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Abstract

In this paper we present an extension of
a phrase-based decoder that dynamically
chunks, reorders, and applies phrase transla-
tions in tandem. A maximum entropy classi-
fier is trained based on the word alignments
to find the best positions to chunk the source
sentence. No language specific or syntactic in-
formation is used to build the chunking classi-
fier. Words inside the chunks are moved to-
gether to enable the decoder to make long-
distance re-orderings to capture the word or-
der differences between languages with dif-
ferent sentence structures. To keep the search
space manageable, phrases inside the chunks
are monotonically translated, thus by elimi-
nating the unnecessary local re-orderings, it is
possible to perform long-distance re-orderings
beyond the common fixed distortion limit. Ex-
periments on German to English translation
are reported.

1 Introduction

Despite the success of phrase-based statistical ma-
chine translation systems, fluency of the output,
particularly for long sentences still remains one of
the main challenges in current research on Ma-
chine Translation (MT). Most of the errors in the
MT output are caused by word-order differences be-
tween the source and the target language. Com-
pared to word-based Statistical Machine Translation
(SMT) systems, phrase-based approaches perform
very well in capturing local re-orderings. However,
long distance re-orderings remain a serious chal-
lenge. As Knight (1999) showed, trying all the per-

mutations is computationally intractable, and most
phrase-based MT systems restrict the search space
by limiting the set of re-orderings that are explored
during decoding. Zens et al. (2004) examine the ef-
fect of different constraints on machine translation
quality.

A constraint commonly used in phrase-based ma-
chine translation is the so-called distortion limit,
which restricts the distance between the next phrase
and the previously translated phrase. Most ap-
proaches described in the literature report a distor-
tion limit ranging between 4 and 12 words. This
limitation of course prohibits any word-reordering
going beyond the set limit. This might not be a
problem for language pairs with similar word or-
der such as English-French or Dutch-German (Birch
et al., 2008). A good language model or a lexi-
calized re-ordering model (Koehn et al., 2005) will
be enough to capture the word order differences in
these cases. However, when translating between lan-
guages with rather different word order, for example
an SOV (subject-object-verb) language into an SVO
(subject-verb-object) language, the distortion limit
restriction can severely affect the decoder’s ability
to capture those word order differences correctly.
When translating from German (an SOV language)
into English (an SVO language), it is not unusual
that more than 20 words on the source side need to
be jumped over to translate the verb in the right posi-
tion. While relaxing the distortion limit accordingly
may seem a possible solution to this problem, it
has two severe shortcomings: Firstly, decoding time
rapidly increases with more relaxed distortion lim-
its. Secondly, wider distortion limits also allow for



any re-ordering within the distortion limit which in-
creases the level of noise and puts a higher burden on
the language model to demote wrong re-orderings.

In this paper, we propose a method to enable
the decoder to consider permutations which include
long distance re-orderings. By grouping words and
moving them together, we try to enable the decoder
to consider long-distance re-orderings and avoid un-
necessary short distance permutations. In addition,
our method does not rely on language-dependent
parsers or chunkers and uses the word alignment in-
formation to build the chunker.

The rest of the paper is organized as follows: Sec-
tion 2 provides an overview of the related work ad-
dressing the issue of word re-ordering in statistical
machine translation and the use of chunking in par-
ticular. Section 3 explains our proposed method.
Section 4 discusses our experimental settings and re-
sults comparing the chunking method to a baseline.
In Section 5 we draw some conclusions and discuss
open issues.

2 Related Work

Several phrase-based SMT systems use a very sim-
ple distance-based re-ordering model (Koehn et al.,
2003; Koehn et al., 2007). In such a distance-based
model, monotone translation and short jumps are
preferred over longer jumps. The cost in this model
increases linearly by distance with a slight prefer-
ence for jumps to the right:

d(i) = starti − endi−1 − 1 (1)

where d(i) is the distortion cost of translating the ith
phrase after the (i− 1)th.

More recently, there have been efforts to incorpo-
rate syntax into statistical machine translation, par-
ticularly in order to address the issue of word re-
ordering. A method to incorporate syntactic infor-
mation is to apply syntactically motivated rules to
render the word order of the source sentence sim-
ilar to the target language. These transformation
rules can be syntax-based or lexicalized rules. A
syntax-based rule is a transformation rule that only
contains syntactic tags (Collins et al., 2005; Wang
et al., 2007), but a lexicalized rule contains at least
one word as a constraint (Xia and McCord, 2004).
Xia and McCord (2004) proposed a method to learn

transformation rules, lexicalized and syntax-based
(unlexicalized), from a parallel corpus. Their ap-
proach extracts re-write patterns, applies them to the
source sentence after which the sentence is trans-
lated monotonically. To learn the rewrite patterns,
the source side of the bitext is parsed, phrases are
aligned and lexicalized, and unlexicalized patterns
consisting of parent nodes with their children, plus
their syntactic labels are extracted.

Collins et al. (2005) present an approach sim-
ilar to (Xia and McCord, 2004), but with hand-
crafted, syntax-based rules to re-write source sen-
tences. They argue that baseline phrase-based mod-
els are unable to perform the re-orderings found
in translating between German and English. They
show that many of the re-orderings require long dis-
tance jumps which are heavily penalized by a de-
coder applying a distance-based re-ordering strat-
egy. Another benefit of source re-ordering is its abil-
ity to bring together source words that cannot be ex-
tracted as a phrase as they are non-contiguous in the
original source sentence.

Chen et al. (2006) extract rules at the part-of-
speech (POS) level from the word alignments and
apply these rules to reorder the source sentences.
Crego and Marino (2006) extract rewrite patterns at
POS level as well, however, instead of re-ordering
the source sentence, the re-ordering operations are
integrated into the decoding process.

Zhang et al. (2007) developed a method similar
to other source re-ordering methods, however their
approach works on an intermediate level called ‘syn-
tactic chunks’. A syntactic chunk is a series of words
that consist of a grammatical unit such as noun and
verb. They use a maximum entropy tool to build the
chunking model with training data provided by con-
verting subtrees of Chinese treebank into chunks. A
rule is composed of chunk and POS tags, where a
chunk tag for each word determines the chunk type
that the word belongs to and also whether the word
is at the beginning of the chunk. Before extracting
the rules POS tagging and chunking is applied. As
several conflicting rules can match a given sentence,
the different rule applications are passed to the de-
coder as a lattice.

For all of the the re-ordering approaches dis-
cussed above, a syntactic parser, chunker, or POS
tagger of the foreign language is required. Unfortu-



nately, these resources (at sufficient levels of accu-
racy) tend to be scarce for many languages.

On the other hand, we believe re-ordering the
source sentence makes hard decisions that cannot
be undone. For example, Xia and McCord (2004)
report a decrease in translation quality by allowing
permutations after re-ordering the source sentence.
Also, since all re-orderings are done beforehand, the
impact of n-gram language models, which is quite
crucial in other approaches, is eliminated. To take
advantage of the language model feature, we prefer
to make re-ordering decisions during decoding. In
addition, since one of the strengths of phrase-based
models is to learn many phrases which do not nec-
essarily belong to any syntactic category (DeNeefe
et al., 2007), we believe the syntactic chunks may
diminish this feature. Therefore, we suggest to con-
sider all possible chunks and identify the optimal
chunk boundaries during decoding.

There are also a number of re-ordering ap-
proaches that fully integrate re-ordering into the de-
coding process, see, e.g., (Al-Onaizan and Papineni,
2006; Tillmann, 2004). These models typically pre-
dict the jump orientation (and sometimes distance)
based on the previously translated phrase and the
phrase that is to be translated next. A few sim-
ple syntactic features have been used in some of
these models (Crego and Marino, 2006), however
the fully lexicalized parameters remain the main
source of evidence. Our method differs from lexi-
calized re-ordering models as it allows permutations
beyond the fixed distortion limit and also removes
the need for considering many unnecessary local re-
orderings.

3 Integrating Chunking and Decoding

In this section we describe our approach which in-
tegrates chunking and decoding. While all of the
previous chunk-based decoders first apply chunking,
then reorder the chunks, and finally perform transla-
tion, our approach performs chunking and decoding
at the same time. The advantage is that decisions
at each level (chunking, chunk-based re-ordering,
and translation) are not made independently of each
other.

Penalizing the jumps according to the number of
words in distance-based re-ordering severely dis-

courages making long distance re-orderings and
tends to bias the decoder to translate most of the sen-
tences monotonically (Collins et al., 2005). Here,
we group words together and penalize the jumps
based on the number of skipped chunks. This en-
ables the decoder to skip more than a fixed number
of words and allows for long-distance re-orderings.
On the other hand, we chunk the source sentence in
a way that words inside a chunk can be translated
monotonically in either direction: right to left or
left to right. By eliminating local re-orderings (apart
from the local re-orderings that are captured by the
phrase translations themselves) within the chunks
the size of the search size is kept manageable dur-
ing decoding.

To accomplish this, we extended the standard
phrase-based multi-stack decoding approach to si-
multaneously chunk and apply phrase applications.
The approach consists of two components: Firstly,
a chunk scoring component which is a binary clas-
sifier that gives each chunking candidate a score,
and, secondly, an extension to the decoder that either
expands the current chunking decision or applies a
phrase translation inside an uncovered chunk.

3.1 Chunking Scorer

We define a chunk as a contiguous group of words
that can be translated monotonically from left to
right or right to left. Figure 1 shows an alignment
matrix for a pair of sentences. Given a word align-
ment aJ

1 between a source sentence f = f1, ..., fJ

and target sentence e = e1, ..., eI . We define a chunk
boundary between fj and fj+1 if there is no source
word aligned to {i|aj < i < aj+1}. For instance,
in the example alignment, there is no chunk bound-
ary between f6 and f7, because there is no i such as
a6 < i < a7. Analogously for f1 and f2, as there
is no source word aligned to e2. According to this
definition there is, for example, a chunk boundary
between f2 and f3. The example in figure 1 contains
three chunks. With this definition, a binary classifier
will be learned to classify every point between two
foreign words under two classes: ‘chunk boundary’
and ‘no chunk boundary’

We use a maximum entropy classifier for this pur-
pose and define a set of features based on the word
alignments and above definition. Our set of feature
functions include:



f1 f2 f3 f4 f5 f6 f7

e1
e2
e3
e4
e5
e6
e7

Figure 1: An example of chunks with left to right,
(f1, f2), (f6, f7) and right to left (f3, f4, f5) orientations.

• h1(δ, fj , fj+1), where δ ∈ {1, 0}, + indicates
that the words are in different chunks, so the
point between them is a chunk boundary. h1

gives the probability of being a chunk bound-
ary or not based on the collected frequencies.
In the example of figure 1, we increment the
count(1|f2, f3), count(1|f5, f6) and for all the
other pairs count(0|fj , fj+1).

• h2(δ, fj), where δ ∈ {1, 0}, 1 indicates the
word is a left border of a chunk. In the exam-
ple, f1, f3 and f6.

• h3(δ, fj), where δ ∈ {1, 0}, 1 indicates the
word is a right border of a chunk. In the ex-
ample, f2, f5 and f7.

• h4(fj , fj+1), which is a binary function indi-
cating the significance of the pair in the data.

Given above feature functions, a first set of train-
ing sentences is used to collect the lexicalized fre-
quencies and train the model, the second part is used
to generate features for parameter estimation of the
maximum entropy classifier. We use L-BFGS (No-
cedal, 1980) implemented in (Le, 2004) to optimize
the feature weights.

The chunking scorer is integrated into the base-
line decoder as an additional feature. The feature
function to integrate into Equation 2 is:

hchunk(fJ
1 , e

I
1, C, S) =

log
J∏
1

(CjS(j) + (1− Cj)(1− S(j))) (2)

where C is a function that maps each position on
the foreign side to the set {1, 0}, indicating whether
there is a chunk boundary after this word. S is
the chunking scorer that assigns to each position the
probability of being a chunk boundary.

3.2 Decoding by Chunking

The decoder is a multi-stack, multi-beam decoder
that translates the sentence from left to right, which
can skip multiple chunks and translate them later
to perform any kind of re-ordering. For expanding
each hypothesis either an uncovered chunk is picked
and a phrase translation is applied or a new loca-
tion is marked as a chunk boundary. As the chunk-
ing decisions affect the way phrase translations are
applied, we insert hypotheses with the same cov-
ered words and the same last chunked position in
the same stack. For expanding each hypothesis, the
first step is to label more chunks from the last chun-
ked position, which means expanding the current hy-
pothesis by finding more chunks and assigning to
them the chunking cost. In the next step, if the cur-
rent position is inside an uncovered chunk, the de-
coder continues translating the chunk by applying
new phrase translations. Otherwise, it picks a new
chunk to translate and starts applying phrase trans-
lations within the chunk. No re-ordering inside the
chunks is allowed.

Figure 2 shows an example of a chunk based
derivation. In state 1 of this example, the decoder
labels the position between German words ‘muss’
and ‘die’ as a chunk boundary. This is a chunking
state (C), which finds the labels of the positions be-
tween the words and computes the chunking cost
by the chunking scorer component. For the next
state, the decoder either labels more positions to be
chunked or applies phrase translations to uncovered
words. The latter is done by translating the span
‘man muss’. A translation state (P) can be reached
by multiple phrase applications. In states 3 and 4,
more positions are labeled as chunk boundaries (be-
tween ‘wirkung’, ‘anerkennen’ and ‘anerkennen’,
‘.’). In the next state, the decoder jumps over a chunk
(9 words) to translate the verb. Grouping the words
together makes it possible to do long-distance re-
ordering such as this. The remainder of the decoding
process is to translate the skipped chunk monotoni-
cally and finally chunk and translate the full stop.



1 [ man muss ] die schwierigkeiten bei der bestimmung von ursache und wirkung anerkennen .
C
2 [ man muss ] die schwierigkeiten bei der bestimmung von ursache und wirkung anerkennen .
P we must
3 [ man muss ][ die schwierigkeiten bei der bestimmung von ursache und wirkung ] anerkennen .
C we must
4 [ man muss ][ die schwierigkeiten bei der bestimmung von ursache und wirkung ][ anerkennen ] .
C we must
5 [ man muss ][ die schwierigkeiten bei der bestimmung von ursache und wirkung ][ anerkennen ] .
P we must recognise
6 [ man muss ][ die schwierigkeiten bei der bestimmung von ursache und wirkung ][ anerkennen ] .
P we must recognise the difficulties in the provision of cause and effect

Figure 2: An example of the decoding process by dynamic chunking. The C states are chunking states, which new
chunking boundaries are detected and in P states, phrase translations are applied inside a chunk. The bold parts of the
source sentence show the translated spans in that state. The rest of the decoding is chunking and translation the full
stop.

With extra information in every hypothesis, the
recombination criteria are redefined to consider the
chunking status of a hypothesis. For two hypotheses
to be recombinable (Koehn, 2004), they should have
identical chunk boundaries for the uncovered posi-
tions. This is in addition to commonly used recom-
bination criteria such as identical cover vectors, lan-
guage model history, and last foreign position cov-
ered.

The chunking cost, estimated by the chunking
scorer, is another feature along the baseline features.
Also, the future cost computation component in-
cludes the future chunk distortion cost and future
chunking cost together with the translation model
and language model costs.

The following feature functions are defined to
incorporate chunking costs and chunk re-orderings
costs:

• Chunking cost feature function which assigns
to each chunk a probability according to the
classifier explained in the previous section.

• Chunking penalty which penalizes or rewards
each chunking application based on the sign of
its weight. The optimization algorithm, config-
ures this feature in a way to encourage or dis-
courage longer chunks.

• Chunk distortion model which penalizes jumps
over chunks similar to distance-based re-

ordering model, however instead of the number
of words, it counts the number of chunks.

3.3 Parameters

To control the quality and the speed of the decoder
for different language pairs, a few additional pa-
rameters are introduced. Since decoding inside the
chunks is monotone, all baseline parameters1 apart
from the distortion limit are also needed here.

• chunk length limit: determines the maximum
allowed length for each chunk. A large value,
such as 100, lets the decoder try all available
chunks. On the other hand, for languages with
many local word re-orderings a smaller value
can make the decoding process faster without
hurting the performance (Default: 100).

• chunk number minimum and maximum: These
values control the number of uncovered chunks
before applying phrase applications. They can
be used to control the amount of permutations
during decoding (Default: 1 and unlimited).

• chunk distortion limit: similar to distortion
limit in the baseline, but based on the chunks
instead of words (Default: 6).

1This includes: stack limit, beam width, phrase length limit,
and phrase table entries per source phrase.



German English
Train Sentences 1.4M

Words 38M 40M
Vocabulary 344K 113K
Avg Sen. Length 26.17 27.51

Test(EP) Sentences 2,000
Words 56K 60K
Vocabulary 8844 6050
Avg Sen. Length 28.31 30.09

Test(NC) Sentences 2,028
Words 51K 49K
Vocabulary 9849 7163
Avg Sen. Length 25.31 24.63

Table 1: German to English corpus statistics. Europarl
(EP) and News Commentary (NC) test sets of ACL WMT
2008.

4 Experiments

4.1 Experimental Setup

To examine the effects of dynamic chunking on
translation quality, we have chosen German to En-
glish translation as it involves many long distance re-
orderings. The training and test data sets are taken
from the ACL WMT evaluation (Koehn and Monz,
2006). The corpus statistics are shown in table 1.

The preprocessing stage includes tokenization
and lower casing. There is only one reference trans-
lation for each sentence. The evaluation metrics
used here are BLEU (Papineni et al., 2001), NIST
(Doddington, 2002) and TER (Snover et al., 2006).

The baseline system is a common multi-beam,
multi-stack phrase-based decoder, described in
(Koehn et al., 2003) with following features:

• phrase translation probabilities and lexical
probabilities for both directions

• a trigram language model

• phrase and word penalty

• distance-based re-ordering penalty

The weights for the features are optimized by
MER training (Och, 2003) to maximize the BLEU
(Papineni et al., 2001) score.

Run System BLEU NIST 1−TER
1 EP Baseline 0.2687 7.0063 0.3374
2 EP Chunk 0.2716 7.1084 0.3261
3 NC Baseline 0.2454 7.1591 0.3476
4 NC Chunk 0.2487 7.1798 0.3599

Table 2: Results on German to English task of ACL
WMT 2008 translation task, Europarl (EP) and News
Commentary (NC) test sets. Since TER is measuring the
error, 1−TER is reported. Default values are used for
parameters of the chunking decoder (see 3.3).

4.2 Results

The maximum entropy classifier is evaluated on the
held-out data of the parallel corpus. The average ac-
curacy2 of 10-fold cross validation is 0.73, which
means that around 25% of the chunk boundary deci-
sions are incorrect. On the other hand, the classifi-
cation decisions are not the only source of evidence
that we use to choose the chunking boundaries.
Both the language model and the translation mod-
els (phrases that cover the span) contribute to this
decision. The probability of being a chunk bound-
ary in the training data is 0.3, which is nearly identi-
cal to the probability of assigning a chunk boundary
during the decoding. However, in 32% of the cases
the chunking decision during decoding differs from
the decision of the maximum entropy classifier. This
means, even though the classifier classifies a point as
a chunking boundary, the decoder decides not to use
that chunking decision, mainly based on the transla-
tion and language model costs.

Table 2, shows the results of the chunking ap-
proach compared to the baseline. By looking at the
translation outputs of the chunking system and com-
paring it to the baseline, we can observe that the
chunking system generates very different transla-
tions to the baseline and not in all cases captures the
proper order of the chunks to translate. In general,
there are three main reasons for the chunking system
to fail. Firstly, a wrong classification decision by the
chunking scorer may lead the decoder to jump or
monotonically translate in a wrong position. Sec-
ondly, although the classifier picks a proper chunk-
ing boundary, the other features force the decoder to

2The accuracy is computed based on how many of the
boundary points are classified correctly. Note that, a sentence
of length J , has J − 1 boundary point.



apply the wrong re-ordering. Finally, even with ac-
curate chunk boundaries, the decoder can still fail to
apply the correct re-orderings.

5 Conclusion and Future Work

Inspired by previous work on integrating syntac-
tic chunking into machine translation, a decoder
that dynamically chunks and translates the source
sentences is developed. The results show that the
chunking system generates very different transla-
tions compared to the baseline and it is effective
for a language pair such as German to English that
needs long-distance re-orderings. Dealing with data
sparseness and more accurate classification for de-
tecting chunking boundaries seems very promising.

Although the current set of classification features
is quite simple and it does not contain word classes
or POS features, it performs well compared to the
baseline. Incorporating more features and using
word classes to deal with data sparseness could re-
sult in better classifier decisions and higher transla-
tion quality. It is not entirely surprising that the lan-
guage model seems insufficient to accurately distin-
guish between correct and incorrect re-orderings of
chunks in all cases. A lexicalized re-ordering model
on the chunk-level could help to improve this aspect
of our approach.

References
Yaser Al-Onaizan and Kishore Papineni. 2006. Dis-

tortion models for statistical machine translation. In
ACL ’06: Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th an-
nual meeting of the ACL, pages 529–536, Morristown,
NJ, USA. Association for Computational Linguistics.

Alexandra Birch, Miles Osborne, and Philipp Koehn.
2008. Predicting success in machine translation. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 745–
754, Honolulu, Hawaii, October. Association for Com-
putational Linguistics.

Boxing Chen, Mauro Cettolo, and Marcello Federico.
2006. Reordering rules for phrase-based statistical
machine translation. In Proceeding of IWSLT 2006,
pages 53–58, Kyoto, Japan, November.

Michael Collins, Philipp Koehn, and Ivona Kučerová.
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CD [1 ich weiß , dass es 1][4 bezüglich des einen oder anderen änderungsantrags 4]

[3 noch meinungsverschiedenheiten 3][2 gibt 2][5 . 5]
RE i know there are still differences of opinion on this or that amendment .
BL i know that it is on the one or other amendment still differences of opinion .
CH i know that there are still differences of opinion with regard to the one or other of the amendment .
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