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Abstract

We explore the problem of integrating a
phrase-based MT system within a computer-
assisted translation (CAT) environment. We
argue that one way of achieving successful in-
tegration is to design an MT system that be-
haves more like the translation memory (TM)
component of CAT systems. This implies pro-
ducing MT output that is consistent with that
of a TM when high-similarity material exists
in the training data; it also implies providing
the MT system with a component that is ca-
pable of filtering out machine translations that
are less likely to be useful. We propose solu-
tions to both problems, and evaluate their im-
pact on three different data sets. Our results
indicate that the proposed approach leads to
systems that produce better output than a TM,
for a larger portion of the source text.

Introduction

advantages over most data-driven MT systems. The
most obvious is its ability to translate predictably
and (near-) perfectly any input that it has seen pre-
viously. Another quality of TM is its ability to find
approximate matches and to let the user adapt sys-
tem behavior to his/her own tolerance to errors by
fixing the similarity threshold on such matches; in
other words, TM's benefit from a highly effective
confidence estimation mechanism.

If machine translation is to succesfully integrate
the CAT environment, it should begin by catching
up with TM on these aspects. We argue that this re-
quires two things: (1) the MT system should behave
more like a TM in the presence of high-similarity
matches. In practice, this can be achieved by com-
bining the two technologies, i.e. by building a com-
bination MT system that incorporates a TM com-
ponent. And (2) just like existing TM systems, the
combined MT system should provide the user with
means to filter out translations that are less likely to

While much research effort has been devoted t8e useful.

finding ways of combining the strengths of human It has sometimes been proposed (see e.g. Heyn
and machine translation (see Foster (2002) for a1996)) that MT should be used within a CAT en-
overview), in the end, many human translators stiNironment only when the TM fails to retrieve some-
find MT technology to be unhelpful when it comesthing useful. Unfortunately, this has the effect of

to producing high-quality translations. As a resultrelegating the MT system to the task of translating
MT is not yet well-established within computer-only the sentences that are most unlike previously
assisted translation (CAT) environments, at leasteen ones. For data-driven systems, this turns out
when compared to the much simpler technology db mean translating only the “harder” sentences and
translation memory (TM). missing the chance to do a better job than the TM.
While it is tempting to view TM as a simplistic The reason why MT is often treated as a last resort
form of example-based MT, or a variation on phrasdies in the fact that translators tend to see its perfor-
based MT (or, conversely, to see phrase-based Mance as unpredictable and, as a result, overly likely
as a natural evolution of TM), TM has some notabléo waste their time. In other words, to be accepted



as a useful tool by human translators, an MT systethe query and each source-language sentence in the
needs its own way of determining whether its owrcorpus, and retains the source-target pair from the
output is likely to be useful to the translator. corpus with the smallest distance. This is admittedly
Because MT systems of the statistical phraserery inefficient (although manageable if one resorts
based variety have a lot in common with TM systo simple optimizations and some parallelization),
tems, we take them as a starting point. In what foland while Levenshtein distance may not be riee
lows, we propose relatively simple ways of attaininglus ultrain TM technology, this is possibly com-
the two above goals: Section 2 deals with combiningensated by the fact that TMem performs an exhaus-
TM with phrase-based MT, and Section 3 discussdive search. Additionally, when there are ties in the
estimating translation usefulness. Our experimentganslation memory, with alternative translations, we

and results are presented in Section 4. use an IBM Model 2 component to pick the transla-
tion that is most likely given the source.

2 Combining Machine Translation and In practice, CAT systems allow the user to set a

Translation Memory threshold on source similarity, which prohibits the

_ _ _ _ TM component from outputing irrelevant transla-
In this section, we examine the question of how 1§ \hen the corresponding source segment is too
combine a TM with a phrase-based MT system. OUitterent from the query. The higher the threshold
goal is to obtain an MT system that is capable Of et the better the quality of the proposed transla-
taking advantage of exact or close maiches in thg,ns Of course, there is no magic: when raising this
™. threshold, users are simply trading recall for preci-
The methods described here assume a standafigly: the increased quality comes at the expense of
phrase-based SMT system (Koehn et al., 2003) emjacreasing the system’s coverage, i.e. the proportion

ploying a log-linear combination of feature func-of queries for which the system does propose trans-
tions. Unfortunately, there are no such “standardjtions.

TM systems; therefore we had to construct our own, o perform this sort of filtering, TMem relies on a
which we now describe before discussing combingength-normalized variant of Levenshtein distance:

tion strategies.
levenshtein(q, s)

length(q) )

At the core of a TM is a database of existing translayhere ¢ is the query ands is the best-matching
tions: pairs of source-language and target-languageurce-language segment in the corpus. We refer to
segments of text which are mutual translations. TypFMem'’s user-set threshold on the valuesof, asa
ically, these text segments are complete sentencgalpha): if sim(q,s) > «, then TMem outputs the

Given a new segment of source-language text to heanslation ofs, otherwise it outputs nothing.
translated, the system searches its database for an

exact or approximate (“fuzzy”) match. If such a2-2 Related Work
match is found, its target-language version is profhere is a rapidly growing body of work on MT
posed to the user, who is then free to reuse it, modystem combination (see e.g. Callison-Burch et al.
ify it or discard it. Optionally, the resulting (human-(2009)), and many of the methods proposed in the
)translation is fed back to the system and stored intiterature could be applied to the specific task of
the database. combining a TM with a phrase-based MT system.
We simulate the translation memory functional- Somewhat parallel to this, a number of authors
ity of CAT environments with a collection of pro- have examined specifically the MT-TM tandem.
grams we call TMem. Given a corpus of existingMuch work in this line actually aims at producing
translations, in the form of source-target pairs obetter MT systems, as opposed to integrating MT
sentences, and a new source-language sentencénto a CAT environment. For instance, Vogel et al.
be translated, which we call tliiery, TMem com-  (2004) present a SMT system which incorporates a
putes the word-based Levenshtein distance betwetranslation memory component. The system outputs

2.1 Translation Memory sim(g, s) = max(0,1 —



exact matches from the TM without further processen a maximum cover of the input, taking into ac-
ing. Automatic “repairs” are performed for matchesount a rudimentary translation model. A step for-
that display a single “error” (insertion, deletion orward in the same direction is proposed by Gotti et al.
substitution): this operates essentially like a ong2005), who suggest restricting phrases to syntactic
step greedy modification on the TM target. chunks or treelets.

Leplus et al. (2004) show how a translation mem-
ory equipped with a minimal hand-built alteration2-3 Combination Strategies
mechanism for numbers, etc., can be quite succegg-what follows, we propose two different strategies
fully used as a MT system for repetitive texts suclyhich we believe are better suited to the particular

as weather reports. characteristics of TM and phrase-based MT.
The Dynamic Translation Memory(DTM)

method (Bigici and Dymetman, 2008) also aim&-3-1 System selection3-combination
at improving the output of a phrase-based SMT The simplest form of MT-TM combination is
system using a TM: Given a new sentenrct® be probably one in which either the MT or the TM out-
translated, they: put is produced, depending on the context. This
. . . . _strategy has been proposed for combining multiple
L Flnd-the best matching pair farin the TM: MT systems, for example in Nomoto (2004). Many
(s, ); factors can be taken into account when deciding
2. ldentify the longest common subsequence b&vhich system is best for a given input; this decision
tweenqg ands: Ps; process can be viewed as a standard classification
task, and many standard machine learning methods
3. Using word-alignment, identify the corre-.gn pe applied.
sponding subsequencetinFy; An extremely simple, yet effective approach is to
base the decision solely on the similarity between
the query and the closest match from the transla-
tion memory, as proposed by Vogel et al. (2004):
They then translate as usual. This strategy cruciallybove a given similarity threshold, the combined
depends on an essential characteristic of the Mdystem outputs the translation from the TM, other-
system in which it is implemented: the MATRAX wise it produces the MT output. We call the systems
phrase-based SMT system (Simard et al., 2005) c#yased on this combination strategycombinations.
handle non-contiguous phrase pairs, i.e. phrasge value of3 can be optimized to maximize some
with “gaps” both in the source and the target. Thisneasure of translation quality (e.g. BLEU or WER)
makes it possible in step 2 above to build a phrassn a held-out sample.
pair fromsubsequencggot substrings) which cov-
ers as much commonalities as possible betwﬁenz.s.z TM-based Translation Feature Functions

4. Dynamically add the phrase paw;, P,) to the
translation system’s phrasetable

ands. As mentioned earlier, the method of Bigici and
Then there is also some work that aims at improvBymetman (2008) is not directly applicable to stan-
ing TM systems, using MT technology. dard phrase-based systems, because it relies cru-

Schaler (2001) proposes the idea of a (syntacsially on discontiguous phrases. However, we can
tic) phrase-based translation memory that would bgropose a very similar approach, in which multiple
able to mix-and-match phrases from different TMphrases are extracted from the best TM match and
matches, in order to piece together a proposal forfad to the MT system. More precisely, for each in-
previously unseen sentence, EBMT fashion. But iput sentence, we find the single best matching pair
practice, this is more a step for TM in the directiorp = (s, t) from the TM, using the TMem program.
of MT. We then compute the s&}, of all admissible phrase

Simard and Langlais (2001) evaluate the poterpairs fromp as in Och & Ney (2004), but without
tial of complementing a translation memory with dimiting phrase size. In particular, this means that if
phrasetable. Phrases are proposed to the user bagedfind an exact matching sentence in the TM, then



this is presented as a “pretranslated phrase” to thlee user.
MT system, regardless of its size. We want to provide an MT system with a similar

The content of thiTM-based phrasetablis used mechanism. We propose to approximate usefulness
at decoding time as an additional source of phrasesy the similarity of the target translation with a ref-
and its weight in the loglinear model is determinectrence translation. While there are different ways
by MERT on a heldout set, as usual. (Chen et alp measure this, the Levenshtein-baseéa func-
(2009) propose a similar method for combining théion of Section 2.1 is appealing because it is sim-
output of multiple MT systems.) ple to compute and has an intuitive interpretation.

We can use a similar trick to provide the MTFurthermore, when applied to target-language trans-
system with aTM-based language modelse the lations, it is related in obvious ways to the well-
target-language portion of the single best matcknownword-error rate(WER) metric: sim(t,r) =
from the TM to train a sentence-specific languagé — WER(t,r), wherer is a reference (correct)
model, which we use as an additional feature fundranslation and is the translation whose usefulness
tion in the model. we wish to estimate.

Finally, while the MT system may have all the Estimating target similarity is quite obviously re-
right phrases to put together a perfect match frof@ted to work on confidence estimation for machine
the TM, it may opt for alternate phrase translatranslation. As proposed for the latter task (Quirk,
tions, or simply order the phrases differently. One004; Gandrabur et al., 2006), we take a supervised
way to coerce the system into generating somébachine learning approach to the problem: the idea
thing that resembles a TM match as closely as pos {0 base a target quality estimation (QE) function
sible is to introduce &M-match similarityfeature ON & variety of features of the input and output texts,
function, which gives better scores to translationdnd learn output values from training data annotated
whose word-order is more similar to a given targetWith target similarity values.
language sentence. This can be achieved by meand/Ve consider the following input features:

of distance measures such as Levenshtein distance . .
. . . e length of the source inpyt best-matching TM
(as in word-error rate) at-gram precision (as in the

i , ing t MT output
BLEU metric). sources, corresponding targetand outpu

In practice, such similarity feature functions are
extremely costly to use at decoding time: in our ex- e probabilities Psra(q), Psrar(s), Proa(t)
perience, in spite of numerous optimizations, using  and Py (p), according toN-gram language
either one of these will typically multiply decoding models, trained on the source (“SLM”) or tar-
times by a factor of 10. Fortunately, we have found  get (“TLM") portions of the translation mem-
that it is possible to achieve almost similar results  ory;
by applying them only at a rescoring stage, where N _
application is restricted to a list of-best transla- ~ ® language ~ model  probability  ratios
tions provided by the decoder, and therefore much ~ Psza(@)/Proa(t) andPsza(q)/ Priw(p);
less costly. In our experiments, we actually use three |
TM-based similarity features concurrently: Leven-
shtein distance, 1-gram precision and bigram preci-
sion.

various measures of similarity betweerand
s, and between andp: Levenshtein distance,
longest common substringy-gram precision
(forn =1to 4)

3 Target Usefulness Estimation e IBM Model 2 estimates ofP(q|t), P(t|q),
P(s|t), P(t|s), P(q|p) andP(p|q). Here again,
IBM models were trained on the source and tar-
get portions of the translation memory.

As mentioned earlier, CAT software usually allows
the user to set a threshold on similarity between the
query and TM matches. The implicit assumption is
that source-language similarity is a reliable predictor Different types of learners can be applied to this
of the usefulness of the target-language segment ftask, the most obvious being least-squares linear



regression. However, in our experience, the mosbparl corpus contains close to 1.3 million pairs of
stable results were obtained with regression sugentences; again, we split this data into distinct sets
port vector machines. We used tlilesvm imple- train, devandtest The two latter each contain 2000
mentation ofe-regression SVM’s, with all the de- sentence pairs, whilgain contains the remaining
fault settings provided through tled 071R interface sentence pairs (approx. 36 million words of En-

(Meyer, 2001). glish).

4 Experiments Hansard This is also a well-known dataset in MT.
In this case, however, the data was collected inde-

4.1 Corpora pendantly, and contains not only Canadian parlia-

Our experimental data consists in French-Englismentary debates, but also proceedings of the Cana-
bilingual corpora. In all our experiments, we asdian Senate and of various parliamentary commit-
sumed English to be the source language and Freniges, spanning a 12-year period. Like the Ac-
to be the target. All experiments were performed ofuis corpus, this corpus went through clean-up, to-
three distinct data sets, namely tHansard Acquis  kenization, segmentation into sentences, sentence-
andEuroparl corpora. level alignment and lowercasing. Here tiievand

) ) ] testsets each contain approximately 1500 sentences,
Acquis - The Acquiscorpus is the European Com-yypiie thetrain set contains approximately 5.2 mil-

munity's "Acquis communautaire”, prepared andion sentence pairs (just over 100 million English
distributed by the Community3oint Research Cen- words).

tre in Ispra, Italy (Steinberger et al., 2006), version
2.2. We chose this corpus because it is rather tech2  System Configuration
nical, with lots of internal repetition. This makes

. . . —All instances of the MT system discussed here were
it a good candidate for TM. While the corpus is ! 5y ISCUSS W

. . ) ssentially trained in the same way. Distinct systems
available in over 20 languages, only the English an .
) were trained on each of the three corpora. Phrase ta-
French versions were used here.

. bles and language models were extracted from each
The data had to be: converted from XML to plain guag

. . . . é:orpus’strain sets. HMM translation models were
line-for-line sentence alignment format; tokenize

. . sed to perform word alignments on the training cor-
and re-segmented into sentences; re-aligned at tHe P g g

. . HUS’ which were symmetrized by the usual “diag-
sentence level, using a variant of the Gale & Church_ ., , : :
: . and” algorithm prior to phrase extraction. Phrases
method (the provided alignment was at the para- L : .
were limited to a maximum of 8 words. In addi-
graph level); and lowercased.

Even after re-alianment. some lines were exce tion to raw joint translation probabilities, various
9 ’ ¥moothed conditional probabilities were used as dis-

tswely long kancti C?ufﬁd proplem? n ;[he MT r‘:‘ysfinct phrase feature functions (Foster et al., 2006).
€m, So we keptonly those pairs of SENIENCES Shorlep target-language models were 4-gram models

thar::I 809 (_:h?rr]acters (that's Sm|| a healthydlSO.-ZO_With Kneyser-Ney smoothing.
words...); in the process, we also removed pairs in The dev sets were then used to optimize the

which one sentence was empty. , ) .
. L . model’'s decoding and rescoring parameters. In ad-
Finally, the data was split into three partsain, o . . .
) . dition to the decoding feature functions, rescoring
devandtest The last two contain 3000 pairs of .
. also relied on IBM-Model based features, plus some
sentences each, which leaves close to 330k senten%e
L nbest-post features, some features that check for
pairs intrain. :
mismatched parentheses, quotes etc. Parameter op-
Europarl The Europarl corpus is a collection of tim.iz.ation was performed using minimum error-rate
text from the proceedings of the European Parlidraining (MERT) on BLEU scores (Och, 2003).
ment. We used the French and English versions of )
this corpus as prepared by Philipp Koehn (2005) fof-3  Translation Results
training SMT systems. This is a well-known dataseTable 1 presents the performance of the main sys-

that is commonly used in MT experiments. The Eutems we tested on each corptesstset. Results are



presented both in terms of BLEU scores and wordoming from the TM cannot generally be expected
error-rate (WER). to be a proper translation of the query, since it is
The first line shows the results of using only &nown to be the translation of something else. In an
TM, namely our TMem program. These results reMT perspective, producing output which ksown
veal some fundamental differences between our dife be wrong is somewhat disturbing. Therefore, we
ferent corpora with regard to internal repetition. Euchose to restrict the use of the TM to exact matches
roparl is a typical example of a corpus for whichonly.
TM’s are mostly useless; as it contains very lit- , o
tle sentence repetition, TMem’s performance is ex¢-4 Quality Estimation Results
tremely low. In comparison, TMem performanceThe effect of our QE component (Section 3) can
on the Hansard corpus is surprisingly high, reveabe seen in Figure 1, which shows the tradeoff be-
ing an unexpected amount of repetition in that cortween translation quality and source text coverage
pus. Upon analysis, this is explained by the presas we modify thex threshold on system output. Text
ence of much procedural or formulaic material (sessoverage was measured as the proportion of source-
sion opening, closure, etc.) and also by the volanguage words for which the system did propose a
ume of material (over 100M words). Finally, and agranslation. Output quality was measured only on
pointed out earlier, the Acquis corpus is inherentlyroposed translations (i.e. we ignored sentences for
very repetitive, and TMem displays its strongest pemwhich the system did not propose a translation). For
formance there. the TMem system, thresholding was done on the
Internal repetition also seems to affect MT resultsim function (Section 2.1); for MT systems (base-
positively, as can be seen on line 2 of Table 1: thkne and combined), it was performed on estimated
performance of our baseline MT system is much betarget quality. The combined MT system (labeled
ter on the Hansard than on Europarl, and reaches BT+TMem) uses all TM-based feature functions

unusually high 56.8 BLEU on the Acquis. proposed in Section 2.3.2 angfacombination with
The following lines display the results of com-TMem output, withs = 1.
bining our MT system with TMem using @- On such graphs, the upper right corner represents

combination (line 3) and TM-based feature funcan “ideal system”, i.e. one that would produce “per-
tions as discussed in section 2.3.2 (line 4). Ofect” translations (BLEU=1) on all of the system’s
Europarl data, neither approach yields any visibléput (coverage=100%). The right end of each curve
gains. This confirms our intuition that a combina{coverage=1) depicts the global quality of the cor-
tion with a TM can only be productive if the TM it- responding system’s output, as reported in Table 1.
self can extract useful material. On the Hansard arithe shape of each curve is solely determined by the
Acquis, however, both strategies brings significamutput filtering mechanism, within the limits of the
performance improvements. system’s performance: the more accurately it pre-
As line 5 indicates, the overall best performancelicts output quality, the closer the curve should be
is obtained when thg-combination and TM-based from the “ideal” upper-right corner.
feature functions are used together. On the Hansard,For Europarl data, there is again no visible differ-
we then gain 1.8 BLEU (1.9 WER) over the baseline@nce between the baseline and combined MT sys-
while on the Acquis, the gain reaches 2.6 BLEU (2.%ems, as can be seen in the top graph in Figure 1.
WER). As expected, MT systems perform noticeably better
In these experiments, parametgémwas set to 1; than TMem in this context. On Hansard and Acquis
in other words, the TM output is only used as suchklata, however (middle and bottom graphs), we see
in the case of a 100% match. Early experimentthat the gains over the baseline systems reported in
revealed that automatically optimized values wer&able 1 can be observed at almost all levels of input
close tog = 1 and did not lead to significantly bet- coverage. The apparent instability of all system’s
ter translations. However, the decision was actuallgerformance in the low-coverage area (left end of
based on a more rhetorical argument: when sourcthie curves) can be explained in part by the fact that
similarity is below 1, the target-language materiathe samples from which we estimate BLEU scores



Europarl Hansard Acquis
System BLEU WER | BLEU WER | BLEU WER
TMem 5.9 0.840f 21.0 0.702| 36.3 0.556
MT baseline 315 0592 420 0.497| 56.8 0.364
MT + TMem(3 = 1) 315 0592 43.7 0482 57.6 0.358
MT + TM features 31.2 0599 434 0482 59.0 0.348
MT + TM features + TMem| 31.2 0.600| 43.8 0.478/ 59.4 0.335
Table 1: Overall System Performance
are inherently small in that area.
The most striking feature of these curves is that
for all three datasets, the combined MT systems al- Europarl
ways perform better than the translation memory: at : ] blue : TMem
equal coverage, they provide better translations (as © ]| e Mo
measured with the BLEU metric, at least); and at 3 S
equal quality, they propose translations for a largera g -
portion of the input. 8
5 Conclusions ° o ' ' ' ' '
0.0 0.2 0.4 0.6 0.8 1.0
The work presented in the previous pages focused Coverage
on the problem of integrating a phrase-based MT
system within a CAT environment. We have pro- . Hansard
posed an approach in which the MT system em- = ]
ulates the behavior of a TM. Along this line, we 3
have examined two complementary ways of com- 5 3 -
bining phrase-based MT and TM technology: one @ 3 -
that simply selects the most appropriate component | plue - em P
(TM or MT) given the context, and one that allows 5 purple : MT+TMem
the phrase-based system to actively exploit the most © 7 I I I T T
similar material identified by the TM, via TM-based 0002 04 06 08 10
feature functions. In our experiments, both of these Coverage
approaches lead to significant gains in MT quality .
when close or exact matches for the input segment Acquis
were present in the training material; optimal results :
were obtained when both were deployed. °
We have also shown how a fairly simple, 3 =
machine-learned “quality estimation” layer can be RIS " ——
used to filter out machine translations that are the & 4|  red: MT
less likely to be useful to the translator. Because g | purple : MT+TMem
this component is designed to produce a real-valued ' ' ' ' ' '
) i 0.0 0.2 0.4 0.6 0.8 1.0
quality estimate, the user can set the threshold on
Coverage

output filtering to fit his/her own tolerance to ma-
chine errors. The resulting device achieves the pur-

pose of singling out the best translations, to a degré&gure 1: Tradeoff between input text coverage and trans-
where the MT system always produces better trangtion quality.

lations than a TM, whatever the degree of coverage
sought.



The quality estimation component could obvi-M. Heyn. 1996. Integrating machine translation into
ously be improved in different ways: many obvious translation memory systems. IEAMT Machine
additional features could be exploited, most notably Translation Workshgppage 113, Vienna, Austria.

¢ int | feat h as th b d Koehn, F.J. Och, and D. Marcu. 2003. Statisti-
system internal features such as the number and SiZ& | phrase-based translation. Rmoceedings of the

of phrases used in the translation, presence of out-5003 Conference of the North American Chapter of the
of-vocabulary words in the input, etc. In our exper- Association for Computational Linguistics on Human
iments, this component was also typically trained Language Technology-Volume dages 48-54. Asso-
on very little data, and presumably better predic- ciation for Computational Linguistics Morristown, NJ,

ion I X with mor ntial train- USA.
tions could be expected with more substantial tra . Koehn. 2005. Europarl: A parallel corpus for statisti-

mg Se'_[s' vet, it seem.s mgpproprlate to. Invest mfis- cal machine translation. IMT Summitvolume 5.

sively in the current direction, because in a real-lifer, Leplus, P. Langlais, and G. Lapalme. 2004. Weather
setting, the QE component would possibly benefit Report Translation using a Translation Memory. In
from something which we did not have easy access Machine Translation: from Real Users to Research:
to in the course of this study: real user feedback. 6th Conference of AMTA ecture Notes in Al #3265,

: : ; ages 154-163, Washington, sep. Springer.
Quirk (2004) points out that just a small amount obngyer. 2001, Suppor?vectorpmaghingﬁi News

coarse user judgements leads to much more reliable; (3).53_56, September.

confidence estimations than much larger quantitieé Nomoto. 2004. Multi-engine machine translation

of automatically annotated data. with voted language model. IRroceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics Association for Computational Lin-

guistics Morristown, NJ, USA.
F.J. Och and H. Ney. 2004. The alignment template

approach to statistical machine translatioBompu-
tational Linguistics 30(4):417-449.
F.J. Och. 2003. Minimum error rate training in sta-
tistical machine translation. IRroceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume ,1pages 160-167. Associ-
ation for Computational Linguistics Morristown, NJ,
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