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Abstract

In this paper, we present a novel approach
to incorporate source-side syntactic reorder-
ing patterns into phrase-based SMT. The main
contribution of this work is to use the lat-
tice scoring approach to exploit and utilize re-
ordering information that is favoured by the
baseline PBSMT system. By referring to the
parse trees of the training corpus, we repre-
sent the observed reorderings with source-side
syntactic patterns. The extracted patterns are
then used to convert the parsed inputs into
word lattices, which contain both the origi-
nal source sentences and their potential re-
orderings. Weights of the word lattices are
estimated from the observations of the syn-
tactic reordering patterns in the training cor-
pus. Finally, the PBSMT system is tuned
and tested on the generated word lattices to
show the benefits of adding potential source-
side reorderings in the inputs. We confirmed
the effectiveness of our proposed method on
a medium-sized corpus for Chinese-English
machine translation task. Our method out-
performed the baseline system by 1.67% rela-
tive on a randomly selected testset and 8.56%
relative on the NIST 2008 testset in terms of
BLEU score.

I ntroduction

potential target phrase orders during the decoding
phase, and penalizing potential phrase orders using
both distance-based and lexical reordering models.
However, for some language pairs, this model is not
powerful enough to capture the word order differ-
ences between the source and target sentences. To
tackle this problem, previous studies (Wang et al.,
2007a; Chang et al., 2009a) showed that syntactic
reorderings can benefit state-of-the-art PBSMT sys-
tems by handling systematic differences in word or-
der between language pairs. From their conclusions,
for the Chinese-English task, syntactic reorderings
can greatly improve the performance by explicitly
modeling the structural differences between this lan-
guage pair.

Interestingly, lots of work has been reported on
syntactic reorderings and similar conclusions have
been drawn from them. These methods can be
roughly divided into two main categories (EIming,
2008): the deterministic reordering approach and the
non-deterministic reordering approach.

For the deterministic approach, syntactic reorder-
ings take place outside the PBSMT system, and
the corresponding PBSMT systems only deal with
the reordered source sentences. In this approach,
syntactic reorderings can be performed by manu-
ally created rules (Collins et al., 2005; Wang et
al., 2007a), or by rules extracted automatically from

To take consideration of reordering problem beparse trees (Collins et al., 2005; Habash, 2007). For
tween different language pairs, phrase-based statRPme typical syntactic structures (eldE construc-
tical machine translation (PBSMT) systems (Koehtion in Chinese), classifiers (Chang et al., 2009b; Du
et al., 2003) incorporate two different of methods€t al., 2010) are built to carry out source reorderings.
1) learning phrase pairs with different word orders For the non-deterministic approach, both the orig-
in the source and target sentences; 2) attemptinigal and reordered source sentences are fed into



the PBSMT decoders, and the decisions are left to e Syntactic reordering patterns are automatically
the decoders to choose the most appropriate one. extracted from lattice scoring outputs which
(Crego et al., 2007) used syntactic structures to re- show the preferences of the baseline PBSMT
order the input into word lattices for N-gram-based  system, rather than heuristic rules.

Statistical Machine Translation.  (Zhang et al.,

2007a; Zhang et al., 2007b) employed chunks and ® Our method is seamlessly incorporated with
POS tags to extract reordering rules, language mod-  €Xisting distance-based and lexical reordering
els and reordering models are also used to weight the Models, as the potential reorderings are con-
generated word lattices. Weighted n-best lists gener- ~ Structed on the source-side with word lattices.
ated from rules are also used in (Li et al., 2007) for

input into the decoders, while the rules are created The rest of Fhls paper IS orgamzed as fO.IIOWS: In
section 2 we give a brief overview of the lattice scor-

from a syntactic parser. On the other hand, usin
ym P %g approach for PBSMT systems, as well as the
the syntactic rules to score the output word order . . .
enerated phrase alignments. In section 3 we dis-

is adopted by (Elming, 2008; Elming, 2009), both®

on English-Danish and English-Arabic tasks, whic/$USS the extraction process of syntactic reordering

confirmed the effectiveness of syntactic reorderinggatterns from phrase aligned sentences in the train-

) . . ~Ing corpus. Then in section 4 we present the way to
for distant language pairs. Another related pieces . ) . . .
. . T . transform inputs into word lattices with syntactic re-
of work applies syntactic reordering information ex- . ,
. : - ordering patterns. After that, we present our experi-
tracted from phrase orientation classifiers as an extra . . .
) ments setup and results, as well as the discussions in
feature in PBSMT systems (Chang et al., 2009b) for ™ . : ) .
: . section 5. Finally, we give the conclusion and future

a Chinese-English task.

N work in section 6.
However, rewriting the source sentence cannot be

undone by the decoders (Al-Onaizan et al., 20062 L attice scoring for phrase alignments

which makes the deterministic approach less flexible _ . _

than the non-deterministic one. Nevertheless, for thE"€ lattice scoring approach was previously pro-
non-deterministic approach, most of the work relie@0S€d in (Jiang et al., 2010) for data cleaning. The
on the syntactic information (cf. parse tree, chunkdd€@ of that work is to utilize word alignments to
POS tags) but never addresses which kind of rult€rform approximated decoding on the training cor-
are favoured by the decoders in SMT systems. A®US: thus to calculate BLEU (Papineni et al., 2002)

cordingly, the final systems might not benefit fron°COres from the decoding results which are subse-
many of the reordering rules. quently used to filter out low score sentences pairs.

_ _ _ The lattice scoring procedure contains the follow-
In this paper, we adopt the lattice scoring apjng steps: 1) Train an initial PBSMT model on

proach proposed in (Jiang et al., 2010) to disCOV&he given corpus; 2) Collect anchor pairs contain-

reorderings contained in phrase alignments that afi§g both the source and target side phrase positions

favoured by a baseline PBSMT system. Given thigrom word alignments generated from the training
the central idea of this work is to feed these reorderﬁhase. 3) Build source-side lattices from the an-
back to the baseline PBSMT system with optionalyor pairs and the translation model; 4) Expand
reordering information on the source-side, and le{q search on the source-side lattices to obtain an
the decoder choose better reorderings according £, roximated decoding result; 5) Calculate BLEU
our inputs. To accomplish this, syntactic reordergcqres on the training set and filter sentence pairs

ing patterns on the source side are used to represgiih |ower scores. Step 5 is only useful for data
the potential reorderings from the lattice scoring OUtéleaning but steps 1-4 can be used to extract re-
puts. However, these patterns are also used to tra’i‘ﬁ‘dering information in this paper.

form the baseline inputs into word lattices to carry By taking the lattice scoring steps above, it is in-

potential reorderings that are useful for PBSMT deferesting that in step 4, not only the approximated

coders. decoding results are obtained, but also its corre-
The other main contributions of this work are:  sponding phrase alignments can be tracked. That is



because the source-side lattices built in step 3 asém at using reordering patterns to discoary kind

come from anchor pairs, so each edge in the latticed potential source-side syntactic reordering patterns

contains both the source and target side phrase goem phrase alignments.

sitions. Once the best paths are searched for in step

4, we can obtain sequences of phrase alignments el Reordering regions extraction

tween source and target side sentences. A sampleliilike previous work in (Wang et al., 2007a; Chang

the phrase alignments generated from lattice scorirgg al., 2009a) which is carried out directly from

is illustrated in Figure 1. parse trees in a top-down approach, our work aims at
In Figure 1, the source sentence (Chinese) istilizing reorder information in phrase alignments.

shown on the right hand side of the alignments andccordingly, we use a bottom-up approach similar

the target sentence (English) is on the bottom. Note (Xia et al., 2004; Crego et al., 2007) in this pa-

that different from word alignments, elements of theper. We start by locating the reordering regions in

alignments in Figure 1 are phrases, and the aligithe non-monotonic areas in the phrase alignments,

ment points in the figure indicates the relationshignd thereafter use syntactic patterns to describe such

between source and target phrases which are segerderings.

mented from the lattice scoring approach. Not all As is shown in Figure 1, to accomplish the same

the phrases have alignment points because implighrase orders on both source and target sides, sup-

edges are chosen during the search phase of lattisesed we retain the target sentence orders and try to

scoring (Jiang et al., 2010). adjust the phrase order on the source-side, one pos-
Rather than using word alignments (Crego et alsible reordering operation is to swap the regiohs

2007) or phrase alignments from heuristic rules (Xiand B on the source-side, where regioAsand B

et al., 2004), we use phrase alignments generatédntain source words 8-10 and 11-13 respectively.

from lattice scoring, because this incorporates thi this paper, reordering region$ and B indicat-

PBSMT model to score potential phrase segmentéig swapping operations on the source side are only

tions and alignments, and only those phrase segmetpnsidered as potential source-side reorderings, thus

tations and alignments have a higher model scoregionsAB imply (1):

are selected, while unlikely reorderings from word

alignments for PBSMT model are filtered before AB = BA (1)

pattern extraction, hence we can obtain better re- _

ordering patterns after that has taken place. In tH" the source-side word sequences.

following section, we use this information to extract FOr €ach non-monotonic area in the phrase align-

reorderings, which also indicate higher model scordgents, all its sub-areas are attempted to extract re-
from the PBSMT model. ordering regionsA and B, and each of them are fed

into the pattern extraction process. The reason for
doing this is the phrase alignments from lattice scor-
ing cannot always be perfectly matched with parse
In the last section, we obtained phrase alignmentgees (specified in the next section), and sometimes
from the lattice scoring procedure. From the alignkeordering regions from sub-areas can produce more
ment points, the reordering is shown in the nonmeaningful patterns.

monotonic region of Figure 1, i.e. between source _

words 8-13 and target words 7-12, there is a non2 Reordering patternsfrom parse trees
monotonic alignment region. By comparing sourcé&keordering regionsAB extracted from the non-
and target texts within this region, there is a strucmonotonic areas of the phrase alignments cannot be
tural word order difference between Chinese andirectly used to perform source-side reorderings, be-
English, which is specified as tHgE construction cause they are just sequences of source-side words.
in (Chang et al., 2009a; Du et al., 2010). How-To extract useful information from them, we map re-
ever, in this paper, instead of dealing with a speardering regions onto parse trees to obtain syntactic
ified reordering structure for one language pair, wesordering patterns, similar to previous work in (Xia

3 Reordering patterns
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Figure 1: Phrase alignments and reorderings

et al., 2004; Crego et al., 2007). However, in this  label all the leaf nodes dof" with A or B as
paper, the Chinese Treebank (Xue, 2005) tag set is reorder options, which indicates that the de-
used, and the aim is to extract appropriate patterns scendants of nodes labeled withare meant

from them for reordering typelB in formula (1).
The following steps are taken to accomplish this

to swap with those of nodes labeled with

1. Parse the source side sentences into parse treednstead of usingubtrees, we usetreelets to refer

We use the Berkeley parser (Petrov, 2006) fothe located parse tree substructures, since treelets do
parsing purposes, and all parse trees are rightot necessarily go down to leaf nodes.

binarized to generate simpler tree structures for

pattern extraction. P

. For each of the reordering regiomB ex- ey S
tracted in Section 3.1, denof§, as the node _- ST, -
set corresponding with the words in regioh b= =~ _DEC) AGUP f
and N for region B. The objective is to find
aminimum treeletT of the whole parse tree,
where T' satisfies the following two criteria:
1) there must exist a path from each node in
N4 U Np to the root node off’; 2) eachleaf
node of T cannot be the ancestor of nodes in
both N4 and Nz (which means each leaf node
can only be the ancestor of nodesify, Np,

or none of them).

N

22

NS GNP

ADJP NP CC NP
|

JJ NN & NN
|

N

. TransformT' into reordering patterns® by
traversing it in preorder, and at the same time, Figure 2: Reordering pattern extraction



The extraction process is illustrated in Figure 2. T -~~~
Part of the source-side parse tree is shown for the //_/_ e _\\\
pattern extraction process of regidrB in Figure 1. L/ _E‘F_(: T~ A,

The parse tree is binarized and the syn@a$ used ME

to indicate the extra tags generated in tree binariza- hl
tion (for example@N P in Figure 2). | = ADJP| NP Ef ADIP NP

As depicted in Figure 2, tre® (surrounded by ‘\ Al | WM 1l MM
dashedllln.es) is the mln_lml_Jm treelet of the pqrse tree N EE |ps N —
that satisfies the two criteria in step 2 of section 3.2. <,

Note also that the leaf nodes Bbfare labeled by |—A || B |

or B according to their descendants, el@ (in re-

gion A) is labeled byA, DEC and@NP (in re- . ) .

gion B) are labeled by, After the treeT" s found, Figure 3: Context tag in pattern extraction

we convert it into a syntactic reordering pattern by

traversing it in preorder. At the same time, we colin 7" but they are assigned same labels as those from

lect leaf nodes labeled or B into reordering node which they have been expanded, e.g. in Figure 3,

sequenced. 4 or Lp respectively to record the re- the node with tagP (not in regionA) is expanded

ordering operations. Futhermore, in order to genefrom region A, so it is kept inT" but labeled withA

ate larger sets of patterns, we do not distinguish taginked with dashed arrow in the figure).

generated in the parse tree binarization process with\we consider expanded tree nodes as the context of

the original ones, which means that we treaV P syntactic reordering patterns, since they are siblings

andN P as the same tag. Thus, we obtain a syntactigf the ancestors of word nodes in reordering regions

reordering patterd” from 7" as in (2): AB. If their structure is frequently observed in the

corpus, there is a greater chance that structural dif-

P={NP (CP (IP DEC) NP)|O ={La,LB}} ferences exist between source and target languages.
(2)  For example, treelef’ with the P tag in Figure 3 is

where the first part of” is the NP with its tree e reordering whel P occurs with aP P modifier,

structure, and the second pabtindicates the re- \yhich is specified in (Wang et al., 2007a). Thus, the

ordering scheme, which implies that source wordgyntactic reordering pattern for Figure 3 is as in (3):
corresponding with descendantsiof are supposed

to swap with those of . P={VP (PP (P NP) VP)|O} (3)

3.3 Context tagsin reordering patterns However, the previous steps tend to generated du-
As specified at the end of section 3.1, phrase aligplicate reordering patterns because each sub-area of
ments cannot always be perfectly matched witthe non-monotonic phrase alignments are attempted
parse tree topologies, especially when all sub paréd node expanding is carried out. To remove the
of non-monotonic areas of phrase alignment are contuplications, a merge operation is carried out as fol-
sidered as potentiall B reordering regions. Figure lows: suppose treelets; and7» are extracted from
3 illustrates this situation where there is no matchethe same sentences while sharing the same root sym-
treelet for reorder regiond B. bol, if 77 is also a treelet of; and their reorder-

In this case, we expandB to the right and/or ing regionsAB overlap, therll; is merged intdl;.
the left side with a limited number of words to findHowever, not all the reordering regions will gener-
a minimum treelet which is specified in step 2 ofated a pattern because some of them will not have a
section 3.2. In the figure, the tree node with fdg corresponding minimum treelet.
is selected when expanding regighone word to
the left, such that the corresponding tre€letan
be obtained. Note that in this situation, a minimunSyntactic reordering patterns are extracted from
number of ancestors of expanded tree nodes are keyin-monotonic phrase alignments. However, in the

3.4 Pattern weights estimation



training corpus, there is not always a reordering
where a treelet matches a pattern. To describe theub parse tree

h f deri h let | hed matched with @;
chance of reordering,.., when a treelet is matche a pattern
with a patternP, we count the occurrences 6fin
the training corpus, and also count the number of re-
orderings where there is a reordering indicated®y  source side

and estimate it as in (4): sentence © .
Wi Wz = W, Vi V2 ¢t Wy
count{ P with reordering
preo(P) - { } (4) i}
count{P observed} Wi Wy e Wy W Vy e Y,
By contrast, one syntactic patteFhusually contains Gfgfﬁr?;ed v ",
V2 e Vg Wi W3 e

more than one reordering scheme from different re-
ordering regions and parse trees, sSo we assign each
reordering schem@ (specified in formula (2)) with Figure 4: Applying patterns
a weight as in (5):

count{reordering O in P} initial edgeEy coming from the original source sen-
count{P with reordering} tence, if there are outgoing edges generated from

_ _ ~ patterns{Py,---,P,,---, P}, the weights forE,
Thus, generally, a syntactic reordering pattern is €% defined as in @):

pressed as in (6):

w(O, P) =

k
P = {tree | Preo | Ol,wl, o ,On,wn} (6) w(Eo) = OH‘Z{(l ; Oé) * {1 - preo(Pi)}} (7)
i=1

wheretree indicates the tree structures of the pat-
tern, which have a reordering probability.,, and where« is the base probability to avoiffy being
aso containn reordering schemes with weights.  equal to zero, and,..(F;) is the weight of pat-
tern defined in formula (4). By contrast, suppose
that P, hasr reordering schemes corresponding with
Similar to (Crego et al., 2007; Zhang et al., 2007af Es. - -+ , Es+r—1}, then weight forE; is defined as
Zhang et al., 2007b), we use extracted patterns tB (8):
transform source-side sentences into word lattices.
Sentences in both the development and test sets arg(E;) = w
transformed into word lattices for potential reorder-

Dt Wi (F)

ings, wher r r re of rni reelet of . . .

gs, where atree structure of a pattern is a treelet Wheres <=7 < s+r,andw(F;) is the reordering
a source-side parse tree.

. . - scheme weight defined in formula (5). Here we sup-
A toy example is depicted in Figure 4. In the ose equal probabilities for all possible reorderings
figure, treeletT” of the source-side parse tree isIO qual p P 9

. which start with a same lattice node.
matched with a pattern. Leaf nod¢s,,---a,,} €

4 Applying syntactic reordering patterns

(1-a)
k

* Preo( ;) * (8)

Ly of T" have a span fron{ws, -+ ,wy} inthe g Experiments
source sentence, whilé;,--- ,b,} € Lp have
a span from{vy,--- ,v,}. Applying the reorder- The experiments are conducted on a medium-sized

ing operation in formula (1), we add an edge frontorpus for Chinese-English task. The training
the start ofw; to the end ofv, by swapping data is the FBIS corpus, which is a multilingual
{wy, - ,wp} with {vy,--- ,v,}. paragraph-aligned corpus with LDC resource num-
For each source sentence, all matched patterns drer LDC2003E14, and we use the Champollion
sorted by weight®,., in formula (6), and a pre- aligner (Ma, 2006) to perform sentence alignment
defined number of reorderings are applied to gerto obtain 256,911 sentence pairs. We randomly se-
erate lattice. For each node in the lattice with atected 2,000 pairs for devset and another 2,000 pairs



for test set, which is referred as FBIS set in this pas.2 Lattice building

per. The rest of the data is used as the training selyye apply the pruned syntactic reordering patterns to
Evaluation results are reported on two differenpoth the devset and testset, and convert source sen-
sets: FBIS setand the NIST 2008 test data. For FBkgnces of both sets into word lattices. However, the
set, only one reference translation is avaible for botfattices size increases dramatically with respect to
devset and testset. For NIST data, we use the NIShe number of applied patterns. To guarantee man-
2005 test set which includes 1,082 sentences as thgeable word lattice inputs for the Moses decoder,
devset, while the NIST 2008 set is used as the tege also constrain the generating process of word lat-
set with 1,357 sentences. In both devset and testsgles with empirical parameters: for each source sen-
of NIST data, there are four reference translationgence, the maximum number of reordering schemes
for each of the sentences. is set to 30, and the maximum span of a pattern is set
Moses (Koehn et al., 2007) is used as a baselint 30.
Word alignment is performed with GIZA++and is To calculate the weights of word lattices, we set
refined with the “grow-diag-final” method (Koehn the base probability in formula (7) and (8) to be 0.05.
et al., 2005), while tuning is performed with Mini- The generated word lattices of the devset and the
mum error rate training (MERT) (Och, 2003). Wetestset are fed into Moses for tuning and evaluation
also use SRILM to build 5-gram language modelsrespectively. No extra training steps are required.
for all the experiments with modified Kneser-Ney The built-in reordering models (distance-based

smoothing (Kneser & Ney, 1995). and lexical reordering) of Moses are also enabled
The pattern extraction experiments and the result¢hile dealing with word lattice inputs, and their
are reported in the fo”owing Subsections_ WEIghtS in the |Og-|inear model (inCIUding lattice in-

put weights) are tuned at the same time.

5.1 Pattern extraction 5.3 Resultson FBIS set

The lattice scoring approach is performed in a simI0 compare with the built-in reordering models of
ilar manners to that of (Jiang et al., 2010). We usMoses, we set the distortion-limit (DL) parameter of
the same baseline system as specified above to &doses to bg0, 6,10, 12}, and the evaluation results
Complish the lattice Scoring procedure_ Howeve@f the testset on FBIS data are shown in Table 1.

instead of NIST data, the initial PBSMT system is
tuned with FBIS devset to obtain weights for lat-
tice scoring. After that, we collect anchor pairs and
build source-side lattices based on the word alignt Basdine
ments generated in the training phase. Then Viterhi
search is carried out to generate phrase alignments.

System | DL | BLEU | NIST | METEOR
0 | 2232 | 6.45 52.51
6 | 23.67 | 6.63 54.07
10 | 24.52 | 6.66 54.04
12 | 2457 | 6.69 54.31
0 | 2392 | 6.60 54.30

Frqm the training corpus, 48,285 syntactic _re- ' 6 2457 | 6.68 54.64
ordering patterns with a total of 57,86_1 reordering| Lattices 10 | 2498 | 671 5467
schemes are extracted from phrase_ alignments. T_re 12 | 2484 | 6.69 54.65
average number of non-terminals in all patterns i
11.02. However, for reason of computational effi- Table 1: Results on FBIS testset

ciency, we pruned any patterns with non-terminal

numbers less than 3 and more than 9. This leavesAs shown in Table 1, for BLEU, NIST and ME-
18,169 remaining syntactic reordering patterns witiEOR scores, the best performance of the baseline
22,850 reordering schemes, with a average numbsgystem is achieved withdistortion limit 12 (under-

of 7.6 non-terminals. lined), and the best peroformance of our syntactic
reordering method is obtained with ditortion limit 10
Ihttp:/ffjoch.com/GIZA++.html (underlined). Our method outperformed the base-

2hitp://www.speech.sri.com/projects/srilm/ line by 0.41 (1.67% relative) BLEU points, 0.02



(0.30% relative) NIST points and 0.36 (0.66% relaimprovements become lesser singnificant. This is-
tive) METEOR points respectively. The comparisorbecause with larger distortion limit of PBSMT, the
between the baseline system and our method wittaseline system can try longer reorderings, while
the same distortion limits shows that the improvour method has a restriction on the range of the re-
ments are consistent for all distortion limits (scoresrdering patterns. In this case, the number of re-
with bold face) except the NIST score with distor-orderings that are considered by our method but not
tion limit 12. However, these results still confirmtried by the baseline systems become lesser. Thus

our proposed method on the FBIS data. the improvements of our method become smaller.
However, we can still improve the system by 0.9
54 Resultson NIST set (3.8% relative) and 1.64 (10.5% relative) BLEU

As in the last section, we also adopt serveral disyoints for the two testset with distortion limit 6,
tortion limit parameters, and report NIST evaluationyhich is the default setting of Moses. And with all
results in Table 2. distortion limits, our method can benefit the base-
System | DL | BLEU | NIST | METEOR Ii'ne syst_em fqr different automatic evalutaio_n me-
tircs. This indicates that our method can provide ex-
0 1443 | 5.75 45.03 . - . .
tra reordering capabilities for the built-in reordering
Baseline 1561 588 45.75 models of PBSMT.
10 | 15.73 | 5.78 45.27 ' .
12 | 15.89 | 6.16 45.88 We also compare systgm performance with re-
0 | 1677 | 654 2716 spect to the distortion limit parameter of Moses in
Figure 5 and 6 for FBIS testset and NIST testset re-
L attices b | L2 | 667 47.65 spectively. In the figure, for each of the three au-
10 | 17.15 | 6.64 47.78 L : .’ .
12 | 1688 | 656 4717 tomatic evaluation metrics, the baseline system per-
formance tends to have a better results with a larger
Table 2: Results on NIST testset distortion limit, while for lattice inputs, medium dis-
tortion limits lead to better performance. This in-
From Table 2, the best performance of the baseficates that, with lattice inputs which have already
line system is achieved with ditortion limit 12 (un-considered potential reordering on the source side,
derlined), while for our method, the best BLEUlarge distortion limits do not further benefit the SMT
and NIST scores are obtained with distortion limitsystem. From this point of view, it also indicates
6 (underlined), and the best METEOR score is aahat long range reordering might be captured well
complished with distortion limit 10 (underlined). by syntactic reordering. By contrast, short range
Our proposed method significally outperformed theeorderings are supposed to be handled well by
baseline system by 1.36 (8.56% relative) BLEUWistance-based and lexical reordering models. Thus,
points, 0.51 (8.28% relative) NIST points and 1.9Gor our proposed syntactic reordering enhanced sys-
(4.14% relative) METEOR points respectively. Sim+em, a medium distortion limit should be preferred.
ilary, the comparison between the baseline systemowever, in the experiments, our method do pro-
and our moethod with the same distortion limitssides consistent improvemnts for all distortion lim-
demostrates that the improvments are also consigs.
tent for all distortion limits (scores with bold face).
These results indicate the effectiveness of the sy Conclusion and future work
tactic reordering model on the NIST 08 data for our

(o3}

medium-sized corpus. A novel approach of syntactic reorderings for PB-
, _ SMT systems is studied in this paper. It aims at
5.5 Discussion a bottom-up approach to extract syntactic reorder-

From the results shown in the previous sections, wiag patterns from phrase alignments generated via
found that our method can benefit the baseline PBattice scoring, which indicates reorders favoured

SMT system with its built-in reordering models. Butby the baseline system. Word lattices are used to
we observed that with a larger distortion limit, therepresent potential source-side reorderings. Pattern
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Figure 5: Score comparison on FBIS testset (DL = distortion limit)
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Figure 6: Score comparison on NIST testset (DL = distortion limit)

weights are estimated from the training corpus and Meeting of the Association for Computational Linguis-
are used to determine the edge weights in the word tics, pages 529-536, Sydney, Australia. .
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