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Abstract

We propose a reordering method to improve
the fluency of the output of the phrase-based
SMT (PBSMT) system. We parse the transla-
tion results that follow the source language or-
der into non-projective dependency trees, then
reorder dependency trees to obtain fluent tar-
get sentences. Our method ensures that the
translation results are grammatically correct
and achieves major improvements over PB-
SMT using dependency-based metrics.

1 Introduction

Word order divergence is a major issue in phrase-
based statistical machine translation (PBSMT). PB-
SMT assumes symmetry of structure in alignment
heuristics. That is, the alignment heuristics (Och and
Ney, 2004) used in PBSMT tend to grow diagonally
from the intersection of bidirectional word align-
ments. If the word alignments are not symmetri-
cal, the heuristics fail to find the correct word align-
ment. Also, the reordering model in PBSMT limits
the movement of target phrases to a predefined win-
dow size. The heterogeneous structure between two
languages requires long-distance movements which
are impossible in PBSMT.

A pair of sentences in English and Japanese em-
beds mass structural divergences. For example, En-
glish follows an SVO (subject, verb, object) struc-
ture and uses prepositions for functional words,
while Japanese follows an SOV structure and uses
postpositions for functional words. As PBSMT is
based on a distance-based word order model, the
structural divergences between these languages lead

to poor translation results. Moreover, the n-gram
language model used in PBSMT ensures local flu-
ency only, but not sentence-level fluency. Therefore,
we need a global word order model to accommodate
the structural divergences and enhance the fluency
of the translation.

Previous research on global reordering focused
on preprocessing and syntax-based approaches. Nei-
ther of the methods, however, employed word align-
ments directly for reordering. In this paper, we pro-
pose a novel method to reorder the target sentence
as a postprocess of the PBSMT system. At the train-
ing step, we model the target language structure as
per the source language. We then recover the origi-
nal word order of the target language in the postpro-
cessing stage.

2 Previous Work

Previous approaches to preprocessing have been fo-
cused on reordering the source sentence to follow
the word order of the target sentence. Many re-
searchers using PBSMT systems (with and without
the distortion model after preprocessing) have tried
to solve the global word order during preprocessing
and have let the PBSMT adjust the local word or-
der. Some have used manually built sets of rules to
apply to the source parse tree (Collins et al., 2005;
Li et al., 2009), and others have obtained the reorder-
ing statistics from training corpora using word align-
ment (Xia and McCord, 2004; Zhang et al., 2007).
These methods are simple but effective especially
for global reordering. However, they require an ac-
curate and robust parser for the source language to
minimize errors and to avoid parsing failure.



Syntax-based approaches are reliant on global re-
ordering information embedded in the translation
model using either the parse tree of source languages
(Huang et al., 2006; Liu et al., 2006), target lan-
guages (Galley et al., 2004; Marcu et al., 2006; Liu
and Gildea, 2008), or by using the parse trees of both
source and target languages (Quirk et al., 2005).
Syntax-based approaches integrated global reorder-
ing within an overall model. This process, however,
increases the complexity of decoding and adds to the
difficulty of error analysis.

Postprocessing approaches to the translation re-
sult have received little attention compared to the
other approaches. Chang and Toutanova (2007) gen-
erated an n-best list using an n-gram language model
with projective constraints for target languages in
English to Japanese translation. The n-best list was
reranked using a log-linear model with various syn-
tactic features. They also modeled the global re-
ordering model for target dependency trees with the
local tree order model (LTOM). The LTOM assumes
that orders of the local tree in the target dependency
tree are independent, and that a dependent node has
a relative offset to its head. Chang and Toutanova
(2007) obtained a dependency tree of target lan-
guages by projecting the tree of source languages
using heuristics as described in Quirk et al. (2005).
The projective constraints enhance the fluency of the
translation because the Japanese language almost al-
ways has projective dependency.

3 Proposed Method

At the training step, we create target sentences that
follow the source language word order using the
word alignment result. The word alignment encodes
the structural divergence between the source and tar-
get languages and allows us to precisely reorder the
target sentences. However, the word alignment pro-
cess is only available at the training phase, but not
at the decoding phase. Hence, previous preprocess-
ing approaches cannot utilize word alignment to re-
order the source sentences, and the preprocessing
of a source sentence is typically undertaken without
consideration of the corresponding target sentences.
In our method, we reorder the target sentence ac-
cording to the word alignment, and refer this opera-
tion as symmetrize.
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Figure 2: System architecture for decoding

Without the distortion model, the output of PB-
SMT follows the word order of the source language.
Therefore, a postprocessing process is required for
global reordering in order to enhance the fluency
of the output sentence. Our postprocessing method
utilizes a dependency parsing. Because the depen-
dency of the target sentence in source order would
not be projective, we adopt a non-projective depen-
dency parsing (McDonald et al., 2005). As the de-
pendency trees are unordered, global reordering is
induced by adjusting the parse trees. We also take
advantage of projective constraints of the target lan-
guage, as is done in Chang and Toutanova (2007).
Unlike their method, however, our method directly
parses the translation result.

Figures 1 and 2 show the overall architecture of
our method for training and decoding. The sym-
metrized target sentences are used to train both PB-
SMT and MST parser!. The original target sentences

"Maximum spanning tree (MST) parser finds the MST from
a directed graph which is fully connected from one node to an-
other.



provides dependency order statistics used to train
LTOM for adjusting unordered target sentences. As
postprocessing, the result from PBSMT is parsed
with the MST parser. The LTOM then adjusts the
parse tree in order to enhance the fluency of the final
translation.

3.1 Constituent in Japanese

A constituent in Japanese is a syntactic unit larger
than a morpheme or a word, and is composed of con-
tent and functional words. Content words contain the
(partial) meaning of a constituent. Functional words
combine with content words to represent the whole
meaning of a constituent. As a representative unit
of meaning, it is more reasonable to build a depen-
dency structure of constituents rather than words, es-
pecially in agglutinative languages such as Japanese
or Turkish (Eryigit et al., 2008).

In this paper, we denote a source language sen-
tence as £ = ej...ey and a target language sen-
tence as F' = fi...f7, where I and J are the
numbers of words in the source and target sen-
tences, respectively. Content and functional words
are grouped as constituents F' = f; ... fx, where K
is the number of the constituents. A constituent fj, is
composed of f;, ... f;, where j; ...j; € [1,J] and
[ is the number of words in a constituent f;. Then
a dependency structure H = h; ... hy is identified
using a target language parser. A head hy, is zero if
fi is the root and the head of f;, otherwise.

From the perspective of global word order, a con-
stituent is a reordering unit in Japanese. A word
alignment matrix A = {(4,7)]7 € [1,I],7 € [1,J]}
gives a constituent alignment A = a;...ax by
selecting one of the alignment of words for each
constituent. As content words typically appear on
the source side, we regard an alignment of con-
tent words as a constituent alignment. This enables
us to obtain an accurate alignment. On the other
hand, the word alignment of functional words have
a low accuracy because functional words tend to
mismatch. Let the words of the source sentence be
span(content(fi.)), where content(fy) is the cor-
responding content words in a constituent of the tar-
get language. We assume that span(content(fi,))

>We use a Japanese dependency analyzer based on support
vector machine (CaboCha) and regard parse trees as gold stan-
dard

Aporrow = 04422
Ainherit = 44220
Aporrow—inherit = 44422
Aipherit—borrow = 44222

Figure 3: Examples of constituent alignments A of
borrow, inherit, borrow-inherit, and inherit-borrow
methods

and span(content(fy,)) do not overlap for all
k1 # ko. Hence, any alignment from a constituent
can be ai. In this paper, we select the smallest
source index (min) among the word alignment, i.e.,
ar = min{i|(i,j) € ANj € [j1, 5]} ax is zero if
{(@, )l € [, al} = 0.

3.2 Training: Symmetrize by Reordering
Target Constituents

For a constituent having no alignment (a; = 0),
we examine two heuristics and their sequential com-
binations. Some word alignments need to be in-
serted due to word alignment error, especially in
verb phrases. Examples are shown in Figure 3. Note
that we have different results on combinations ac-
cording to which method is applied first.

e borrow: Constituent borrows alignments from
its children (bottom-up)

e inherit: Constituent inherits alignments from its
parent (top-down)

e borrow-inherit: After borrowing, a constituent
(leaf node) inherits alignments from its parent

e inherit-borrow: After inheriting, a constituent
(root node) borrows alignments from its chil-
dren

After selecting a constituent alignment, we sort tar-
get constituents by ay to symmetrize the target sen-
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Figure 4: The word alignment (a) for three target constituents (f1 = fifo, fo = fafafs and f3 = fefr) of a
sample corpus (b) and the result of symmetrizing the target corpus (c). Note the non-projective dependency
caused by symmetrization. Relative offsets (fo, —1) and (f;, —1) are learned for a head f3 and a head fo,

respectively.

tence. Then symmetrized target constituents F’ fol-
lows source language order. Note that we still main-
tain the target dependency tree of symmetrized tar-
get constituents, denoted H'.

For example, suppose we have a source sentence
E = ey...eq4, atarget sentence F' = f1 ... f7, and
a word alignment A = {(1,1),(3,3),(4,4),(6,2)}
(Figure 4.(a)). By grouping f1 = f1f2, fo = f3/faf5
and f3 = f¢fr, we have target constituents F' =
f1f2f3, aconstituent alignment A = 132, and a con-
stituent dependency H = 230. After symmetrizing
as in Figure 4, we have ' = f] 1 f4 = fif3f2, and
H' = 302.

3.3 Postprocessing: Non-projective
Dependency Parsing using MST Parser

A symmetrized sentence in the target language cor-
pus follows the word order of the source language.
Unfortunately, we do not have a parser to process
such an ungrammatical sentence. In addition, a sym-
metrized target sentence may contain non-projective
dependency as shown in Figure 4.(c). MST parser
for non-projective dependency takes advantage of
O(n?) time complexity and robustness on parsing
failure. Therefore, we adopt MST parser to train and
parse symmetrized target corpus.

The annotated data for training MST parser is
the symmetrized dependency H’ of the original H
as described in the previous section. We obtain the
original dependency from a target language parser.
For a given source sentence £/, PBSMT without the

distortion model translates E into a target sentence
F’. Note that F” follows the source language order.
Then, we group F’ into target constituents F’ us-
ing the target language analyzer and regard a con-
stituent f,g as a node of the directed graph. Finally
a non-projective parsing gives an unordered depen-
dency tree H'.

3.4 Postprocessing: Adjust Dependency Tree

We obtain a fluent target language sentence by ad-
justing a non-projective unordered dependency tree
given by the MST parser. Recall that Quirk et al.
(2005) used a LTOM of the lexical rule and Chang
and Toutanova (2007) used an additional n-gram
language model to generate n-best order with pro-
jective constraints of the target language.

In this paper, we use a similar representation of
LTOM, which chooses relative offsets of dependents
to the head. From the target training corpus, LTOM
learns relative offset statistics. In the previous ex-
ample, relative offsets (fz, —1) and (f, —1) are
learned for a head f3 and a head fo, respectively.

In the test phase, LTOM chooses relative offsets
of dependents for each head node of the MST. Read-
ing off the dependency tree according to relative off-
sets, a target sentence eventually follows grammat-
ical order of the target language. For instance, if a
translation result F' = f{ f3 f, = fifs3f2 has a un-
ordered dependency H' = 302, then relative offsets
of fy for head fs, and f; for head f, are both —1.
Reading off dependency tree gives f; f2 f3.



Table 1: Corpus Usage and the number of sentences

Train Dev Test
GIZA++ Constituent Alignment Constituent Alignment Not Available
PBSMT Phrase Table Parameter Tuning(MERT) Monotone Decoding
MST Parser Non-projective Model  Pseudo Parsing Accuracy  Dependency Parsing
LTOM Relative Offset Not Used Tree Adjustment
# of sentences 1,172,709 609 1,381

We only use functional words in constituents
(rather than whole words) to avoid data sparseness.
For example, (f2,—1) = (f5,—1) and (f1,—1) =
(fa, —1) are learned for a head f3 = f7 and a head
fo = f5, respectively. We also use the relative fre-
quency of dependents given a head. When we do not
have a certain trained offset for a head, we set the
default offset of all dependents to -1 since Japanese

is a head final language.

4 Experiments

4.1 System Description

In this paper, we use a patent translation corpus pro-
vided by NTCIR-7 Patent Translation Task®. The
English corpus is lowercased and the Japanese cor-
pus is segmented by morpheme. We convert wide
alphanumerics in Japanese to half width. We use
CaboCha” to parse the original target corpus.

The Baseline system uses an implementation
of the PBSMT system, Moses>, with the SRILM
toolkitS. Both the Baseline and proposed method
(Constituent) systems use trigram language model
and minimum error rate training (MERT) included
in the Moses toolkit.

First we obtain the bidirectional word alignments
using GIZA++ and regard the intersection as the
word alignment. Note that we only use the word
alignment of content words of the target language
and select the constituent alignment as described in
Section 3. Then, we symmetrize the target corpus
using the constituent alignment. A phrase table is
trained using source and symmetrized target corpus.
We use MERT with monotone decoding.

3http://if-lab.slis.tsukuba.ac jp/fujii/ntc7patmt/index-
en.html

*http://www.chasen.org/ taku/software/cabocha/

Shttp://www.statmt.org/moses/

Shttp://www.speech.sri.com/projects/srilm/

Table 2: Pseudo parsing unlabeled accuracy (UA)
and unlabeled complete correct (UCC) for each

alignment method (AM)
AM UA UCC
min 75.49 28.04
inherit 75.54 26.27
borrow 74.85 24.63
borrow-inherit 76.34 27.09
inherit-borrow  75.01 26.93
min* 93.06 58.62

Using the symmetrized target corpus, we use
MST parser’ for non-projective dependency. 10,000
sentences from the symmetrized target corpus is
used to train the MST parser. LTOM is trained for
relative offsets using the original target corpus with
dependency.

During the test phase of the Constituent system,
a source sentence is translated without the distortion
model using Moses. After the translated sentences
are grouped into constituents following source order,
the MST parser creates an unordered dependency
tree of the target sentence. The LTOM adjusts this
parse tree by setting relative offsets of dependents
for each head. Finally, a fluent target language sen-
tence is achieved by reading off the parse tree. Cor-
pus usage is summarized in Table 1.

4.2 Pseudo MST Parsing Accuracy

The pseudo dependency accuracy of the MST parser
is estimated using a symmetrized development cor-
pus. We call this “pseudo” because we regard the
original parse tree from CaboCha as the gold stan-
dard. Although we have symmetrized the target con-
stituents, parsing accuracy is measured to compare
with the dependency tree of the symmetrized gold

http://ryanmed.googlepages.com/MST Parser.html



Table 3: Automatic evaluation results using n-gram
based metrics, including the evaluation result using
baseline without the distortion model at the decod-
ing phase (Baseline w/0).

System DevBLEU BLEU NIST
Baseline w/o 26.65 2497 7.1102
Baseline ) 2576 7.1676
Constituent 29.92 26.25 6.9414
standard.

We explore four types of alignment methods to
improve the pseudo parsing accuracy, inherit and
borrow methods, and their combinations as de-
scribed in Section 3. Table 2 shows that the borrow-
inherit method gives the best performance in terms
of unlabeled accuracy. Hence, we use the borrow-
inherit method for the Constituent method.

The oracle (min*) accuracy comes from the MST
parser using the original target corpus. Instead of the
symmetrized target corpus, the oracle MST trains
the original training corpus and parses the original
development corpus. The oracle accuracy (93%) is
high enough to conclude that the training corpus
does not suffer from data sparseness.

4.3 Automatic Evaluation

Human evaluators score the translation result with
respect to adequacy and fluency, and regard the aver-
age of the two scores as translation quality. Callison-
Burch et al. (2006) criticized n-gram based auto-
matic evaluation metrics for weak correlation with
human evaluation, especially with regards to flu-
ency. Dependency-based automatic evaluation met-
rics have been developed to overcome the limitations
of the n-gram based ones (Liu and Gildea, 2005;
Oweczarzak et al., 2007). They suggested metrics to
evaluate machine translation results by parsing both
translation results and reference sentences. Conse-
quently, we use both n-gram based and dependency-
based metrics in this paper.

Using n-gram based metrics, BLEU and NIST®,
we gain 0.49 BLEU but lose 0.23 NIST points (Table
3). On the development corpus, we gain 3.27 BLEU
points. Using a dependency-based headword chain
based metric (HWCM) proposed by Liu and Gildea

8We use mt-evall 1b.pl. http://www.itlnist.gov/iad/mig/tools/

Table 4: Automatic evaluation results using a depen-
dency based metric, using all word in a constituent
and functional words only.

System HWCM,; HWCM;
Baseline 11.22 29.80
Constituent 15.16 34.34

(2005), we gain 3.94 and 4.54 points (Table 4). A
headword chain is a sequence of nodes from a de-
pendent to its ancestors in a dependency tree.

D .
_|cj=a * of c in reference

1
HWCM = — ,
D = > lej=attof c

where D is the maximum chain length and |c| is the
length of a chain c. By limiting the maximum chain
length to 2, we have three unigram chains f;, fo, and
f3 and three bigram chains (f1, f2), (f2, f3), and
(f3,root) in Figure 4.(b). We measure HWCM us-
ing all words (HWCM,,;;) and functional words only
(HWCMy) to represent a node of the dependency.

5 Discussion

5.1 Non-projective Dependency Parsing

Symmetrization leads to non-projective dependency.
MST parser is trained to the symmetrized target cor-
pus and gives a lower performance than the oracle
parser as shown in Table 2. Despite the lower per-
formance, we achieve a similar performance using
the n-gram based automatic evaluation metric. Al-
though the dependency-based metric shows signifi-
cant improvements, our method still requires further
refinement.

5.2 Tree Adjustment

The LTOM learns the dependency order statistics
from the symmetrized target corpus at local level. To
avoid data sparseness, we only use functional words
from a constituent. Content words do not help tree
adjustment, rather they encourage data sparseness.
Experiments considering content words as units of
relative offsets demonstrated lower scores than those
using functional words only.

Table 5 shows an example of a translation result
from the Baseline and from the proposed methods.



Table 5: Translation examples. The main predicates (bold) require global reordering. In Japanese, brackets
represent the boundaries of the constituents and functional words are underlined. The referenced sentence
has five constituents and the dependency H = 53550, the result from the Baseline has four constituents and
the dependency H = 4340, and the result from the Constituent has the dependency H = 2440.

System Translation BLEU HWCM,; HWCM;
an operation display section 42 is provided on the up-
Source . . .
per surface of the main body of the copying machine .
: HEE Ko i 42 21 [T 5h T w3 0]
Baseline P 70.77 25.00 25.00
[Emfiic i3 JIEEATH2 ]
, [ 8% A o] [Eif iz i3]
Constituent . i S 74.93 62.50 100.00
UM I For i 42 21 W bh T 3 ]
> % -
Reference L3 % T A& o] [EM 2 13 ]

The main predicate (is provided) on the source sen-
tence needs global reordering to match a Japanese
predicate (%1 » #L T \» 3) on the reference sen-
tence. Our method outperforms the Baseline as the
MST parser finds the predicate as the root and the
LTOM accurately adjusts the unordered dependency.
Note that the difference between two BLEU scores
is small, though the translation result from the Base-
line system is less grammatical than the result from
the Constituent system. On the contrary, HWCM
scores distinguish the fluency of the two results.
Overall, HWCM scored higher fluency than BLEU.

5.3 N-gram versus dependency based
automatic evaluation

Most automatic evaluation metrics treat functional
words the same as content words. The target cor-
pus we used contains an average of 16.74 content
words, 9.9 functional words, and 8.71 constituents
per sentence. A constituent contains an average of
two content words. This leads to the high score on n-
gram based automatic evaluation metrics. By decod-
ing without the distortion model of the Baseline sys-
tem and comparing the result with the distortion’s,
the difference is only 0.79 BLEU point and 0.0574
NIST score (Table 3).

Thus we need an orthogonal evaluation metric
to avoid the pitfalls of an n-gram based one. Note
that incorrect word order degrades translation qual-
ity even in a free-order language, such as Japanese.
Global reordering therefore is clearly essential. The
higher the parsing accuracy, the greater the fluency

[HR1F 2R B8 42 21 [T 5 T w»

3.1

of a sentence. Consequently, we compare fluency of
translation results using parsing accuracy. HWCM
shows the difference of fluency more clearly than
HWCM,;;. Because we use constituent-level depen-
dency, identical constituents have slightly different
content words. Table 5 shows that a constituent of
our method (_=[ i1 1) and one of reference (_- [
IZ 1% .) which are identical. Thus, HWCM; reflects
fluency better than HWCM,;. On both HWCM met-
rics, Table 4 shows that our Constituent method is
more fluent than the Baseline method.

6 Conclusion

We propose a novel method to improve the flu-
ency of translation results. We symmetrized a tar-
get corpus using the word alignment at the train-
ing step. For global reordering of translation re-
sults, we parsed the result and adjusted the depen-
dency tree during postprocessing. Despite the accu-
racy (potential) loss in each intermediate step, our
method achieved a 1.90% relative improvement on
BLEU scores compared to the Baseline system. We
also gained 35.12% and 15.23% relative improve-
ments on HWCM,;; and HWCM, respectively. We
demonstrate that higher grammatical accuracy in the
translation can be achieved by preserving the projec-
tive constraints in the Japanese language. We have
much room to improve the proposed method. In the
futures we wish to investigate the n-best reranking
approaches within our framework.
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