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Abstract

In the formally syntax-based MT, a hierar-
chical tree generated by synchronous CFG
rules associates the source sentence with the
target sentence. In this paper, we propose
a source dependency model to estimate the
probability of the hierarchical tree generated
in decoding. We develop this source depen-
dency model from word-aligned corpus, with-
out using any linguistically motivated pars-
ing. Our experimental results show that in-
tegrating the source dependency model into
the formally syntax-based machine transla-
tion significantly improves the performance
on Chinese-to-English translation tasks.

1 Introduction

In the word-based translation model introduced by
IBM (Brown et al., 1993), the hidden variable,word
alignment, associates the source sentence (c) with
the target sentence (e). This model has been ad-
vanced to the phrase-based and syntax-based mod-
els, and the hidden variable has also been trans-
formed into new forms:phrase alignmentin phrase-
based translation andhierarchical tree in syntax-
based translation. In all cases, we can search the best
translation among all possible target sentences and
hidden variables through a log-linear model (Och
and Ney, 2002)

ê = argmax
e,h

(Σiλifi(c, h, e)) (1)

wherefi are feature functions which are dependent
not only onc ande but also on the hidden variable
h.

In this paper, we introduce a new feature func-
tion f(c, h, e) = Pr(h) to modelh in the formally
syntax-based machine translation1, whereh is a hi-
erarchical tree shared byc ande. Probabilistic for-
mal grammars are not adequate to modelh because
they suffer from the problem of overgeneralization:
producing many different hierarchical trees with the
same probability. This is the reason why we incor-
porate an independent modelPr(h).

Since each node in the hierarchical tree contains
the source and target part, we can project the tree
onto either the source side or the target side.Pr(h)
is therefore factored into

Pr(h) ≈ Pr(hc)Pr(he) (2)

wherehc andhe are the tree projections ofh on the
source and target side respectively.

Without loss of generality, we discussPr(h)
within the context of Bracketing Transduction
Grammar (BTG) (Wu, 1997), which is a binary syn-
chronous CFG widely adopted in machine transla-
tion. We focus onPr(hc) in this paper and leave the
modeling ofPr(he) to be our future work. To cal-
culatePr(hc), we use a source dependency model.

The challenge to our source dependency model is
the acquisition of training data: source dependency
trees. The source dependency tree used for training
has to satisfy two conditions: 1) it is not necessar-
ily linguistically sensible; and 2) it is produced un-
der bilingual context. We observe that we can ob-
tain such dependency trees from word alignments
because word alignments implicitly contain hierar-
chical structures of both source and target language.

1We inherit the definition of the formally syntax-based MT
from (Chiang, 2005). It refers to syntax-based MT which uses
synchronous CFG with no linguistic commitment.



To uncover the hidden structures from word align-
ments, we adopt the algorithm of (Zhang et al.,
2008). The algorithm decomposes word-aligned
sentence pairs into hierarchical trees where leaf
nodes are permuted from left to right according to
the target language word order. From these trees,
we extract the normalized source trees. In order to
obtain dependency relations of source words, we an-
notate nodes with head words and labels. Without
introducing conflict with the original definition of
dependency tree, we call the annotated tree obtained
from the above steps source dependency tree. Us-
ing these source dependency trees, we develop our
source dependency model.

To the best of our knowledge, this is the first at-
tempt to use a source dependency model in machine
translation, in which the model is built from word
alignments without using any linguistic parsing.

The rest of the paper is organized as follows. In
section 2, we learn source dependency trees from
word alignments. At first we briefly introduce
(Zhang et al., 2008)’s hierarchical analysis of word
alignment, and then describe the way to transform
the bilingual hierarchical analysis into source depen-
dency tree with a concrete example. In section 3, we
develop our source dependency model. In section 4,
we describe new decoding with a source dependency
model. In section 5, we present our experiments. In
section 6, we discuss our method and lay out some
future directions. Section 7 presents the discussion
of related work and section 8 concludes the paper.

2 Acquisition of Source Dependency Trees
from Word Alignments

In this section, we use (Zhang et al., 2008)’s shift-
reduce algorithm (SRA) to decompose word align-
ments into hierarchical trees. Since our focus is not
hierarchical analysis of word alignments, we ignore
the description of the algorithm. Our interest here is
to transform the hierarchical analysis of word align-
ment into a source dependency tree.

2.1 Hierarchical Analysis of Word Alignment

Given an arbitrary word-level alignment as an input,
SRA is able to output a tree representation of the
word alignment (a.k.adecomposition tree). Each
node of the tree is atight phrase, where all boundary

words are aligned.

Figure 1a shows an example of many-to-many
alignment, where the source language is Chinese
and the target language is English. Each word is in-
dexed with its occurring position from left to right.
Figure 2b is the tree representation of the word
alignment after hierarchical analysis using SRA. We
use[s-t|u-v] to denote a bilingualitem, wheres, t
and u, v are the beginning and ending index in
the target and source sentence, respectively. Note
that a bilingual item is not equivalent to a bilin-
gual phrase. The words within[s-t] of a bilingual
item may be aligned to words outside[u-v] or vise
versa. Each node of the tree is composed of a series
of items, where all items together form a bilingual
phrase. If an item can be decomposed into smaller
items, it is said to bedecomposableotherwisenon-
decomposable. For example, in Figure 1b, item
[1-13|1-11], [3-6|8-11] and[7-9|4-5] are decompos-
able while[2|2-3] and[10|3] are non-decomposable.

All leaf nodes are composed of non-
decomposable items. But nonterminal nodes
also frequently include non-decomposable items.
There are two reasons for this. First, unaligned
target words are attached as high as possible
in SRA.2 This means that they are included in
nonterminal nodes as a non-decomposable item
rather than an independent leaf node. Second,
target words whose counterparts on the source side
overlap (due to many-to-many alignment links)
will be non-decomposable items in non-terminal
nodes. For example,[2|2-3] and [10|3] are such
non-decomposable items.

2.2 Source Dependency Tree Transformation

While the decomposition tree of word alignment
shows the hierarchical structure of source and target
sentence, dependency relations among source words
are not directly visible from the tree. We need to
transform the decomposition tree into a source de-
pendency tree, where dependency relations are ex-
plicit. We take three steps to complete this task: nor-
malization, binarization and finally annotation.

2Note that unaligned source words are not included in our
decomposition trees.



1 这 些

2 新

3 变 化

4 对

5 我 国

6 吸 收

7 外 资

8 带 来

9 新

10 的

11 挑 战

 1 Such
2  changes
3  have
4  brought
5  new

7  to
8  our
9  country
10 in
11 attracting
12 foreign

6  challenges

13 capital

(a): Word Alignment

(c): Normalization (d): Binarization

([1-11])

([1]) ( [8-11], [4-5], [6-7])

([9])([8])

([8-9]) ([11]) ([6]) ([ 7])([5])([ 4])

([1-11])

([1]) ([4-11])

([9])([8])

([8-9]) ([11])

([6]) ([ 7])

([5])([ 4])

([8-11]) ([4-5])

([8-11, 4-5]) ([6-7])

(b): Hierarchical Analysis

([1-13 | 1-11])

([1|1]) ([2|2-3], [3-6|8-11], [7-9|4-5], [10|3], [11-13|6-7])

([4|8])([3|8])

([5|9])([3-4|8])

([3-5|8-9]) ([6|11]) ([11|6]) ([12-13|7])

([13|7])([12|7])

([8-9|5])([7 | 4])

([9|5] )([8|5] )

(e): Annotation

(X: 吸 收 /VV)

(DT: 这 些 ) (X: 吸 收 /VV)

(JJ: 新 )(VV:带 来 )

(X: 带 来 /VV) (NN: 挑 战 )

(VV: 吸 收 ) (NN: 外 资 )

(PN: 我 国 )(P: 对 )

(X: 带 来 /VV) (X: 对 /P)

(Y: 带带带带 来来来来 /VV) (X: 吸 收 /VV)

Figure 1: Illustration of acquisition of source dependency
tree from word alignment.

2.2.1 Normalization

There are various types of links (many-to-
one, one-to-many and many-to-many) in word
alignments, some of which introduce noises into
decomposition trees, including notorious non-
decomposable items in nonterminal nodes. The goal
of normalization is to deal with these noises and
clean the decomposition trees as much as possible.
We define 3 types of operations to normalize a de-
composition tree as follows

• Merge If a source word is aligned to multiple
consecutive target words, each target word will
form a leaf node with the same source word
in the decomposition tree. In Figure 1b, leaf
nodes([3|8]) and ([4|8]), ([9|5]) and ([8|5])
are formed under such situation. The operator

Merge combines all such leaf nodes into one
leaf node, and correspondingly deletes the pre-
vious parent node.

• DecomposeIf a target word is aligned to mul-
tiple consecutive source words, only one leaf
node will be formed for all the source words
aligned to the target word in the decomposi-
tion tree. The Decompose operator, contrary to
the Merge operator, decomposes this leaf node
into multiple leaf nodes. Each source word will
form a leaf node together with the target word.
A preterminal node is generated to dominate all
new leaf nodes.

• DeleteUnaligned target words or target words
involved in many-to-many alignments form
non-decomposable items in non-terminal nodes
of the decomposition tree. Currently we simply
delete all such non-decomposable items. This
deletion will remove some source words from
our final dependency trees. For example, in
Figure 2b, item[2|2-3] and [10|3] are deleted
after normalization, which correspondingly re-
moves the source word[2] and[3]. To deal with
this problem, we remove less probable links in
word alignments before hierarchical analysis.
A less probable linkconnects a source wordC
to a target wordE with a relatively low prob-
ability of Pr(C|E) or Pr(E|C). These links
can be considered as noises, introducing many-
to-many alignments and overlaps. In Figure 1a,
the link between the source word [3] and the
target word [10] is a less probable link. Re-
moving this link, we can keep the source word
[2] and [3] after normalization. However, re-
moving less probable links is not risk-free since
changes in word alignments will change the de-
composition trees. We will discuss this further
in our experiments.

After carrying out all possible operations listed
above on the decomposition tree, we only keep
source words in each node. Figure 1c shows the re-
sult after we normalize the tree in Figure 1b.

2.2.2 Binarization

Since we use binary grammars (BTGs), we bina-
rize a tree node whose fan-out is larger than 2 af-



ter normalization. There are two simple and pop-
ular binarization methods:left-binarization and
right-binarization . Given a noden that domi-
nates k childrenn1, ..., nk wherek > 2. The left-
binarization, first combinesn1 andn2 and generates
a new noden12 to dominate them. The new node
n12 will replacen1 andn2 in the children sequence:
n12, n3, ..., nk. Then the noden12 andn3 are com-
bined and a new noden123 is generated. The pro-
cedure repeats until the last child nodenk is com-
bined with the newly generated noden1...k−1 and a
new noden1...k is generated to replacen. The right-
binarization follows the similar procedure but runs
from right to left on the children sequence. Figure
1d shows the binary tree of Figure 1c after the left-
binarization is used.

Our preliminary results show that the left-
binarization is better than the right-binarization.
Therefore we use left-binarization in all our experi-
ments.

2.2.3 Annotation

The annotation is the final step for transforming a
decomposition tree of word alignment into a source
dependency tree. In this step, we attach two annota-
tion elements for each node: label and lexical item
(i.e. head word and head tag). To obtain annota-
tions, we tag the source language using an external
part-of-speech (POS) tagger. Figure 1e shows the
final annotated tree, wherel:hw/ht in each node de-
note the label, head word and POS tag of the head
word, respectively.

• Label For each leaf node, we annotate it with
its POS tag. For example, the leaf node([8])
and ([9]) are labeled with VV and JJ respec-
tively. For a binary nonterminal node, we use
only two labels: X and Y. The former denotes
a straight order between two children nodes
while the latter an inverted order. For instance,
the highlighted node (in bold) in Figure 1e is la-
beled with Y. The left child of this node covers
the source sequence[8-11] while the right child
covers[4-5]. The two children are in reverse
order.

• Lexical Item To obtain dependency relations,
we annotate head word and head tag for each

POS Tags Weight
VA, VC, VE, VV 8
AD, AS, P, BA, SB, LB, LC, ETC,
DER, DEV

7

FW, NN, PN 6
NR, NT 5
M, DT, JJ 4
OD, CD 3
DEC, DEG, CS 2
CC, IJ, MSP, PU, SP, ON 1

Table 1: Predefined weights for all POS tags. The tags
listed here are from the Chinese Penn Treebank (Xue and
Xia, 2000).

node. The head word of a parent node is de-
rived from the head word of its head child.
To determine which child node is the head
child, we use heuristic rules based on prede-
fined weights for all POS tags (shown in table
1). For any two children nodesnl andnr with
head tagp andq respectively, if the weight of
p is larger than that ofq, nl will be the head
child; otherwisenr. If the weights ofp andq
are equal, we select the right child (nr) as the
head child.

3 Source Dependency Model

Since our dependency trees are binary, each nonter-
minal node has only one dependency relation be-
tween the head child and modifier child. We cal-
culatePr(hc) as follows

Pr(hc) =
N∏

i=1

Pr(ri) (3)

whereN is the number of nonterminal nodes inhc,
r is the dependency relation between the head child
and modifier child of theith nonterminal node.

Let np be the parent node,nh be the head child
node andnm be the modifier child node. Similar to
(Collins, 1999), we factorPr(r) into two distribu-
tions. The first distribution is the probability of gen-
erating the label and head tag of the modifier node
given context features from the parent node and head
node:

Pr(nm.l, nm.ht|np.l, nh.l, nh.ht, nh.hw, dir) (4)



L Pr(nm.l, nm.ht|·) Pr(nm.hw|·)
0 All All
1 np.l, nh.l, nh.ht, dir np.l, nh.l, nh.ht, nh.hw
2 np.l, nh.l, nh.ht nh.ht, nh.hw
3 nh.l, nh.ht nh.ht

Table 2: Back-off structures for the two probabilities. L
means Back-off level.

wheredir is the direction ofnm relative to the head
nodenh. In the second distribution, the head word
of nm is generated with the probability:

Pr(nm.hw|np.l, nh.l, nh.ht, nh.hw,

nm.l, nm.ht, dir) (5)

We obtain maximum-likelihood estimates of the
two distributions (formula (4) and (5)) using fre-
quencies gathered from source dependency trees
which we produce from word-aligned corpus. To
deal with the data sparseness problem, we smooth
the two probabilities through Witten-Bell interpola-
tion, similar to (Collins, 1999). Table 2 shows the
back-off structures for the smoothing. Further, for
words occurring less than 5 times in training data,
and words in test data which have never been seen
in training, we replace them with the ”UNKNOWN”
token.

As described in the introduction,Pr(hc) is in-
tegrated into the log-linear translation model as a
new feature. The weight of this new feature, like
the weights of other features, is tuned via minimum-
error-rate training (MERT) (Och, 2003) on a devel-
opment set.

4 Decoding with Source Dependency
Model

Since we use a bottom-up CKY parsing algorithm
for decoding, computing the source dependency
model score is quite straightforward. When a new
node of the hierarchical treehc is being constructed,
we use the predefined POS tag weight table (Table
1) to determine the head. If the BTG lexical rule
(A → x/y) is used to produce a leaf node upon a
source span, we select the rightmost source word
with the highest POS tag weight within the source
span as the head word for the leaf node. If the BTG
merging rules (A → [A,A]|〈A,A〉) are used to com-
bine two neighboring nodes and form a parent node

dominating them, we determine the head node ac-
cording to the weights of their head tags. The head
word of the selected node will be propagated to the
parent node. Once the head is determined, the de-
coder can quickly collect the context features of for-
mula (4) and (5).

Here we should note two things. First, the head
word is forcedly assigned according to POS tag
weights. No probability is involved in this deci-
sion. Second, we do not add the head word to the
state of hypothesis. This means we do not expand
the search space which the original decoder has to
explore. These two simplifications greatly reduce
potential workload caused by introducing a depen-
dency model into decoding.

5 Experiments

We carried out experiments to examine the effect of
the source dependency model on Chinese-to-English
translation tasks.

5.1 Experimental Setup

Our baseline is a formally syntax-based system us-
ing BTG, developed by following (Xiong et al.,
2006). The training data is from FBIS corpus, which
contains 6.59M Chinese words and 8.04M English
words. To obtain word-level alignments, we ran
GIZA++ (Och and Ney, 2000) on the corpus in both
directions, and applied the “grow-diag-final” refine-
ment rule (Koehn et al., 2005) to produce the final
many-to-many word alignments. We trained a four-
gram language model using Xinhua section of the
English Gigaword corpus (181.1M words) with the
SRILM toolkit (Stolcke, 2002).

For the efficiency of MERT, we built our devel-
opment set (580 sentences) using sentences not ex-
ceeding 50 characters from the NIST MT-02 set. We
evaluated our systems on the NIST MT-05 and MT-
03 test sets using case-sensitive BLEU-4. Statistical
significance in BLEU score differences was assessed
by paired bootstrap re-sampling (Koehn, 2004).

5.2 Source Dependency Model Training

Because SRA runs very quickly, which produces
within a few minutes all decomposition trees from
our word-aligned sentence pairs, we can easily train
various source dependency models following the
steps described in Section 2.



In order to allow the normalization step to keep
more source words, we removed less probable
links in word alignments. First, we calculate
lexicon translation probabilities in both directions
(Pr(C|E) and Pr(E|C)) from the original word
alignments. Then we search on the source side or
the target side for words which are involved in one-
to-many alignments as follows

• Removing on the source sideIf a source word
C is aligned to multiple target words, we find
the link with the highest probabilityPr(E|C),
which connects to the target wordE. For any
other link connectingC with target wordE′,
if Pr(E′|C) < t × Pr(E|C), we remove this
link. We call this removing methodct, wheret
is the removing threshold.

• Removing on the target sideIf a target word
E is aligned to multiple source words, we re-
move any link (connecting to the source word
C ′) whose probabilityPr(C ′|E) is less than
t × Pr(C|E), wherePr(C|E) is the highest
probability among all links emitting fromE.
We refer to this removing method aset.

We set the thresholdt = {0.05, 0.1, 0.2, 0.4} for
bothct andet. Table 3 shows the statistics about the
source dependency model (SDM) training usingct

andet. We have the following observations

• Excluding unary nodes, most of the remain-
ing nodes are binary nodes, which account for
more than 93%. This is in line with (Zhang et
al., 2008)’s finding. It implies that binary syn-
chronous grammars, like BTG, are adequate for
machine translation.

• Wider thresholds lead to more source words,
nodes and dependency relations. This is help-
ful for our source dependency model training,
since we have more training instances. On the
other hand, however, it could also mislead the
training because the increased dependency re-
lations may be wrong as word alignments are
changed.

• On the same threshold level,ct produces more
training instances thanet does.

#SW #BN #NAN #DR
1/∞ 4.19M 2.86M 0.20M 0.94M
c0.05 4.39M 2.99M 0.21M 0.98M
c0.1 4.48M 3.06M 0.21M 1.01M
c0.2 4.59M 3.16M 0.21M 1.04M
c0.4 4.73M 3.28M 0.21M 1.09M
e0.05 4.34M 2.97M 0.21M 0.96M
e0.1 4.39M 3.01M 0.21M 0.98M
e0.2 4.46M 3.07M 0.21M 0.99M
e0.4 4.52M 3.13M 0.21M 1.01M

Table 3: Statistics on the source dependency model train-
ing. #SW, #BN and #NAN denote the number of source
words kept, binary nodes andn-ary nodes wheren > 2
after normalization, respectively. #DR is the number of
dependency relations extracted from source dependency
trees. 1/∞ denotes that no less probable links are re-
moved.

5.3 Results

Table 4 summarizes the results of our experiments
on Chinese-to-English translation. These results
confirm that the source dependency model can sig-
nificantly improve performance as measured by the
BLEU score, with a consistent pattern of results
across the MT-03 and MT-05 test sets. Without re-
moving less probable links (denoted as1/∞), SDM
still gains significant improvements over the base-
line. Removing less probable links att = 0.05,
the performance drops marginally when compared
with 1/∞ in most cases. Lifting the threshold to 0.1
and 0.2, we obtain the highest improvement over the
baseline (0.7 on MT-03 and 0.8 on MT-05), suggest-
ing that the source dependency model benefits from
the increase of training instances. Larger thresh-
olds (c0.4 ande0.4) degrade the performance again
marginally as compared with1/∞ in most cases,
implying that further increase of training instances
hurts the source dependency model by introducing
wrong dependency relations. Overall,et works bet-
ter thanct, which may be becauseet increases train-
ing instances more moderately thanct does (shown
in Table 3) and therefore introduces fewer wrong de-
pendency relations.

6 Discussion and Future Work

Though the experiments are conducted on BTG, the
method can be applied to other MT systems which



MT-03 MT-05
baseline 0.2599 0.2612
+SDM(1/∞) 0.2645 0.2666
+SDM(c0.05) 0.2626 0.2649
+SDM(c0.1) 0.2670 0.2666
+SDM(c0.2) 0.2664 0.2679
+SDM(c0.4) 0.2646 0.2640
+SDM(e0.05) 0.2659 0.2640
+SDM(e0.1) 0.2660 0.2695
+SDM(e0.2) 0.2652 0.2680
+SDM(e0.4) 0.2677 0.2655

Table 4: Experimental results on Chinese-to-English
translation with the source dependency model (SDM).
Statistically significant results (p < 0.01) over the base-
line are inbold.

use generic synchronous context-free grammars. All
we need to do is to build dependency trees in line
with synchronous grammars from word alignments
following the steps in section 2. If the synchronous
grammars are not binary grammars, we do not even
need to binarize trees.

There are two promising areas where our work
can be extended.

• Obtain hierarchical alignments using ITG(Wu,
1997; Zhang and Gildea, 2005). It is clearly
shown in the experiments that noises in word
alignments influence the performance of SDM
considerably. To address this problem, we
would explore hierarchical alignments as they
contain hierarchical structures intrinsically and
would enable us to obtain high quality source
dependency trees without using complicated
transformation.

• Induce a target dependency model from word
alignments. Based on our proposed method,
we can also obtain target dependency trees in
a similar way as the source dependency trees
to produce a target dependency model. This is
different from (Shen et al., 2008)’s way of in-
ducing a target dependency language model in
that we do not require an external dependency
parser.

7 Related Work

In the formally syntax-based machine translation,
Chiang (2005) propose to add a “constituent fea-
ture” to the log-linear model in order to reward hy-
potheses under which the hidden hierarchical tree
h respects linguistic structures of source language.
While no success is seen with this feature, (Marton
and Resnik, 2008) and (Chiang et al., 2008) advance
this effort and find that penalizing violations of syn-
tactic boundaries of source language improves per-
formance significantly.

In the realm of linguistically syntax-based ma-
chine translation, the hidden hierarchical tree be-
comes more visible because it is explicitly con-
structed using source-language grammars (Liu et
al., 2006; Huang et al., 2006; Zhang et al., 2007)
or target-language grammars (Galley et al., 2006;
Marcu et al., 2006; Shen et al., 2008). The mod-
eling of h is tightly coupled with the probabilistic
source/target-oriented synchronous grammars.

All the prior work listed above requires linguis-
tically motivated parsing. The big distinction from
their work is that we build our source dependency
model from word alignments without using any
monolingual parsing.

8 Conclusion

We have presented a novel method to induce a
source dependency model from word alignments
without using any linguistic analysis. The induced
source dependency model captures dependency re-
lations among source words. We employ this new
model in MT to guide the search for better targets
along hidden trees with higher probabilities. Our ex-
perimental results demonstrate that the integration of
the source dependency model into a BTG-based sys-
tem improves performance significantly on Chinese-
to-English translation tasks.
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