STeP-1: Standard Text Preparation for Persian Language

Mehrnoush Shamsfard
NLP Research Lab.
Faculty of Electrical and
Computer Engineering
Shahid Beheshti University,
Tehran, Iran
m-shams@sbu.ac.ir

Abstract

Many NLP applications need a pre-processing
task to convert the input into an appropriate
form or format. The preprocessing may in-
clude segmentation of text into sentences,
words and phrases, checking and correcting
the spellings, doing lexical and morphological
analysis and so on. The output of this phase
should be a list of correct standard tokens with
unique coding, spelling and prescription.

In this paper we introduce a Persian text pre-
processor called STeP-1. STeP-1 performs a
combination of tokenization, spell checking
and morphological analysis. It turns all Per-
sian texts with different prescribed forms of
writing to a series of tokens in the standard
style introduced by Academy of Persian Lan-
guage and Literature (APLL). Experimental
results show very good performance.

1 Introduction

Many NLP applications need a pre-processing task
to convert the input into an appropriate form or
format. The preprocessing may include segmenta-
tion of text into sentences, words and phrases,
checking and correcting the spellings, doing lexical
and morphological analysis and assigning appro-
priate features to the components e.g. by looking
up in a lexicon. The output of this phase should be
a list of correct tokens in a standard format with
unique coding, spelling and writing prescription.

There are many factors which affect the complexi-
ty of the preprocessing module. For instance, lan-
guages with more different writing styles need
extra preprocessing to turn all to a standard one.

Soheila Kiani
NLP Research Lab.
Faculty of Electrical and
Computer Engineering
Shahid Beheshti University,
Tehran, Iran
So.kiani@mail.sbu.ac.ir

Yaser Shahedi
NLP Research Lab.
Faculty of Electrical and
Computer Engineering
Shahid Beheshti University,
Tehran, Iran
yshahedi@gmail.com

Persian is among the languages with complex
preprocessing tasks. One of the complexity sources
is handling different writing scripts (prescriptions).
In Persian there are one to four written forms for
each character according to its location in a word.
Also there are various scripts for writing Persian
texts, differing in the style of writing words, using
or elimination of spaces within or between words,
using various forms of characters and so on. The
interesting point is that we may write many words
in more than one way. So comparing words to dic-
tionary entries will be effective only if either we
have all writing forms of all words in the dictio-
nary or perform a preprocessing task which con-
verts all the text to a standard writing style. These
all make Persian texts hard to be processed and
tokenized (Kiani and Shamsfard, 2008).

This paper introduces a Persian text preproces-
sor called STeP-1. STeP-1 is the first step in
processing Persian language written texts. It per-
forms a combination of tokenization, spell check-
ing and morphological analysis.

In this paper after reviewing the related works in
this field, we will describe the problems and chal-
lenges of Persian text preprocessing and then in-
troduce STeP-1 as a solution. We will discuss spell
checker and tokenizer as the main parts of STeP-1
in more details and show the experimental results.

2 Related Works

STeP-1 integrates tokenizer, morphological ana-
lyzer and spell checker and interleaves their per-
formance. Although there is no other integration of
these tasks which converts the final result into the
APLL standard, we can refer to individual works
on each part as related works.



In word and phrase segmentation, there are var-
ious approaches including rule based, statistical,
dictionary based and learning methods.

Rule based methods need linguistic knowledge
consisting of both semantic and syntactic elements.
The rules may be defined by human or extracted
from linguistic resources such as tagged corpora
using a learning procedure.

On the other hand, Statistical approaches (such
as Sanders and Taylor, 1995) do not need linguistic
knowledge and their success highly depends on the
resources. They are more portable, almost lan-
guage independent and have shallow but wide cov-
erage. These methods should extract statistical
information such as highly frequent phrases, their
frequency of occurrence and co-occurrence proba-
bilities from processed corpus, web documents,
search engine outputs and etc.

Dictionary based methods (such as X. Wang , et
al. 2007) segment sentences by matching entries in
a dictionary. Its accuracy is determined by the cov-
erage of the dictionary, and drops sharply as new
words appear. Use of stemming tools and morpho-
logical analysis is needed for decreasing the num-
ber of mismatches or unmatched words.

In learning methods, systems learn required
segmentation information from input sources. This
information can be linguistic models, semantic and
syntactic rules or statistical information. In other
words learning methods may be combined with
each of the above approaches. Learning resources
are generally lexicons and corpora. Segmented
syntactically tagged corpora are one of the most
appropriate linguistic resources for segmentation
learning. Such corpora are not available for many
languages like Persian. However, these methods
properly handle new cases, but the lack of appro-
priate tagged corpora makes their usage difficult.

There are also different methods presented for
spell checking in different languages. As simple
traditional methods for spell checking are not fast
and efficient, complex methods are being pre-
sented for this purpose. In this paper the idea of
using web as a corpus for spell checking has been
got from (Jacquemont, et al., 2007). This idea is
modified and combined with classic methods to
increase efficiency.

In the next section we will describe some of the
problems and challenges for pre-processing Per-
sian texts.

3  Problems and challenges

Imported letters from Arabic: Persian has 32 let-
ters in its alphabet which cover 28 Arabic letters.
In addition, there are some imported sounds such
as ‘Tanwin’ and ‘Hamza” from Arabic which we
use in some imported words in Persian. These
words may be written in some different forms. For
example ‘L and 3y’ are forms of writing the
word ‘fall’, ‘4aluss’, ‘s’ and ‘4lwe’ are all forms of
writing the word ‘problem’ and ‘Wis’ and ‘Lis’ are
forms of writing ‘certainly’.

Unicode ambiguity: there are some letters such
as ‘¢’ (1) and ‘=’ (k) for which we have two Un-
icode (one for Persian and one for Arabic). As
some applications use the first and some the
second one we have to unify their occurrences be-
fore processing the text.

Different spellings: some words may be written
with different letters such as ‘<ul’ and “kl’ for
‘ticket’.

Different spacings: In Persian, Space is not a
deterministic delimiter and boundary sign. It may
appear within a word or between words. On the
other hand there may be no space between two
words —especially when the last character of the
first word has just one form. In these situations
Persian will be similar to some Asian languages
such as Chinese with no space between words.
There are many words which can be written with
space, short space or no space. For example =
by ye’ by o7 are all forms of ‘was going’.

Different writing prescriptions: APLL an-
nounces the rules and prescription for writing in
Persian. Unfortunately these rules vary every few
years and have a lot of exceptions. So NLP sys-
tems may receive texts with different styles. In
some cases recognizing the correct style is not a
straight forward task. Different prescriptions differ
in the style of writing words, using or elimination
of spaces within or between words, using various
forms of characters and so on.

Transliterations: Writing foreign words (e.g.
English) in Persian may result in some ambiguities
in selection of letters. On the other hand as these
words are not in the lexicons, tokenization and
spell checking are not easy.

New words: Persian is a derivative and genera-
tive language in which many new words may be
built by concatenating words and affixes. So the



possibility of encountering a new word that is not
available in the system’s lexicon is high.

Irregular and compound verbs: In Persian Verb
constructions are mostly irregular. Many com-
pound verbs can be derived from nouns and adjec-
tives and in many cases the parts of these verbs
have long distance dependencies.

Ezafe Construction: Ezafe construction is a spe-
cial construction in Persian which attaches nouns
to their modifiers. Ezafe is a vowel which is pro-
nounced but not written (in most cases). Non-
written ezafe usually makes problems in chunking
and syntactic and semantic processing of sen-
tences. The problem of this construction in toke-
nizer occurs when we write it. Ezafe will be
written after long vowels such as s « <. In these
places it changes to an enclitic (¢). Although these
explicit enclitics may facilitate the Ezafeh detec-
tion and consequently eases chunking but they
have again some different forms of writing which
need some processing for recognition. For example
(khane —e Ali) (Ali’s House) may be written as
‘e Ay’ ‘e k) e Al or ‘e AL while
pronouncing the same.

4 Solution: STeP-1

STeP-1 is designed to solve some of the above
problems in an integrated package. In general it
proposes the following activities for normalization
and conversion of texts into a standard one.
1. Defining a computational standard script:

a) Adding short-spaces between different

parts of a word (or a compound word).

b) Adding Spaces between words and phrases

c) Introducing the spacing rules between

punctuations, numbers and special cases (ex.

date)

d) Creating a lexicon with different spellings of

words.

2. Converting texts to the standard script

a) Looking up in a dictionary

b) Checking the spelling

c) Correcting the spacings

i. replace white spaces with short spaces
ii. Add white spaces (unknown words)

In STeP-1 at first the tokenizer identifies some
initial tokens then it calls the spell checker to cor-
rect misspelled words and then again tokenizer
moves through the text to extract corrected re-
mained tokens.

4.1 Tokenization

Text segmentation, one of the primary activities in
natural language processing; is the process of re-
cognizing boundaries of text constituents, such as
paragraphs, sentences, phrases and words.

Word Segmentation also known as tokenization
focuses on recognizing word boundaries exploiting
orthographic word boundary delimiters, punctua-
tion marks, written forms of alphabet and affixes.
Our proposed approach combines dictionary based
and rule based methods and converts various pre-
scribed forms of writing to a unique standard one.
The developed tokenizer determines the words
boundaries; concatenates the separated parts of a
single word and separates individual words from
each other. It also recognizes multi part verbs,
numbers, dates, abbreviations and some proper
nouns.

In this section we will first discuss some of the
linguistic information to be used for word segmen-
tation and then will describe our approach.

4.1.1 Orthographic words boundary delimi-

ters

In word segmentation, we should notice the pur-
pose of determining word boundaries. For exam-
ple, the English sentence “I'm going to show up at
the ACL” has eight orthographic words separated
by seven spaces. The sense of “orthographic word”
is a meaningful sequence of characters. This se-
quence is usually written between two word boun-
dary delimiters. If the mentioned sentence is
processed for syntactic analysis, it would be prob-
ably wanted to consider “I'm” to consist of two
syntactic words, namely I and am. For translation
purpose, it would be probably wanted to consider
“show up” as a single dictionary word since its
semantic interpretation is not trivially derivable
from the meanings of “show” and “up”. And in
text to speech synthesis, it would be probably con-
sidered the single orthographic word ACL to con-
sist of three phonological words that are written in
acronym forms (Sproat, et al., 1996). So, it can be
seen that orthographic word boundaries are thus
only a starting point for further analysis and can
only be regarded as a useful hint at the desired di-
vision of the sentence into words.

As we mentioned above, spaces are orthographic
word boundary delimiters in English. Most lan-
guages that use Roman, Greek, Cyrillic, Armenian,



or Semitic scripts, and many that use Indian-
derived scripts, mark orthographic word bounda-
ries (Sproat, et al., 1996); so tokenization has less
problems there. Asian languages like languages
written in a Chinese-derived writing system includ-
ing Chinese, Japanese, Korean and Vietnamese do
not delimit orthographic words. These languages
are hard in determining word boundaries, as well
as have different phonetic, grammatical and se-
mantic features from Indo-European languages

(Nguyen, et al. 2006). Although Thai has Indian-

derived writing systems but unlike English has no

word boundary delimiter (Tesprasit, et al., 2003).

Word boundary determining and automatic or-
thographic words detection have also some prob-
lems and complexities in Persian. Although
Persian is an Indo-European language and words
are usually separated by spaces but because of var-
ious prescribed forms of writing in this language,
spaces are not the exact and deterministic bounda-
ries of distinct words. In written Persian texts, we
have two kinds of spaces (APLL,2006):

e In word space: spacing is used between com-
ponents of compound nouns usually in de-
tached characters. This space is known as short
space.

e Between word space: spacing is used between
distinct words of a phrase or a sentence. This
space is known as white space or space.

In other words in Persian, distinct words should
be separated by white spaces and components of
derived and compound nouns and inflectional
structure of verbs should be delimited by short
spaces. So, we will have problems with situations
in which there should be no space but spaces exist
and situations in which there should be spaces but
no space exists. As an example, consider word
“aiyu”  (miraftam) (I was going). It can be written
in 3 correct ways: “xé s’ (miraftam) , “ad e’
(mi~raftam) and “s%) " (mi raftam).

These forms are all correct in various prescribed
forms of writing and automatic word segmentation
systems should detect all forms and produce a sin-
gle unique form of them for further analysis.

4.1.2 Punctuation marks

Punctuation marks determine the end of phrases
and sentences and can help text segmentation.
Punctuation marks play an important role in text to
speech synthesis; because these marks make dif-

ferences in pronunciation of phrase and sentences.
For example a sentence ends with a dot or excla-
mation, will be pronounced in different forms. In
many languages like English, punctuation marks
exist but in some languages like Vietnamese do not
(Tesprasit et al., 2003). In Persian we have punctu-
ation marks and can use them in segmentations
(Megerdoomian , Remi Zajac, 2000).

4.1.3 Written forms of characters

In English and similar languages that use Latin
characters for writing, characters have two forms:
small and capital. In most cases, small letters are
used for writing and capital letters are used less
just in abbreviation, acronym and initial letter of
proper nouns, so written forms of characters can
not be used for segmentation in these languages.

The Persian writing system distinguishes be-
tween the final, initial and medial forms of a cha-
racter, depending on its position within a word.
Some characters only have a single form that does
not depend on their position in a word. In these
cases we can not use final forms of characters for
words boundaries detection

An initial form does not mean that the character
is in the beginning of a word, it only indicates that
the character is not at the end of the word. Charac-
ters are in medial form if they are attached from
both sides. A final form character indicates the end
of a word (or subword) and can be used by the to-
kenization system to determine word boundaries.
Hence, two concatenated words can be put into
separate tokens if the first word ends in a final
form letter (Megerdoomian , Remi Zajac, 2000).

4.1.4 The Proposed tokenizer

Our proposed system combines dictionary based
and rule based approaches. We use punctuation
marks, spaces and morphology analysis to segment
words. Figure 1 shows the overall architecture of
the system. It contains the following steps:
e Split input text due to white spaces
e At first, we segment input text according to
white spaces.
e Number Processing

Numbers should be written with white spaces
same as words in the text. However, white spaces
may be deleted without making any ambiguity.
The same fact is true about dates and floating point
numbers which are written by slash.



inpuk texk

split text with white
spaces

‘ Data Base
number processing
punctuation marks
processing “

'

distinct words tagging

rmorohological analysis unknown words
of the words) verb * segmentation

recognizer '

oukput texk

Figure 1. the proposed tokenizer

e Punctuation marks processing

Input text usually has many punctuation marks
that have different positions across words. The en-
tire position pattern is:

Word | punctuation mark | white space | word

But written text may have less/more spaces, for
example a space is inserted between first word and
punctuation mark or white space is omitted.

At the first step we amputate all punctuation
marks from text, but we save their position and
their kind to insert them correctly at the end. Punc-
tuation marks also help us to adjust prefixes and
postfixes.
¢ Distinct words tagging

By use of a dictionary of nouns, we can tag
some few segments as words to reduce computa-
tional complexity, because the most of words are
in their inflectional or derivational form (e.g. plural
forms or having affixes).

e Morphological analysis of nouns

Segments which are separated by white spaces
and have not been tagged as a noun from dictio-
nary would be checked from the end according to
the following pattern:

Derivational prefixes | noun | derivational post-
fixes | comparative/superlative morpheme | plural
suffix | possessive pronouns/enclitic morpheme

Containing all these parts mentioned in the
above pattern is not obligatory. For unification rea-

sons, if the plural suffix “ha” attached to word, it
will be detached and will be rewritten by adding a
short space during this check. The aim of this
phase is to find out whether a segment is a word
with some affixes or just a group of affixes without
any distinct word. As the number of affixes is li-
mited compared to words, in this phase we try to
separate and recognize the affixes rather than
stems. If it is not a derivational affix, it will be
considered as a word. This will lead to recognition
of unknown words as noun accurately.

In Persian, some derivational affixes are words
themselves and can be used individually. In order
to recognize these affixes correctly, semantic anal-
ysis and context processing are required.

In this research we consider such affixes as
nouns. For example consider the word “dadis
(khoshhal) (happy), it may be written as “Juad s
or “Ja—is™ or “da Uiss“ In the last case in
which the two parts of the word are separated, we
have a special situation in which both parts can be
a separate meaningful word. In these cases we can
not reduce the space by a short space unless doing
some context analysis. So we keep the current
writing unchanged.

One of the advantages of this approach is that by
doing some morphological processes in this step,
we extract the stems which are very useful for fur-
ther processing of the text.

e Verb recognizer

In Persian some verbs have prefixes which
should be concatenated to the verb by a short
space. To recognize these cases we use a table con-
taining valid prefixes for some verb stems.

In some cases we may have different spacing
rules for different number and person of verbs. For
example in past participles the postfix of single
third person should be separated from the stem by
a space while in other number/persons of the same
verb the postfix should be separated by a short
space. To reduce the needed memory size, we just
keep the present and past stems of verbs.

In Persian, past continuous and present conti-
nuous verbs consist of a prefix “mi”. This prefix
has a homograph which is a separate word and
means wine. To recognize this (if it is not tagged in
previous steps), we should check the next word. If
it is a verb then we should standardize the various
writing styles of the verb by inserting a single short
space between the prefix and the stem. A similar
case occurs for future tenses of verbs too.



e Add white spaces to determine unknown
words

As we mentioned before, some Persian charac-
ters have a single form and so the words ending
with them may be written with no space besides
the next word. It can be seen in concatenated
words too which are very common in Persian text.
This form of writing is not incorrect but should be
transformed to the standard form by inserting
spaces. Determining these cases is not easy. To do
this, we should find all permutations of the sub-
words ending by a single-formed character in a
sequence. It can be done by inserting a space fol-
lowing characters without a final form. These cha-
racters are alef(a), dal(d), zal(z), re(r), ze(z), zhe(j),
vav(v). Since one or both words may be inflected,
the separated tokens need to also undergo morpho-
logical analysis. For all occurrences of the above
characters the tokenizer produces two segmenta-
tions: one in which a space is inserted following
these characters and one without a space. A space
need not be inserted after the final character in the
string. We could eliminate some of the unwanted
cases by discarding any combination that contains
a single letter (except for “v”, which is the con-
junction ‘and’). It is also possible to eliminate cer-
tain combinations if the last string is a suffix. For
instance, if the string “cx_ 8’ (mosaferyn) (travel-
ers) results in the segmentation “mosafer” “yn”,
since “yn” is a plural suffix not a known word, this
particular segmentation will be eliminated. Then
the sub-words should be checked to find if they are
a known word or a derivation of a known word or
not. The output of this phase is all alternative cases
with various spacing which have meaningful con-
stituents (Megerdoomian , Remi Zajac, 2000).

4.2  Spell checking

There are some spell checkers for Persian lan-
guage. Although some of these methods are effi-
cient, all of them have a common problem. The
problem is that in these methods the spell of each
word is checked separately. In other words, the
position of the word in the sentence and its context
are not mentioned during the spell checking.

Two different solutions could be used to solve
the problem. First one is to check grammatical
rules in sentences and the second one is to use sta-
tistics of using different phrases in a language. Ac-
cording to a large number of exceptions in Persian

grammar and also some complexities of this lan-
guage, it is so difficult and time consuming to
check grammatical rules for spell checking in Per-
sian texts. Therefore, the second method is much
more efficient.

In this paper we present a novel method for spell
checking in Persian (Farsi) language. We use web
as a corpus in our method to modify previous clas-
sic offline methods. Using this online corpus along
with an ordinary offline database makes the me-
thod much stronger and accurate. Results show that
the presented method is able to detect different
kinds of misspelling errors more efficient than pre-
vious spell checking methods.

In this section, we will first present a basic me-
thod of spell checking in Persian based on a data-
base which is generated from Hamshahri corpus'.
Then we describe our statistical method which uses
web as a corpus.

The Basic Spell Checker

Classically, Spell Checkers use a dictionary as
their database. Here, we generate and use our own
database of Persian words and their features. To do
so, using our tokenizer, we extracted a database
from Hamshahri corpus containing about 900000
records of words, their soundex code, their fre-
quency of occurrences, and their length. Figure 2
shows a part of this database.

Words Freq Soundex Length
aillag Il { 242 14
a1 ¥242 17
Slalgds 1 242 16
oo aljlay s 1 %42 13
sililag ULz { X242 13
Hjlagdls 1 X242 12
Sjlay L 53 242 11

Sosihenlls 1 Y747 14
Figure 2. a part of database

By using the adapted soundex code for Persian
we can put all words which are different but are
similar in sound, a common phenomenon in Per-
sian language, in one class.

! http://ece.ut.ac.ir/DBRG/Hamshahri/fa.htm




Candidate Suggesting Spell Checker

This spell checker is used to extract candidate
suggestions for both correct and incorrect words.
Then a web-base algorithm which is presented in
the next section uses these suggestions to decide. If
we consider a standard spell checker, its basic
principle is quite simple. Let T1 ... Tn be the con-
stitutive words of a document. When the spell
checker detects Ti that is not in its associated dic-
tionary, it searches in this dictionary for some can-
didate suggestions that could be suggested to the
user in order to correct this misspelling. Here we
do the same thing also for Ti that is in the database
and extract the appropriate candidate suggestions.
To obtain candidate suggestions, all types of errors
should be checked. In missing a letter, miss double
letter and wrong letter errors, first we search in
database for words whose frequency is more than
100 and their difference with spell checking word
is in one letter, and also their soundex codes are
the same. Then the distance between them is
measured. The word or words with distance of one
is selected as candidate suggestions. For wrong
located letter error, words with the distance of two
and the same length and also the same summation
of their letter ASCII codes are selected. For miss
merge error, the word is divided to two separate
parts and each part is searched in the database. If
both parts are in the database, the miss merge error
is possibly occurred and these two words are men-
tioned as candidate suggestions too. The extracted
words from database are used for next part of the
algorithm which is the Web-based spell checker

query.
Using Web as a Corpus

After extracting appropriate candidate sugges-
tion words for each word of the text, we search for
errors and their corrections on the web. Any search
engine can be used for achieving this goal. Here
we use Google search engine.

For searching phrases in Google we design a
web service that receive a query string as an input
that contains many phrases, then the web service
searches every phrase in Google and make a query
string which contains the phrases and the number
of search results and send it as its output

For example, a web service input would be as
follows:

L= (o 5y 0 o& L 1= gy & L2=
G (9 &L 3= (5 9 m & LA= g pm s
Gra & L5=Cua (g Q& LO= o (w1
(LO=web serv si chist&L1=web roosi chist&L2=web
droosi chist&L3=web sarvari chist&L4=web service
chist&L5=web siroos chist&L6=web aroosi chist)

And also its output would be as follow:

G o g Q& Cisn (g @5 =0& (90 @
Cuan=0&Cuna )5 m @ =& (ug e 05 =2360&
Cua g g Q=& Qs g ye @3 =0)

(web serv si chist=0&web roosi chist=0&web droosi
chist=0&web sarvari chist=0&web service
chist=2360&web siroos chist=0&web aroosi chist=0)

In this section the algorithm has two main parts,
one apply for incorrect words and the other for cor-
rect words. For both incorrect and correct words,
every candidate suggestion for the misspelled word
(CS) is searched on the web with its previous (Tp)
and next (Tn) words and the number of search re-
sults is used for obtaining a criterion of checking
errors. For correct words, the word itself is also
searched. The following logarithmic formula gene-
rates the criterion for compare the search results:

#oce(T.Cs.T,)+1
P=1+llog( oceld, gs )
9 10

where #Occ(Tp.CS.Tn) is the results number for
searched tri-gram phrase. This formula will return
a value between zero and one. A bigger value
means a better word to choose. The obtained re-
sults for different candidate suggestion are com-
pared and the best word will be chosen as the best
candidate for correction.

One of the cases in which the algorithm may not
work well is a continuous string of misspelled
words in a sentence. To solve this problem, every
candidate suggestion for the misspelled word is
searched on the web with its previous or next word
which is correct, but if both words are misspelled
the algorithm searches misspelled word with pre-
vious word which is corrected in previous step.

Comparison to the method presented by Jac-
quemont and colleagues (2007) shows that the
number of searches in our method is smaller and
therefore it is faster.

Although the results for such an algorithm can
be much accurate, by searching different styles of
word phrases, increasing the number of searches
will increase the running time. Hence, we use the
tri-gram method to optimize the algorithm.




S Experimental results

The tokenizer was applied on a text which con-
tained 100 sentences. This text has 80 derivative
affixes, 61 verb prefixes, 15 verb postfixes, 10
acronyms and abbreviations, 34 dates and numbers
and 16 concatenated words. The performance of
the system was 86.6%. The main sources of error
has been long distance dependencies between parts
of compound verbs, the lack of lexicon and consi-
dered heuristics.

The Proposed Spell Checker is applied to three
different texts with 100 misspelling errors in each
one. Each text contains about 500 to 600 words.
The texts are selected from three different catego-
ries; novel, history and general texts. The texts
contain misspelling errors of 4 different types.
Thus, there were 300 different errors in our test
texts. Following in table 1, the practical results of
applying our algorithm to these texts are presented.
In this table ‘wrong’ means words with a wrong
letter (need substitution), ‘missed’ means Words
with a missed (deleted) letter (need addition), ‘ex-
tra’ means words with a wrong extra letter (need
deletion) and ‘merged’ means errors in which two
separate words were merged by removing the
space between them (need space insertion).

;1; type Error # Dete;:tion detre;teion Con';ction cor:::etion
t
wrong 25 25 100 24 96
missed 25 24 96 24 96
1 extra 25 25 100 23 92
Merged 25 25 100 22 88
All 100 99 99 86 86
wrong 25 25 100 25 100
missed 25 25 100 24 96
2 extra 25 25 100 25 100
Merged 25 25 100 23 92
All 100 100 100 97 97
wrong 25 25 100 23 92
missed 25 25 100 24 96
3 extra 25 25 100 25 100
Merged 25 25 100 22 88
All 100 100 100 95 95

Table 1:Results of algorithm on three different texts

Overall, our algorithm could detect about 99.6%
of errors and correct about 92.6% of them.

As an example an input sentence (errors are under-
lined) and its corresponding corrected sentence is
shown here:
Input:
e )oacl8 (o JlaBliid pal 4S 20l gn N 4y Cand oI5
el Jladl (i el 51 5 ) slayl) v oo (
Output: ) )
(Gm‘)u) aA&:\j@ Jladl CRA gal a< J.A‘GA ).L\J Ao Cuwdl o8 B
Caul oac il Jlad) (8 gal ) 5 eEa L Ve e

6 Conclusion

In this paper, we have presented STeP-1, the
first Persian standard text preparation system.
STeP-1 receives an input Persian text and converts
it into series of corrected standard tokens and their
inflectional stems. It performs spell checking and
morphological analysis within a tokenizer. STeP-1
can be used both as a spell and style corrector and
as the preprocessor in many NLP applications.

References

APLL, Academy of Persian language and literate, 2006,
Persian writing style, Asar publication , Iran

S. Jacquemont, F. O. Jacquenet, M. Sebban. 2007, Cor-
rect your text with Google. IEEE Int’l Conf. on Web
Intelligence, Silicon Valley, USA.

S. Kiani, M. Shamsfard , 2008, Word and Phrase
Boundary detection in Persian Texts , 14™ CSI Com-
puter Conf., Tehran, Iran

K. Megerdoomian , Remi Zajac, 2000, Tokenization in
the Shiraz project , technical report , NMSU, CRL,
Memoranda in Computer and Cognitive Science.

T. V. Nguyen, H. K. Tran, T.T.T. Nguyen, Hung
Nguyen, 2006, word segmentation for Vietnamese
text categorization: an online corpus approach The
4th IEEE Int’l Conf. in Computer Science, Hochimi-
neh, Vietnam,

E. Sanders , Paul Taylor , 1995, using statistical models
to predict phrase boundaries for speech synthesis ,
EUROSPEECH '95 , Madrid, Spain

R. Sproat, C. Shih , W. Gale , N. Chang ,1996, A sto-
chastic finite-State word-segmentation algorithm for
Chinese , Computational Linguistics , Volume 22 ,
Issue 3, Pages: 377 — 404

V. Tesprasit , Paisarn Charoenpornsawat and Virach
Sornlertlamvanich , learning phrase break detection
in Thai text-to-speech ,2003, '8th European Conf. on
Speech Communication and Technology, Geneva,
Switzerland.

X. Wang , W. Liu, Y. Qin , 2007, a search-based Chi-
nese word segmentation method , 16th Int’l Conf. on
World Wide Web. Banff, Canada.





