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Abstract

We propose a novel source-side dependency tree re-
ordering model for statistical machine translation, in
which subtree movements and constraints are rep-
resented as reordering events associated with the
widely used lexicalized reordering models. This
model allows us to not only efficiently capture the
statistical distribution of the subtree-to-subtree tran-
sitions in training data, but also utilize it directly at
the decoding time to guide the search process. Us-
ing subtree movements and constraints as features in
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can employ syntax in the modeling of movement. By
viewing sentence in terms of its hierarchical structure,
one can more easily expose regularities in the sorts of
movement that occur during translation. A number of
syntactic methods are driven by formal syntax alone (Wu,
1997; Chiang, 2005; Shen et al., 2008), while others em-
ploy linguistic syntax derived from a parse tree (Galley et
al., 2004; Quirk et al., 2005; Liu et al., 2006). Each of
these approaches requires a parser-like decoder, and rep-
resents a departure from phrase-based decoding. Galley
and Manning (2008) demonstrated how to integrate hier-

a log-linear model, we are able to help the reorder-
ing models make better selections. It also allows the
subtle importance of monolingual syntactic move-
ments to be learned alongside other reordering fea-
tures. We show improvements in translation quality
in English—Spanish and EngliskIraqi translation
tasks.

archical phrase structures to lexicalized reordering mod-
els.

The well-studied phrase-based architecture can also
benefit from syntactic intuitions. Phrasal decoding can
be augmented easily, either by syntactic pre-processing
or through search-space constraints. Pre-processing ap-
proaches parse the source sentence and use the tree to ap-
ply rules which reorder the source into a more target-like
structure before the translation begins. These rules can
Word movement is a defining characteristic of the mabe learned (Xia and McCord, 2004; Rottmann and Vogel,
chine translation problem. The fact that word order ca2007) or designed by hand (Collins et al., 2005; Wang et
change during translation makes the problem fundameat., 2007; Xu et al., 2009). The pre-processing approach
tally different from related tasks such as tagging and awbenefits from its simplicity and modularity, but it suffers
tomatic speech recognition. In fact, if one allows unfrom limitation of providing at most a first-best guess at
restricted changes in word order during translation, thagyntactic movement. Search space constraints limit the
alone is sufficient to show it to be NP complete, by analphrasal decoder’s translation search using syntactie intu
ogy to the Traveling Salesman Problem (Knight, 1999)tions. Zens et al.(2004) demonstrated how to incorpo-
Despite the importance of word movement, the populaiate formally syntactic binary-bracketing constraint®in
phrase-based translation paradigm (Koehn et al., 200Bhrase-based decoding. Recently, it has been shown that
devotes surprisingly little modeling capacity to the is-syntactic cohesion, the notion that syntactic phrases in
sue. A very simple reordering model is to base the coshe source sentence tend to remain contiguous in the tar-
for word movement only on the distance in the sourcget (Fox, 2002), can be incorporated into phrasal decod-
sentence between the previous and the current word g as well, by following the simple intuition that any
phrase during the translation process. Later on, lexicapource subtree that has begun translation, must be com-
ized reordering models, which condition the probabilpleted before translating another part of the tree (Cherry,
ity of phrase-to-phrase transitions on the words involvec®008; Yamamoto et al., 2008).
have been proposed to address the word reordering is-In this paper, we introduce a novel reordering model
sue (Tillman, 2004; Koehn et al., 2005; Al-Onaizan andor phrase-based systems which exploits dependency
Papineni, 2006; Kuhn et al., 2006). Alternatively, onesubtree movements and constraints. In order to do, we
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must first consider several questions. Should subtree

movements be conditioned on source dependency struc- . .
. . o L M Ifai—ai_l—l
tures? How can we estimate reliable probability distri- ) 9 a—a——1 4)
butions from training data? How do we incorporate the t L il
D if |ai—ai,1|7§1

reordering model with dependency structures and cohe-
sive constraints into a phrase-based decoder? We ip:1 Models

vestigate these questions by presenting the model, traiﬂ— lexicalized reordering model is defined in terms of

ing and decoding procedure in Section 2. Furthermorefransitions between phrases - two phrases in sequence,

we present experimental results on English-lragi ang,.. ., s andnext, have a specific relationship to each
English-Spanish systems in Section 3. Finally, we INVeSsther. such asmonotone, swap OF discontinuous.

tigate the impact of the proposed models in Section 4. Statistics on those relationships make up the model.

2 Source-tree Reordering Models Lexicalized reordering models are well-defined for flat
word surface structures. However, the models do not

Nowadays most statistical machine translation systemgerage source-side syntactic structures which are al-
are based on log-linear model which tries to provide a pggays available during the decoding time. Previous stud-
rameterized form _of the probability of translating a SeNjes, such as Cherry (2008), show improvements when us-
tencef;’ to ef, subject to ing source-side dependency structures as soft cohesive
constraints. Cohesion constraints tell the decoder which
cohesive movements are available, but the decoder has no
opinion on the likelihood of these moves.

P(ef|f{) can be modeled as a log-linear model with In a source-tree reordering model, we would condi-

& = ar%rln}axP(e{Ifi] ) (1)
€1

components,, (.) and scaling factors,, : tion monolingually and syntactically phrase movements
R on the source dependency tree. A source-tree reorder-
é1 = argmaxP(efl|f]) (2) ing model considers in terms of previous source depen-
{ei} dency structures. One can think about the phrase move-
M ments as the movement of the subtieeide or outside a
= argmaxexp[¥  Amhm(ef, 1)) source subtree when the decoder is leaving fronptiee
{ei} 1 vious source state to the current source state. The notions

A common feature set includes reordering model§f movinginside (1) andoutside (O) a subtree can be
which provide the decoder the capability to determine thit€rPreted as tracking facts about the subtree-to-sebtre
orientation sequence of phrases. The beam search sti@nsitions observed in the source side of word-aligned
egy is used during decoding, in which the intermediatd@ining data: W|_th extra guidance on subtr_ee movemen'Fs,
states correspond to partial translations. The decodiffj" €XPectation is that source-tree reordering models will
process advances by extending a state with the translatipRIP the decoder make smarter distortion decisions.
of a source phrase and the final state is reached when each €xample of the source-tree reordering movements
source word has been translated exactly once. Reorderitigllustrated in Figure 1 that contains a word/phrase
occurs when the source phrase to be translated does AJgNMent matrix of a English-Spanish sentence pair,
immediately follow the previously translated phrase. Th&ource-dependency tree and reordering movements. The
reordering is integrated into the target function by usind€Xicalized orientation sequence {®, S, D, M} while

discriminatively-trained distortion penalties, such he t e Subtree movement sequencglisO, I, 1}. The Iex,i,—
widely used lexicalized reordering model (Koehn et al.c@lizéd reordering model assignédor phrase ‘askyou”
2005). It can be parameterized as follows: because the previous extracted phrdseduld therefore

was not continuous withdsk you”. At the same time, the
n o source-tree movement assigriegince ‘ask you” is mov-
p(Ole, f) = [ p(oiléi, fa., ai-1, a:) (3) ing inside the subtree rooted awbuld”. In addition,

=1 “once more” received O from the source-tree reorder-
wheref is the input sentence;= (e, ..., €,) isthe tar-  ing model since it isswap with “ask you” and moving
get language phrasea;= (a1, ...,a,) is phrase align- outside the subtree rooted abk”.

ments; f,, is a source phrase which has a translated Let 7' denote the source dependency tree dtid)
phrasee; defined by an alignment;. O is the orienta- stands for the subtree rooted at nodeA spanf indi-

tion sequence of phrase where eagthas a value over cates the last source phrase translated to create the cur-
three possible orientationsvlj monotone, §) swap with  rent state and each has a dependency structug. A
previous phrase, oE)) discontinuousO={M, S, D} and  subtre€l’(n) covers a span of contiguous source words is
is defined as follows: constructed by dependency structusgs for subspanf
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(a) Alignment matrix with lexicalized orientation events (b) Inside/Outside subtree movements on the source depeyntiee

Figure 1. Source-tree reordering extraction examplesterEnglish-Spanish sentence pdimbuld therefore once

more ask you to ensure that we get a Dutch channel as well”- “ Por lo tanto quisiera pedirle nuevamente que se
encargue de que podamos ver tambin un canal neerlands’

covered byl'(n), we sayf € T'(n). We define a subtree follows:

that has begun translation but not yet completeppan .

subtree. On the other hand, when all words under a node _ 7

have been translated then we caticnpleted subtree. A (Dle, f) = Hp((o'd)ilei’ fair @i, ai; 51, i) (6)
phrasef is movinginside (1) aT'(n) if f helpsT(n) to
be completed, in other word%,(n) covers more contigu- 2.2 Training
ous words. A phras¢ is movingoutside (O) aT'(n) if ,
f leavesT'(n) to be open, in other wordg;(n) contains To train the model, _the system needs to extracll;
some words which have not been covered yetide and events for phrase pairs. First, the source side dependency

outside are the two subtree movements we are going gjees of the bilingual training data are provided by using
model a dependency parser. Given a sentence pair and source

Mathematically speaking, a source-tree reorderingep_endency tree, when performing the phrase-extract al-
model is defined as follows: orithm (Och and Ney, 2004) we also extract the source
dependency structure of each phrase pair. The values of
o o) are obtained by lexicalized reordering models. To
p(Dle. f) = Hp(d”ei’faﬂ%si*l’ si) () determine whether the current source phrase is moving
=t inside or outside a subtreel’(n) with respect to previ-
wheres; ands,;_; are dependency structures of sourc®usly extracted phrases we apply the exhaustive interrup-
phrasesfai and fai—l respectively;D is a random vari- tion check algorithm (Bach et al., 2009). This algorithm
able which represents the sequence of syntactical phraggsentially walks through the dependency subtrees of pre-
movements over the source dependency tree; each Viously extracted phrases and checks whether the subtree
takes a value eithénside (1) or outside (O). p(Dle, f)is  is open or completed. The value &f is I when the ex-
the probability of the subtree movement likelihood ovehaustive interruption check algorithm returns false énd
the source phrase sequence and their target movememgierwise.
Since the model essentially constraints phrase move-Table 1 is a snapshot of the output of the reordering
ments on the source dependency tree however it doestraction procedure. The third column shows source-
not explicitly provide orientations for a phrase-based detree reordering features.
coder. Therefore, we combine our model with the lexi- Table 2 displays the overall event distributions of
calized reordering model, as a result, a set of events coseurce-tree reordering models. It appears clearly that oc-
tainsD = o,d; = {M.l, S.I,D_l, M_.O, SO, D_O}. The currences ofS_I and S_O are too sparsely seen in the
source dependency tree is used here to refine the reordgaining data which assigns nearly 98% of its probabil-
ing events provided by a lexicalized reordering modelity mass to other events. The table strongly suggests
Finally, the source-tree reordering model is derived athat from training data the source-tree reordering models

i=1

n



Lexicalized  Source-tree

MJI sl DI MO SO DO

. . DO 0691 0003 0142 0119 0009 0.038
askyyou # pedirle dis swap D DOD 0827 0003 0170 0719 0053 0.228
ask you # pedirle mono mono M DOO 0.854 0.250 0.790 0.146 0.750 0.210
ask you # pedirle mono mono )]
once more # nuevamente swap dis 0%
once more # nuevamente dis swap @D Table 3: inside andoutside probabilities for phrase
once more # nuevamente que  swapdis OS5 “ask you'- “ pedirle” according to three parameter esti-

mation methods

Table 1: Extracted reordering eventsindicates events
extracted from the example in Figure 1 2.3 Decoding

The beam search strategy is unchanged from the phrase-
observednonotone andinside movements more often Pased system. Our proposed source-tree reordering mod-

than other categories. els concern monolingualy and syntactically movements
in the source sentence. However, computing source-tree

MI SI DJ MO SO DO reordering model scores can be done in two scenarios 1)

En-Es 038 001 0.14 03 001 015 not using and 2) using cohesive constraints. Cohesive

Enr 062 001 013 016 001 007 constraints can be enforced by the interruption check al-

gorithm (Cherry, 2008; Bach et al., 2009). One can con-
Table 2: Distributions of the six source-tree reorderingider the first scenario as the decoder does not have any
events estimated from English-Spanish and English-Iragiformation about the source dependency tree during de-
training data coding time, therefore, we allow the decoder to consider

both eventsnside andoutside. The decision of select-

After having all extracted phrase pairs with de-ing a preferable feature is made by the tuning procedure.

pendency features, we need to estimate parametefp, the other hand, when the source dependency tree is
of source-tree reordering models for a particular paigyajlable, subtree movements are informed to the decoder
p((0j-dk)iléi, fa,). An event, such abl_l, can be inter- yia cohesive constraints, as a result, we are able to allow
preted by three possibilities. Fird¥_l is a joint proba-  the decoder to make a harder choice to consider either
bility of monotone andinside given a phrase pair. Sec- ;,,cide or outside.
ond,M.I can be a conditional probability efionotone More specifically, if the decoder chooses to decode
given a phrase pair and it i:.side. Finally, M_l can be \ithout cohesive constraints then after detecting the ori-
a conditional probability ofinside given a phrase pair entation of the current phrase, for exampleap, the de-
and it ismonotone. The parametes((o;-dx)il€i, fa,) 1S coder will trigger two subtree movement featu&bkand
estimated by the maximum likelihood estimation criteriag o and sum up both features in the log-linear combina-

with a smoothing factor as tion. In other words, the decoder considers both events
that the current phrase is movirgside andoutside a
oz count(og-d;) + subtreeT'(n) given it is swap orientation on flat word
p(oj-dr)iléi, fa; 05, di) = ' structures
Dok Zj(count(ok_dj) +7) . _ _
' (7) In the second scenario, the decoder uses cohesive
if it is a joint probability of subtree movements and lexi-constraints after detecting the orientation of the current
calized orientationsO) or phrase, for examplewap. The decoder only considers

one source-tree reordering feature. The choice of feature
count (o_d;) + depends on the output of the interruption check algorithm
p((0;-dy)il€, fasr di) = k-Gy) T (8) onthe current phrase. If the returniisside thenS.1 will
2_(count(ox-d;) +7) be used otherwisg O.

if it is conditioned on subtree movemenB@®D) or

3 Experimental Results

count(op_d;) + We built baseline systems using GIZA++ (Och and
S (count(or-d;) +7) (9) Ney, 2003), Moses’ phrase extraction with the grow-
J / diag-final-and heuristic (Koehn et al., 2007), a standard
if it is conditioned on lexicalized orientationBQO0). phrase-based decoder (Vogel, 2003), the SRI LM toolkit
Table 3 displays source-tree reordering estimated prokStolcke, 2002), the suffix-array language model (Zhang
abilities for a phrase pairdsk you’- “pedirle’. Each and Vogel, 2005), a lexicalized reordering model with a
probability was put under one of the three parameter eseordering window of 3, and the maximum number of
timation methods. target phrases restricted to 5. Results are reported using

p((oj—dk)i|€_i7 .f_ai7 Oj) =



lowercase BLEU (Papineni et al., 2002) and TER (Snover ncto7 net08
et al., 2006). All model weights were trained on de- BLEU TER BLEU TER

Baseline 32.89 6525 20.11 83.09

velopment sets via minimum-error rate tra!nlng (MERT) Coh 3333 6472 1980 8284
(Venugopal and Vogel, 2005) with an unique 200-best DO 3299 6505 2027 82.65
list and optimizing toward BLEU. To shorten the train- DO+Coh 33.28 6477 2061 8235
ing time, a multi-threaded GIZA++ version was used to DOD 831r 6454 2033 8212
utilize multi-processor servers (Gao and Vogel, 2008) DOD+Coh  33.46  64.41 2058 82.05

P g€/, : DOO 33.10 6451 2051 8212

We used the MALT parser (Nivre et al., 2006) to get DOO+Coh 3367 6403 2071 8170
English dependency trees. We perform experiments on
English—Spanish and Englishlragi tasks. Detailed Taple 5:  Scores of baseline and improved base-
corpus statistics are shown in Table 4. line systems with source-tree reordering models on
English—Spanish

English—Spanish English-Iraqi

English  Spanish  English Iraqi june0s novos
uniq. pairs 1,287,016 510314 Baselne 2518 56.70 1840 6201
avg. sent. length 27.4 28.6 8.4 5.9 Coh 2534 5730 1801 6152
# words 358M 374M 55M 3.8M DO 2531 5730 1843 60.98
vocabulary 117K 173K 34K 109K DO+Coh 2553 5720 19.13 61.45
DOD 2534 5753 1890 61.81
- , ) DOD+Coh 2550 5629 1915 60.93
Table 4:  Corpus statistics of EngliskSpanish and DOO 2525 5676 18.40 60.64
English—Iraqgi systems DOO+Coh 2558 56.37 1859 61.45
We experiment systems in different configurations offgple 6: Scores of baseline and improved base-

the source-tree reordering model such as DO, DOD anghe systems with source-tree reordering models on

DOO means parameters estimation using Equation 7, ghglish—Iraqi

and 9 respectively. Moreover, Coh means the decoder

triggers cohesive constraints for source-tree reordering

models (Cherry, 2008). Bold type is used to indicate We used 429 sentences of TransTac T2T July 2007

highest scores. (uly07) as the development set; 656 sentences of
Our first step in validating the proposed approach igransTac T2T June 2008 (june08) and 618 sentences of

to check with the English-Spanish system. We used November 2008 (nov08) as the held-out evaluation sets.

the Europarl and News-Commentary parallel corpora folEach test set has 4 reference translations. We used a

English—Spanish as provided in the ACL-WMT 2008 suffix-array LM up to 6-gram with Good-Turing smooth-

shared task evaluation. We built the baseline systeing. In Table 6, source-tree reordering models produced

using the parallel corpus restricting sentence length tihe bestimprovements 0.8 BLEU pointand-2.3 TER

100 words for word alignment and a 4-gram SRI LMscore on the held-out evaluation sets.

with modified Kneyser-Ney smoothing. We used nc-

devtest2007(ncd07) as the development set; nc-test20

(nct07) as in-domain and newstest2008 (net08) as oYk this section we perform detail error analysis from

domain held-out evaluation sets. Each test sethas 1 trafgsere different scenarios emerge and questions arise for
lation reference. Table 5 shows that the best Obta'n%rassumptions

improvements are-0.8 BLEU point and-1.4 TER score
on the held-out evaluation sets. Moreover, the proposetll Breakdown improvement analysis
methods also obtained improvements on the out-domayy. ..« can see from the results, there are improvements
te?/tvset (r|1et08). lidated th q h on all the different test sets. However, one could ex-
E I?hilso va |Hate the prﬁpose aprflroac : OBect that the methods may work for a portion of the data
English—Iraql.  However, we have a smaller train-y, . hot gthers. We divide the test sets into three por-
Ing corpus which comes from forcg protecpon dom_a'nﬁons based on sentence-level TER of the baseline sys-
gng'sASE’l_Oken language style. r‘\l’hls daltghls u_sed n ﬂ?gm. Lety ando be the mean and standard deviation of
. ransTac program. The Eng ragi parr - the sentence-level TER of the whole test set. We define

_also differs according to the Iangu_age far_n_lly. Eng“_s_'}hree subsetBead, tail andmid as the sentence whose
is an Indo-European language while Iraqi is a Semltlel-ER score is lower thap — Lo, higher than + 1o and
language of the Afro-Asiatic language family. the rest, respectively. We then fix the division of the three

Lhttp://www.statmt.org/wmt08 subsets, and calculate the BLEU and TER scores on them

-+ Discussion and Analysis



En-Ir En-Es
jun08 nov08 nc07 nt08
System BLEU TER BLEU TER | BLEU TER BLEU TER

tail 29.45 76.50 24.41 87.69 23.36 92.93 24.41 134.04
Baseline mid 38.61 53.60 35.89 61.04 31.08 66.75 22.61 86.32
head 61.38 25.80 60.90 28.1 44.58 47.45 35.34 59.54

tail +0.56 +1.35 +129 +527 | +0.67 +1.80 +0.07 +1.27
Coh mid +0.14 -0.91  +048 +1.08 | +0.22  +0.07 -0.02 -0.19
head +0.37 -1.69 -3.11 -4.68| -0.17 -0.73 -0.48  +1.27
tail +0.28 +066 +191 +703 | +049 +194 +0.87 +2.32
DO maid +0.07 -1.15 +0.58 +1.44 +0.24 +0.45 +0.12 +0.28
head -0.28 -2.48 -1.31 -3.07| -0.28 -0.71 -0.11 -0.77
tail +1.07 +195 +1.72 +519 | +0.66 +1.78  +0.52 +1.60
DO+Coh mid +0.80 -0.85  +092 +1.32 | +019 +021  +0.13 +0.25
head -0.37 -2.41 -1.59 -3.62| -0.25 -0.75 -0.01 -1.11
tail +046 +006 +1.96 +484 | +0.35 +191 +0.75 +2.84
DOD mid +0.53 -1.35 +043  +0.29 | +0.01 -0.15  +0.05 +0.41
head +0.27 -1.03 -0.61 -2.33| -0.79 -1.33 -0.37 -1.37
tail +1.19 +270 +210 +589 | +049 +043 +0.27 +1.30
DOD+Coh | mid +0.44 -0.37 +042 +1.16 | +0.01 -0.85 +0.12 +0.99
head +0.32 -1.25 -0.66 -2.02| -0.37 -1.35 -0.26 -2.05
tail +1.18 +241 +237 +736 | +0.35 +1.92  +0.59 +0.39
DOO mid +0.13 -0.62 +0.28 +1.83 | +0.01 -0.15  +0.06 -0.38
head -0.50 -2.13 -0.58 -2.63| -0.79 -1.34 -0.47 -1.52
tail +1.28 +270 +2.03 +588 | +0.65 +161  +0.69 +1.10
DOO+Coh | mid +0.74 -0.52 +0.19 +0.82 | +0.18 -0.02 +0.12 -0.05
head +0.22 -1.02 -1.61 -4.16 | -0.40 -1.07 -0.22 -1.00

Table 7: Distribution of improvements over different poris of the test sets, where for TER the sign is reversed so
that positive numbers means improve in TER, i.e., lower TE®tes The improvements are marked by bold text.

for every system. From Table 7, the proposed methodis can be observed in different systems. Generally, there
tend to output better TER and BLEU for theil subsets, is no evidence to support a claim that the proposed mod-
the improvements on thewid subsets are smaller, and els have consistent impact on the length of phrases chosen
loss can be observed on thead subsets. The splitting by the decoder. The observation is not surprising since
of different sets also reflects on the length of sentencethe proposed reordering models are more likely to affect
as shown in Table 8, the tail parts are generally long setthe decoder’s behavior on reorderings.

tences. The breakdown analysis suggests a more subyyhen analyzing the average reordering distance, a
tle model taking into account the sentence lengths coulgore consistent picture can be discovered. The aver-
bring in more improvements, especially, on thél setin - age reordering distance is larger than the correspond-

which the baseline model loses. ing systems with only inside/outside subtree movements.
08 _nov08 _ nc07 __ nt08 Whereas we cannot observe similar phenomenon com-
head 7.92 627 2039 13.07 paring the system with only cohesive constraints and the
mid 1231 11.09 28.07 22.78 baseline, which indicates that the cohesive constraints ac
tail 1391 1408 3529 2533 tually have the effect of restricting long distance reorder
generated by the inside/outside subtree movements. The
Table 8: Average reference lengths most interesting observation is tmeimber of reorder-

ings in the hypothesis. To make it easier to think about
_ _ how sparse the reordering events are, we present the oc-
4.2 Interactionsof reordering models currence rate of reorderings, i.e. the number of words

To further investigate the impact of the proposed model$lvided by the number of reorderings, as listed in the
we perform several analyses to examine whether there dh@rentheses inside Table 9. Aninteresting phenomenonis
significant differences in 1) the average phrase length thitat in English-Iragi tasks, the output is generally mono-
the decoder outputs; 2) the total number of reorderind9ne in the baseline, and the number of reorderings in-
occurred in the hypothesis and 3) the average reorderif§eases dramatically by applying the inside/outside sub-
distance for all the reordering events. Table 9 shows tH&e€ movements. However, solely applying cohesive con-
statistics on the four aspects for all the test sets. For triraints does not increase the number of reorderings. In
average phrase length, we can observe a smaller valE8glish-Spanish tasks, although all the features generate
when applying the proposed models on English-SpanidRore reordering events than the baseline, applying only
tasks. However, on English-Iraqi the picture is contrathe cqhesion c0n§traints also increases the number of re-
dicting when on one set the phrase length is generalfrderings dramatically.

longer and on the other set both longer and shorter statis-When combining the statistics of Table 9 the most



Number of Reorderings Frequency of Reordering Average Phrase Length Average Reordering Distance
En-Es En-Ir En-Es En-Ir En-Es En-Ir En-Es En-Ir

nc07 nt08  jun08 nov08 ncO7 nt08 jun08 novO8| ncO7 nt08 jun08  nov08l ncO7 nt08 jun08  nov08

Baseline 1507 1684 39 24 16.3 164 119 164 | 2.02 1.80 2.20 234 261 244 2.79 2.17
Coh 2045 2903 46 21 100 128 99 178 | 1.90 171 2.25 248 | 2.67 258 2.81 2.50
DO 2189 2113 97 58 116 134 47 64 195 1.76 2.25 247| 257 246 2.88 3.05
DO+Coh 1929 1900 155 88 | 13.6 153 30 44 189 171 2.17 237| 247 233 2.74 2.88
DOD 1735 2592 123 60 | 149 107 38 65 192 1.88 2.17 236 | 273 257 2.79 2.93
DOD+Coh | 2070 2021 148 90 128 145 32 43 1.88 1.70 2.18 237 250 239 2.64 2.81
DOO 1735 1785 164 49 | 149 161 30 79 192 1.73 2.10 237 273 2.60 2.72 2.98
DOO+Coh | 1818 1959 247 66 141 146 19 59 193 174 2.15 237 253 242 2.64 2.88

Table 9: Statistics on four aspects of the final hypothesés different systems; 1. the number of reorderings, 2.
the number of words in the hypotheses divided by the numbezarfiering, i.e. a larger number means more sparse
observation of reorderings, 3. the average phrase lengthdarthe average reordering distance

significant effect the source-tree reordering models cor®) whether the model could change the behavior of gener-
tribute is the number of reorderings. Instead of constrairating outside subtree events. Further more, comparing to
ing the reordering, the models enable more reorderindgsseline system, do the changes, i.e. generating more or
to be generated. As shown in Table 2, in the training datass outside subtree events than baseline, bring improve-
there are generally more reorderings than we observed iments to those sentences? From Table 10, the number of
the decoding results. It indicates the baseline reorderirgpntences having outside subtree events has not changed
model is not subtle enough to encode accurately infornuch when decoding with subtree movement features in
mation in a more generalized way, so that more reordeEnglish-Spanish tasks, while this number generally in-
ings can be generated without losing performance. Thereases in English-Iraqi tasks. Moreover, when decoding
source-tree reordering models provide a more discrimiwith both subtree movements and cohesive constraints,
native mechanism to estimate reordering events. For exe observe that the number of sentences having outside
ample, in Table 2 the probability mass of monotone andubtree events sharply decreases, whereas it increases in
discontinuous events are different given that the phragenglish-lraqi. This result shows an interesting correla-
is encoded with inside or outside subtree movementtion with the performance improvements in Table 5 and
Moreover, the reordering issue is more language-specif&; where the systems with cohesive constraints generally
than general translation models, and the conditions for@utperform those without. If we consider the cohesive
reordering event to happen vary among languages. Proenstraints as hard constraints, then the outside subtree
viding more features that are conditioned on different inevents are considered as violations, however in English-
formation, such as include inside/outside subtree movédraqi tasks, the performance becomes better with more
ments and cohesive constraints presented in this pap@riolations”. The observation further consolidates our
could benefit the system performance by enabling MERSuggestion that subtle models should be preferred for fu-
to choose the most prominent ones from a larger basis.ture developments, because the features may encode the
43 Theeffect of inside/outside events information that the violation_ (_)f constraints is actually
preferred, no matter whether it is because of the nature of
En-Es En-Ir the particular language or the style of the source (spoken,

nc07 nt08 jun08  nov08 :
Baseline 29.35 3852 9.30 9.39 Wr|tten,etc.).

Coh 20.23 2940 823 890 .

DO 3034 3257 1235 1165 5 Conclusions and Future Work

DO+Coh 12.26 13.07 15.40 13.11

DOD 32.39 37.64 12.65 11.00 . . . . .

DOD+Coh  15.94 2399 11.89 11.97 In this study, our major contribution is a novel source-
boo 28.75 3208 1235 11.65 tree reordering model that exploits dependency subtree

DOO+Coh 1844 2550 16.77 10.68 .
movements and constraints. These movements and con-

Table 10: The percentage of sentences havimtyide Straints enable us to efficiently capture the subtree-to-
subtree events subtree transitions observed both in the source of word-
aligned training data and in decoding time. Represent-

All the analysis above inspired us to carry out a moréng subtree movements as features allows MERT to train
direct analysis of the decoder behaviors. As the main mdhe corresponding weights for these features relative to
tivation of the proposed approach is to model the behawthers in the model. We show that this model provides
ior of insidelout side subtree events, natural assumptionsmprovements for four held-out evaluation sets and for
could be that 1) different target languages should hawao language pairs. In future work, we plan to extend
different probabilities of generating a sequence that hake parameterization of our models to explicitly represent

outside subtree events on the same source language @odrce-side subtree movements during the decoding time.




We also plan to combine our models with the hierarchiyang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-stringgah
cal phrase reordering model (Galley and Manning, 2008). ment template for statistical machine translation. Phoceedings

We believe such extensions will generalize more subtle % AC-'06, pages 609-616, Morristown, NJ, USA. Association for
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