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Abstract
Minimum error rate training (MERT) is a widely used learn-
ing method for statistical machine translation. In this pa-
per, we present a SVM-based training method to enhance
generalization ability. We extend MERT optimization by
maximizing the margin between the reference and incor-
rect translations under the L2-norm prior to avoid overfit-
ting problem. Translation accuracy obtained by our proposed
methods is more stable in various conditions than that ob-
tained by MERT. Our experimental results on the French-
English WMT08 shared task show that degrade of our pro-
posed methods is smaller than that of MERT in case of small
training data or out-of-domain test data.

1. Introduction
The state of the art statistical machine translation systems
have been modeled by the log-linear approach which is a
generalization of the noizy-channel approach. This approach
has achieved a lot of great advances because it has provided
a natural extention to integrate many useful components [1].
To estimate the weights toward these components according
to their performance, minimum error rate training (MERT)
[2] was introduced by Och (2003). MERT improves statisti-
cal machine translation quality by optimizing the parameter
of the log-linear function by using such automatic translation
evaluation metrics as the BLEU scores [3].
To train a small number of real-valued features used on a

standard phrase-based statistical machine translation system
like Moses [16], MERT with BLEU-based objective func-
tion is very effective due to line-search algorithm proposed
by Och (2003). However, MERT tends to overfit to train-
ing data because its objective function consists of no reg-
ularizer. To enhance generalization ability, we would like
to use other state-of-the-art machine learning techniques for
machine translation.
Support vector machines (SVM) have proven to be power-
†This research was conducted as an internship program 2008 of NTT.
∗Taro Watanabe now belongs to National Institute of Information and

Communications Technology (NICT) in Japan.

ful tools for many tasks in natural language processing [6][7].
The core of the form consists of a smooth convex regularizer
such as 1

2 ||w||2 and the empirical risk term of hinge loss. In
this paper we present an approach to optimize the parame-
ter of the log-liner model using the primal form of structural
SVM [12]. We expect the convex regularizer or the factor of
enlarging the margin (between the reference and the incor-
rect translation) of SVM to reduce the overfitting problem
and enhance generalization ability. Using the BLEU scores
to define the hinge loss, our proposed method also inherits
the advantages of MERT, which enhance the BLEU scores
of translations.
In this paper we carried out on a French-English task and

exprimentally compared our proposed method with MERT.
We achieved more significant improvements than these ob-
tained by conventional MERT, especially in case of small
training data or out-of-domain test data.
The remainder of this paper is organized as follows. Sec-

tion 2 briefly reviews the framework for the MERT and
Section 3 performs the formulations of the structural SVM
and the cutting-plane algorithms to introduce our proposed
method in Section 4. Section 4 describes the integration of
the line-search algorithm with S-slack and 1-slack structural
SVM. We experimentally compare structural SVM to MERT
on the WMT08 French-English task in Section 5. In section
6, we conclude with summary and future work.

2. Minimum Error Rate Training
2.1. Log-Linear Approach

To translate source sentence f into another target language e,
the log-linear approach seeks a maximum solution:

ê = argmax
e

〈w,h(e, f)〉, (1)

where h(e, f) is a feature vector and w is a weight vector
that scales the contributions from all features. This approach
has the advantage that addtional models or feature functions
can be easily integrated into the overall system. However,
it must appropriately optimize a weight vector to obtain the
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Figure 1: each line of the 6-best translations and BLEU
scores with 1-best translation selected by the current param-
eter α

good translation results.

2.2. Minimum Error Rate Training

Minimum error rate training (MERT) obtains w that max-
imizes BLEU scores on S-size training data {(rs, fs)}S

1

and a set of K different candidate translations Cs =
{ês,1, · · · , ês,K} for each input sentence fs:

argmax
w

BLEU(
{
rs, argmax

ês∈Cs

〈w,h(ês, fs)〉
}S

1

). (2)

If we use the argmin function, we need to calculate the ob-
jective function as 1.0 − BLEU.
Och’s line-search, one of the efficient algorithms for

optimizing an objective function, maximizes the function
through a sequence of line maximizations along vector direc-
tions d. To compute the most probable sentence ês,best from
hypotheses Cs, the optimization problem is defined with α
as follows:

ês,best = argmax
ês∈Cs

〈w + αd,h(ês, f̂s)〉

= argmax
ês∈Cs

⎧⎪⎨
⎪⎩〈w,h(ês, f̂s)〉︸ ︷︷ ︸

intercept

+α 〈d,h(ês, f̂s)〉︸ ︷︷ ︸
slope

⎫⎪⎬
⎪⎭

. (3)

Each translation in the hypotheses corresponds to a line with
the slope and the intercept in the argmax of Eq.3. Figure.1
shows the example of lines for the 6-best translations. For
any particular choice of α, the decoder seeks the translation
that yields the largest score. Och’s algorithm shifts α from
−∞ to∞ to obtain the best parameterw while recording the
points where two or more lines intersect and selects α which
is able to determine the translation obtaining the highest eval-
uation scores.

2.3. Evaluation Metrics BLEU

The BLEU score [3] used in MERT is defined as follows:

BLEU({ê}S
1 ; {r}S

1 ) = BP ·exp

{
1
N

N∑
n=1

log pn({ê}S
1 , {r}S

1 )

}

where pn(·) is the n-gram precision of hypothesezed trans-
lations {e}S

1 given the reference {r}S
1 and BP is a brevity

penalty. The BLEU scores are calculated in terms of a whole
corpus.

3. Structural Support Vector Machines
In recent years, Support Vector Machines (SVM) for conven-
tional binary classification have been generalized for multi-
classification and structured output problems [12][13]. The
generalized SVM is called a structural SVM [12]. In the
generalized margin-maximization principle we maximize the
separation margin, which is the score difference between the
reference rs and incorrect translation ês scores. To allow
errors in training data, we introduce slack variables ξs and
optimize with soft-margin criteria:

argmin
w,ξ≥0

λ

2
‖w‖2 +

1
S

S∑
s=1

ξs (4)

s.t. ∀ê1 ∈ C1 \ r1 : 〈w, δh1〉 ≥ 1 − ξ1

...
s.t. ∀êS ∈ CS \ rS : 〈w, δhS〉 ≥ 1 − ξS ,

where δhs is hs(rs, fs) − hs(ês, fs). The constraints state
that for each training example (rs, fs), the scorew ·h(rs, fs)
of the correct structure rs must be greater than the score
w · h(ês, fs) of all incorrect structures ê by the margin 1.
The standard structural SVM optimization problem has

also been generalized in several ways [12][13]. Tsochan-
taridis et al. (2005) introduced two different ways of using
a hinge loss to the convex upper bound of the loss, namely,
”margin-rescaling” and ”slack-rescaling”. In this paper, we
use only a margin-rescaling. The margin-rescaling is for the
special case of the Hamming loss. Each margin-rescaling
constraint has the following form:

s.t. ∀ês ∈ Cs \ rs : 〈w, δhs〉 ≥ 	(rs, ês) − ξs

where this rescaling can penalize ê 
= r with high loss
Δ(r, ê) more severely than that with small loss.

3.1. Cutting-Plane Algorithm

The optimization problem in Eq.4 with margin-rescaling has
O(S|C|) constraints. In general, |C| is extremely large or in-
finite. To cut a large number of these constraints, the cutting-
plane algorithm (Algorithm 1) iteratively finds the most vio-
lated constraint through the training data:
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Algorithm 1 Cutting-plane training for S-slack Formulation
with margin-rescaling
1: Input : w,CS

1 , {rs, fs}S
1 , ε

2: W S
1 = {}

3: repeat
4: for s = 1 . . . S do
5: ês = argmaxês∈Cs

{Δ(rs, ês) − 〈w, δhs〉}
6: if Δ(rs, ês) − 〈w, δhs〉>ξs + ε then
7: add(Ws, ês)
8: w = argminw,ξ≥0

λ
2 ‖w‖2 + 1

S

∑S
s=1 ξs

s.t. ∀ê1 ∈ W1 : 〈w, δh1〉 ≥ 	(r1, ê1) − ξ1

...
∀êS ∈ WS : 〈w, δhS〉 ≥ 	(rS , êS) − ξS

9: end if
10: end for
11: until

This algorithm iteratively constructs a working set W =
W1 ∪ · · · ∪ WS of constraints. The most violated constraint
for margin-rescaling (line 5) is defined as follows:

ξ∗s = max
ês∈Cs\rs

{	(rs, ês) − 〈w, δhs〉}. (5)

If this constraint is violated by more than the desired preci-
sion ε (line 6), the constraint is added to the working set W
and the QP is solved over the W (line 8).

3.2. 1-Slack Formulation

Joachims et al. (2009) proposed to replace the S cutting-
plane models of the hinge loss with a single cutting-plane
model for the sum of the hinge losses. This model has only
one slack variable ξ that is shared across all constraints:

argmin
w,ξ≥0

λ

2
‖w‖2 + ξ. (6)

The constraint for 1-slack formulation with margin-rescaling
is

s.t. ∀(ê1, · · · , êS) ∈ CS :

1
S

S∑
s=1

〈w, δhs〉 ≥ 1
S

S∑
s=1

Δ(rs, ês) − ξ.

It is proven that the S-slack and 1-slack formulations are
equivalent in some points [13]. In the next section we use
this formulation to calculate the whole corpus-wise BLEU
scores.
Cutting-plane training for 1-slack formulation is showed

in Algoritm 2:

Algorithm 2 Cutting-plane training for 1-slack Formulation
with margin-rescaling
1: Input : w,CS

1 , {rs, fs}S
1

2: W = {}
3: repeat
4: w = argminw,ξ≥0

λ
2 ‖w‖2 + 1

S

∑S
s=1 ξs

s.t. ∀(ê1, · · · , es) ∈ W : λ
S

∑S
s=1〈w, δhs〉 ≥

1
S

∑S
s=1 	(rs, ês) − ξs

5: for s = 1 . . . S do
6: ês = argmaxês∈Cs

{Δ(rs, ês) − 〈w, δhs〉}
7: end for
8: add(W , (ê1, · · · , êS))
9: until

It iteratively constructs a working set W of constrains. In
each iteration, this algorithm optimizes the parameter over
the current working set W , find the most violated constrait,
and add it to the working set. Unlike the S-slack algorithm,
only a single costraint is added in each iteration.

4. Minimum Error Rate Training based on
Structural SVM

In this section we describe how to apply the structural SVM
to the MERT objective function. The first subsection ad-
dresses how to calculate the feature score of the ”correct”
sentence. In the second subsection we define loss function
Δ(rs, ês) using the BLEU scores, and the third subsection
extends Och’s line-search algorithm as the optimization al-
gorithm for the SVM-based objective function.

4.1. Selecting the Configuration in theK-best list

For structural SVM, we need to label a correct candidate
translation for each source sentence from its K-best list of
candidates, which is called a configuration. Since the BLEU
scores are not cumulative, we cannot efficiently select the
best configuration from the K-best list. So we approximate
it by a greedy search algorithm [14].
This algorithm considers the impact on the training set

score when selecting an alternative translation by subtracting
the statistics for the current configuration choice from the ac-
cumulated statistics and adding those for the alternative and
selects the translation which results in the highest score. Re-
peat this process and continue untill there are no configura-
tion changes. The configuration obtained by this algorithm
specifies the correct candidate for each K-best list, and the
BLEU scores are the upper bound for the BLEU scores on
the training set.

4.2. Loss Function for Rescaling

4.2.1. Approximation for the Sentence-wise BLEU

The BLEU scores are defined in terms of a whole corpus and
not over individual sentences. However we need to calcu-
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late the sentence-wise BLEU scores to define the loss func-
tionΔ(rs, ês). To calculate sentence-wise BLEU we use the
approximated BLEU like the one proposed by Watanabe et
al. (2006). Given the configurations for S input sentences
{ê∗1 . . . ê∗S}, this approximated BLEU scores on translation
candidate ês for s-th input sentence are calculated by substi-
tuting ê∗s with ês.

4.2.2. Loss Functions based on Sentence-wise and Corpus-
wise BLEU

The sentence-wise loss function Δ(rs, ês) is defined as fol-
lows by using this approximated BLEU scores:

Q × {BLEU({rs, ê∗s}S
1 ) − apBLEU({rs, ês}S

1 )},
where Q is a constant for scaling the BLEU loss function. If
we set the parameter Q on high, we regard the loss function
as important. We use the sentence-wise BLEU loss function
Δ(rs, ês) to calculate the objective function of the S-slack
SVM formulation.
Since we believe that the average sentence-wise BLEU

scores are less reliable than the whole corpus-wise BLEU
scores, we tried to apply the corpus-wise BLEU to the ob-
jective function using a 1-slack formulation SVM assum-
ing 1

S

∑S
s=1 Δ(rs, es) ∝ corpus-wise BLEU loss func-

tion Δ({rs, es}S
1 ). The corpus-wise BLEU loss function

Δ({ê∗s, ês}S
1 ) is as follows:

Q × {BLEU({rs, ê∗s}S
1 ) − BLEU({rs, ês}S

1 )}.
1-slack formulation with margin-rescaling is constructed us-
ing the corpus-wise BLEU loss functionΔ({ê∗s, ês}S

1 ):

argmin
w,ξ≥0

λ

2
‖w‖2 + ξ. (7)

s.t. ∀(ê1, · · · , êS) ∈ CS :

1
S

S∑
s=1

〈w, δhs〉 ≥ Δ({ê∗s, ês}S
1 ) − ξ.

Unlike the margin infused relaxed algorithm (MIRA) [9] and
S-slack formulation, we can directly apply the corpus-wise
BLEU to the SVM objective function without approximating
the BLEU scores.

4.3. Optimization Algorithm

4.3.1. Line-search Algorithm

Next we describe extended Och’s line-search algorithms for
S-slack and 1-slack formulation of the Structural SVM.
These pseudocodes for the line-search to optimize parame-
ter w are given by Algorithm 3,4. In Algorithm 3,4 we can
find the range of values along the direction vector d to which
each candidate translation is assigned the best score. Algo-
rithm 3 is the line-search algorithm for S-slack formulation
of the structural SVM:

Algorithm 3 extended Och’s line-search algorithm for S-
slack formulation
1: Input : w,d,CS

1 , {rs, ê∗s, fs}S
1

2: I = {}
3: for s = 1 . . . S do
4: for all ês ∈ Cs \ ê∗s do
5: ês.m = 〈d, δhs〉
6: ês.b = Δ(ê∗s, ês) − 〈w, δhs〉
7: end for
8: i = 0
9: li = argminês∈Cs\ê∗

s
ês.m

10: xi = −∞
11: repeat
12: i = i + 1
13: if { li−1.b−li.b

li.m−li−1.m} > xi−1 then
14: li = argminês∈Cs\ê∗

s
{ li−1.b−ês.b

ês.m−li−1.m}
15: xi = { li−1.b−li.b

li.m−li−1.m}
16: end if
17: until no more intersections
18: add(I , xi

1)
19: add(I , max(I ) + 2ε)
20: xbest = argminx∈I Obj(w + (x −

ε)d,Cs
1, {rj , ê∗j , fj}s

j=1)
21: w+ = (xbest − ε)
22: delete(I , max(I ) + 2ε)
23: end for
24: return w

In case of S-slack formulation (Algorithm 3), the max
function in Eq. 5 corresponds to the argmax function in Eq.
3, so we can find a translation that has the most violated con-
straint ξs by a line-search algorithm with the following slope
and intercept (line 5,6) :

argmax
ês∈Cs

⎧⎪⎨
⎪⎩Δ(e∗s, es) − 〈w, δhs〉︸ ︷︷ ︸

intercept

+α 〈d, δhs〉︸ ︷︷ ︸
slope

⎫⎪⎬
⎪⎭ .

Algorithm 3 iteratively constructs the line intersections I
through the training examples and estimates the parameter
variation (x − ε) which is able to select the translation min-
imizing the objective function. The process of Algorithm
3 which extracts the most violated translation is similar to
the cutting-plane training in Algorithm 1. In case of the S-
slack formulation with margin-rescaling, the Obj function
(line 20) is constructed by each of the most violated transla-
tions, as in Eq. 4, using margin-rescaling constraints.
Algorithm 4 is the line-search algorithm for 1-slack for-

mulation of the structural SVM:
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Algorithm 4 extended Och’s line-search algorithm for 1-
slack formulation
1: Input : w,d,CS

1 , {rs, ê∗s, fs}S
1

2: I = {}
3: for s = 1 . . . S do
4: for all ês ∈ Cs \ ê∗s do
5: ês.m = 〈d,hs(ês, fs)〉
6: ês.b = 〈w,hs(ês, fs)〉
7: end for
8: i = 0
9: li = argminês∈Cs\ê∗

s
ês.m

10: xi = −∞
11: repeat
12: i = i + 1
13: if { li−1.b−li.b

li.m−li−1.m} > xi−1 then
14: li = argminês∈Cs\ê∗

s
{ li−1.b−ês.b

ês.m−li−1.m}
15: xi = { li−1.b−li.b

li.m−li−1.m}
16: end if
17: until no more intersections
18: add(I , xi

1)
19: end for
20: add(I , max(I ) + 2ε)
21: xbest = argminx∈I Obj(w + (x −

ε)d,CS
1 , {rs, ê∗s, fs}S

1 )
22: return w + (xbest − ε)d

For the 1-slack formulation we should calculate slopesm
and intercepts b the same as the S-slack formulation, but,
to avoid bias toward the line-search procedure by sentence-
wise BLEU, we computed them the same as MERT (line 5-
6). Unlike the S-slack formulation, this algorithm constructs
the line intersectionsI over all the training samples and then
estimates the best parameter varidation. The process of this
algorithm which extracts 1-best translation is similar to that
of Algorithm 2 extracting the most violated constraint. In
case of the 1-slack formulation with margin-rescaling, the
Obj function (line 21) is constructed as Eq. 7.

5. Experimental Results
5.1. Systems

Experiments were conducted using a standard phrase-based
statistical MT system called Moses [16] to generate K-best
lists (K=1000). Moses employs standard real-valued fea-
tures:

• N -gram language model: Pr(e) to calculate the flu-
ency of the target side.

• Lexical translation model: t(ei|fj) , t(fj |ei) to calcu-
late the word translation probability.

• Phrase translation model: φ(e|f) , φ(f |e) to calculate
the phrase translation probability.

• Three orientation types reordering model[17]:
p(m|f , e) , p(s|f , e) , p(d|f , e) to capture the
lexicalized information.

• Word , Phrase penalty: To control the target length and
the average length of the phrases.

In this paper, we trained these small number of features and
phrases were extracted using a typical approach [16] that ran
GIZA++ [18]. We used a Katz smoothing 5-gram language
model that was created using the SRILM toolkit [19].

5.2. Data Set

For experiments we used the French-English data provided
for the Europarl-based WMT08 shared task. Europarl corpus
was collected from the proceedings of European Parliament
[20]. This training corpus contains about 1.3 M sentences.
Parameters were tuned over the provided development set
(dev2006) that consisted of 2000 sentences with one refer-
ence. We used two open test sets: Europarl test 2008, consist-
ing of 2000 sentences with one reference, and News news-
test 2008 (out-of-domain), consisting of 1500 sentences. Ta-
ble 1 shows these contents in more detail.

Table 1: The Data statistics

Data Sent. Word. Avg. leng
Training fr 1.28M 39.956M 31.2

en 1.28M 35.948M 28.1
Development fr 2.0K 64.331K 32.2

en 2.0K 58.761K 29.4
Test08 fr 2.0K 65.644K 32.8

en 2.0K 60.188K 30.1
NewsTest08 fr 1.5K 41.037K 27.4

en 1.5K 36.438K 24.3

5.3. Results

5.3.1. Tuning Hyperparamers

Figure 2 shows the effect of the hyperprameter λ which em-
phasizes the convex regularizer on SVM objective function.
When we set λ high, the curve is like a quadratic function
and the best parameter to optimize the objective function is
close to 0. On the other hand, if we set it low, the shape of
the function is almost the same MERT’s objective function.
Hence it is very important for obtaining the good translation
results to appropriately set the hyperparameters.
We tuned hyperparameters λ and Q in the SVM-based

method by the cross-validation method. We divided dev2006
into two and the first estimation was performed on one (an-
other was used for development set) and the second did on
another. In our cross-validation experiments for tuning the
hyperparameters, we noticed that the higher Q is, the better
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Figure 2: This shows the shapes of BLEU and 1-slack SVM objective function for one parameter. These lines were calculated
by 800 development sentences randomly selected from dev06 for development data when the hyperparameter Q is fixed 1000.0.
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HyperParameter Q
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development test2(1-slack-SVM)
development test1(S-slack-SVM)
development test2(S-slack-SVM)

Figure 3: Tuninig test for hyperparameter Q of structural
SVM (fixed λ=1.0) by increasing it.

BLEU scores on the development test set are (Figure 3); so
in the open test experiments, we always fixed Q=100000.0 ,
λ=1.0 for S-slack SVM and Q=10000.0 , λ=1.0 for 1-slack
SVM.

5.3.2. Test Experiment

We compared our proposed SVM-based method to MERT
using the whole dev2006 for development data on 4-gram
BLEU scores of two open test sets. Table 2 shows that
1-slack-SVM outperformed MERT. On the other hand, S-
slack-SVM was not more effective than MERT because we
approximated the BLEU scores to calculate the S-slack-

SVM objective function while we evaluated the BLEU scores
at the corpus level.

Table 2: BLEU scores on the test08 and news08 test data
obtained by models trained by MERT and SVM.

method test08 news08
untune 30.84 13.75
smoothed-MERT (Och, 03) 31.96 13.76
MERT 32.36 13.81
S-slack-SVM 32.31 14.02
1-slack-SVM 32.42 14.13

Table 2 shows the translation accuracy in both in-domain
and out-of-domain test set. The ”untune” means the result
from default parameters and we performed MERT and SVM
training, starting from these parameters. Our two proposed
method based on SVM achieve comparable performance of
MERT in in-domain test set (test08) and slightly outperform
MERT in out-of-domain test set (news08). This means that
SVM has good effects on training the parameter of log-linear
model especially in case of the out-of-domain translation.

5.3.3. Experiments in Case of Data Sparseness and Out-of-
domain Problems

We also conducted the experiment in case of small develop-
ment data. Figure 4 shows the performance of Moses with
training MERT, S-slack SVM and 1-slack SVM by gradu-
ally increasing the development data. The BLEU scores of
MERT on the test08 data is drastically degraded when the de-
velopment data size is getting smaller, and the learning curve
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Figure 4: BLEU scores as a function of development data
size.

is unstable. On the other hand, S-slack and 1-slack SVM is
more stable than MERT and degrade of the smaller devel-
opment data is fewer than that of MERT. Especially, 1-slack
SVM is most stable among these three.

Table 3: The average improvements of BLEU scores on
the test08 and news08 (out-of-domain) when we trained
the paramenters using only 400 development sentences with
MERT and SVM-based algorithms four times.

method test08 news08
untune 30.84 13.75
smoothed-MERT (Och, 03) +0.22 −0.08
MERT +0.40 +0.03
S-slack-SVM +0.45 +0.21
1-slack-SVM +0.92 +0.40

Table 3 shows the average improvements of BLEU scores
when we train the parameters using only 400 sentences ran-
domly selected from the development data. We repeated
the experiment four times and averaged the improvements
of BLEU scores. Table 4 show these results in more details.
This indicates that two SVM methods reduce the overfitting
problem when assuming that only few development data are
available or test set is out-of-domain.

6. Related Work
Crammer et al. (2006) proposed Margin infused relaxed al-
gorithm (MIRA) , which was the online large-margin train-
ing algorithm for structured classification, and Watanabe et
al. (2007) applied it to a discriminative training algorithm
for statistical machine translation to estimate a large num-
ber of parameters. In some points, our proposed method is

Table 4: BLEU scores of two open test sets obtained when
training by MERT, S-slack-SVM and 1-slack-SVM using
four development sets containing 400 sentences randomly se-
lecting from WMT-08 dev2006.

Method 1 2 3 4
MERT test08 30.96 31.46 31.21 31.32

news08 13.66 13.81 13.83 13.81
S-slack-SVM test08 31.30 31.45 31.15 31.45

news08 13.80 13.98 14.11 13.94
1-slack-SVM test08 31.43 32.03 31.37 32.22

news08 14.01 14.24 14.18 14.24

diffrent from MIRA. First, the proposed algorithm is a batch
style algorithm and using 1-slack formulation of structural
SVM proposed by Joachims (2009) we try to use corpus-wise
BLEU for the objective function without approximating the
BLEU scores. Secondly, we directly apply the line-search
algorithm to SVM optimization problem to estimate a small
number of paramenters.
Cer and Manning (2008) proposed the other approach to

regularize the objective function of the MERT. This regular-
ization was not to search the current best optima but to con-
sider the adjacent evaluation scores with fixed window size
during line-search because the objective function had a very
deep and narrow optima. This approach was different from
our proposed method, but it statistically achieves significant
gains when combined with line-search.

7. Conclusion

We presented a new method to regularize the MERT objec-
tive function using structural SVM. This function has 1

2 ||w||2
as a smooth convex regularizer and a factor maximizing the
score margin between a reference and an incorrect transla-
tion. We also tried to apply the corpus-wise BLEU score
to the objective function without approximating the BLEU
scores for each sentence. To optimize a small number of real-
valued parameters with this function, we directly used Och’s
line-search algorithm. The experimental results show that a
SVM-based methods are more stable than MERT in various
conditions. They outperform MERT when only small devel-
opment data is available or these are mismatch between the
training and test conditions.
In the future, we plan to experiment on a decoder that has

a large number of features because SVM-based algorithm is
expected to work more effectively on the sparse vector space
[22]. We also think that a gradient based algorithm such as
Pegasos [21] and a software package SV Mstruct [13] for
SVM dual formulation allowing the use of kernels are more
appropriate methods optimizing the parameter on such a de-
coder than Och’s line-search algorithm.
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