ditional families namely ADist, AJump and WLex.
Each feature family is individually removed from
the system containing all of them to tack its contri-
bution. The increase in AER when removing a fea-
ture family indicates its importance. The basic fam-
ily of features obtains an AER of 13.3% (a relative
error reduction of 32.8% over IBM4), which con-
firms the results reported in (Ayan and Dorr, 2006).

Adding the new feature families further improves
the AER: with these extra features the error rate falls
down to 12.8%. While all features families have a
positive contribution, their impact on AER varies.
Both the AAlign feature family and data partition-



Features Pr% Rc% AER%
Basic 90.0 83.7 13.3

AllF 91.6 83.2 12.8
− cond/WPOS 89.1 81.6 14.8
− AAlign 88.9 83.4 14.0
− AFert 91.7 82.2 13.3
−WLex 91.7 82.7 13.1
− preserved 91.9 82.9 12.9
− AJump 92.0 82.9 12.8
− ADist 92.1 82.9 12.8
−WMono 92.3 82.8 12.8
+ Union 91.9 83.1 12.7

AllF+Union+Stack 92.4 83.0 12.6
−AJump 92.0 82.9 12.7
−ADist 92.0 83.0 12.7

Table 5: Precision, recall and AER results for combining
two IBM4 models with different features configurations.
basic: features found in literature; AllF = basic + new
features; and Union indicate using the union alignment
in input.

ing (using WPOS feature family) have high positive
contributions, since removing any one of them sig-
nificantly worsen the AER. Other feature families,
including AFert and WLex, have a less important
impact, while, in our experiments, WMono does not
produce any improvement.

Introducing two additional symmetrical align-
ments, namely “Union” and “Stack” seems to help
features like ADist, AJump and AFert, whose contri-
butions increase. In the “AllF” configuration, ADist
and AJump are not of big help. However, when used
in the “AllF+Union+Stack” configuration, they re-
sult in a small improvement. This could be ex-
plained by the fact that ADist and AJump are en-
gineered to capture characteristics of a symmetrical
alignment. Hence, enhanced performance can only
be seen when using “Union” and “Stack” configu-
rations, in which additional symmetrical alignments
are used to extract features.

4.3 Machine Translation Results

In this section, we evaluate the interest of our
method by measuring the impact of the various word
alignment methods on translation quality. Results
we present allow to gain insight into the relation be-
tween translation quality and different properties of
the alignments, including different features configu-

rations, different set of input alignments and differ-
ent thresholds and stacking options.

Experiments are carried out using a large-scale
Arabic to English phrase-based system developed
for the NIST MT Eval’09 in the constrained train-
ing condition8. Although large-scale phrase-based
systems tend to be robust to word alignment er-
rors (Lopez and Resnik, 2006), improvements in
translation quality are still attainable. We use the
Moses toolkit to build a phrase-based system for dif-
ferent alignment methods using the data sets pre-
sented in table 1. All these systems are identical
except for the word alignment component. BLEU
scores are calculated using multi-reference BLEU
without any post-processing of the output.

Table 69 shows BLEU, AER and F0.3 scores ob-
tained for GIZA++ gdfa alignments and various dis-
criminative alignments. In terms of BLEU, the best
performing discriminative alignment is the one com-
bining all eight GIZA++ models (IBM1, HMM,
IBM3 and IBM4) with a threshold p = 0.4: it
achieves a BLEU score of 41.1% and a 0.7% ab-
solute improvement over the best generative model.

Results of discriminative alignments suggest that
they systematically improve translations over gen-
erative models. However, the impact of the features
set and of stacking is unclear: using the features con-
figuration that gives the best AER (denoted best 6)
leads to slight improvements in BLEU (0.1%) over
the basic feature set proposed by (Ayan and Dorr,
2006). Stacking does not seem to improve transla-
tion performances, even though it slightly improves
the AER (Table 3). This suggests that in order to
have significant improvements in BLEU, relatively
big improvements in AER should be achieved. It is
also worth noting that for a given input alignment
set, BLEU results are not very sensitive to differ-
ences in threshold values around the best thresh-
old. For example, when combining two IBM4
alignments, using the basic features configuration,
threshold values 0.3, 0.4 and 0.6 produce compa-
rable BLEU results of 40.9, 40.9 and 40.8, respec-
tively. This suggests that picking-up an acceptable
value for the threshold does not require an exhaus-

8http://www.itl.nist.gov/iad/mig/tests/mt/2009/
9In this table we show BLEU scores for thresholds that give

either the best AER (usually p = 0.7) or the best F0.3 (usually
p = 0.4)



AER F0.3 BLEU
GDFA Align.

IBM1 29.4 70.8 39.3
HMM 22.6 78.9 40.0
IBM4 19.8 82.6 40.4

Discriminative Align.
model feat p st

IBM4 [2]

basic
0.6 7 13.3 85.2 40.8
0.3 7 15.2 85.7 40.9
0.4 7 14.2 86.0 40.9

best

0.7 7 12.7 85.6 40.7
0.4 7 13.5 86.6 41.0
0.7 3 12.6 85.6 40.8
0.4 3 13.3 86.6 40.7

IBM1+
best 0.4 7 14.4 85.1 40.5

HMM [4]

ALL [8] best
0.4 7 12.9 87.4 41.1
0.7 7 12.1 86.3 40.7
0.4 3 13.0 87.5 40.9

Table 6: Translation results in BLEU for different
GIZA++ and discriminative word alignments. best cor-
responds to AllF+Union and st. to stacking. In bold is
the best system’s score.

tive search for the optimal solution.
As we have explained our approach can be used

to learn the symmetrization heuristic from the data.
Table 6 shows that the combination of two IBM4
models by a Maximum Entropy model results in an
absolute gain of 0.6% BLEU point over a combi-
nation of these two alignments by a heuristic. An
other interesting result is that a discriminative align-
ment considering the computationally not expensive
IBM1 and HMM alignments as an input, does, at
least, as well as the standard IBM4-gdfa10.

In order to gain more insight into this aspect, we
conducted a systematic experiment to evaluate the
correlation between the BLEU score and various
alignment metrics: we built 22 systems using dif-
ferent word alignment methods or parameters (11
systems were using a generative alignment method
with different symmetrization heuristic; 11 systems
were using a discriminative alignment method with
different feature sets or input alignments or thresh-
olds). We then calculated Fα for all values of α ∈
{0.1, 0.2, . . . , 0.9} (with 1−AER corresponding to

10Runtime needed to train the maxent model is negligible and
labeling is linear in the size of the corpus, which is in total faster
than training IBM3 and IBM4 models (minutes vs. hours/days)
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Figure 3: Correlation between BLEU and alignment
quality measures.

α = 0.5). The highest correlation between the align-
ment metric and the translation metric is obtained
for F0.3: their correlation, measured by the Pearson
coefficient, is 94.34%. Note that the AER metric
that is usually used to assess the performances of
alignment methods also correlates well with BLEU
but at a lower coefficient of 90.62%. The threshold
p is used to control the density of the resulting align-
ments and therefore shifting the balance between
precision and recall. Alignments with lower p are
denser, and hence tend to have higher recall. Trans-
lation results show that alignments with an higher
recall tend to perform better, suggesting that recall
is preferable over precision and is the most influenc-
ing alignment quality component on the translation
quality. Consequently, BLEU is expected to corre-
late better with measures favoring recall like F0.3.

5 Conclusion

In this paper, we have presented a simple discrim-
inative model for refining alignments produced by
the IBM models. This model can be used, when
supervised training data is available, as an alterna-
tive to the standard heuristic approach. By integrat-
ing several novel features and combining several in-
put alignments, we were able to attain state-of-the
art performance in terms of AER, and to help es-
timate better translation models: we showed that
these improved alignments result in a increase of 0.7



BLEU points of a large-scale Arabic-to-English sys-
tem. We have also demonstrated that it is possible to
achieve, by combining IBM1 and HMM alignments
through discriminative training, models that outper-
form the conventional setting (IBM4 symmetrized
alignments), at a much lower computational ex-
pense. Finally, we showed, in a series of systematic
experiments, that there is a correlation between the
quality of the word alignment measured by the F0.3

metric and the BLEU score.
We plan to develop this work in several directions.

Firstly, we intend to continue increasing the num-
ber of input alignments, especially alignments which
can be computed efficiently. Since a relatively good
precision can be achieved easily with our model, the
upper bound on the recall is still a problem, currently
dealt with by using expensive IBM4 models to push
its limit. An alternative to improve the recall is to
consider multiple IBM1 or HMMs alignments (ei-
ther through the use of n-best alignments, or through
the use of multiple initializations).

As word alignments are only meant to identify
phrase-pairs, a second important direction of re-
search will be to consider training with alternative
global loss functions, so as to take into account the
fact that some alignment links are more important
than others. In the stacking framework, such exten-
sions of the model can be performed efficiently.
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