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Abstract
We present the UOT Machine Translation System that was
used in the IWSLT-09 evaluation campaign. This year, we
participated in the BTEC track for Chinese-to-English trans-
lation. Our system is based on a string-to-tree framework.
To integrate deep syntactic information, we propose the use
of parse trees and semantic dependencies on English sen-
tences described respectively by Head-driven Phrase Struc-
ture Grammar and Predicate-Argument Structures. We re-
port the results of our system on both the development and
test sets.

1. Introduction
How can we integrate deep syntactic information into cur-
rent statistical machine translation (SMT) systems to further
improve the accuracy and fluency? How to deal with global
reordering problem for a language pair that do not share iso-
morphic syntactic structures? These remain to be essential
issues faced by current SMT research community.

In this paper, we manage to answer these questions
in terms of string-to-tree translation [1, 2, 3]. English,
the target language in our case study, is the most popu-
larly researched language with plenty resources and syntactic
parsers. In contrast to commit to Probabilistic Context-Free
Grammar (PCFG) which only generates shallow trees of En-
glish [1, 2, 3], we propose the use of deep parse trees and se-
mantic dependencies described respectively by Head-driven
Phrase Structure Grammar (HPSG) [4, 5] and Predicate-
Argument Structures (PASs).

We illustrate two major characteristics that an HPSG tree
(used by us) differs from a PCFG tree. First, a node in an
HPSG tree is represented by a typed feature structure (TFS)
with richer information (Table 1) than a PCFG node that is
commonly represented by only POS/phrasal tags. Second,
PASs, which describe the semantic relations among a pred-
icate (can be a verb, adjective, preposition, etc.) and its ar-
guments, are used for guiding local/global reordering dur-

Feature Description
CAT phrasal category
XCAT fine-grained phrasal category
SCHEMA name of the schema applied in the node
HEAD pointer to the head daughter
SEM HEAD pointer to the semantic head daughter
POS part-of-speech
TENSE tense of a verb (past, present, etc.)
VOICE voice of a verb (passive/active)
PRED type of a predicate
ARG⟨n⟩ pointer to semantic arguments

Table 1: Examples of syntactic/semantic features extracted
from HPSG signs that are included in the output of Enju (top
and bottom stands for features of phrasal and lexical nodes,
respectively).

ing translation. The idea proposed in this paper can be con-
sidered as a natural integration of syntactic information and
semantic dependency information for assisting string-to-tree
translation. We call the integration natural here, because the
HPSG tree and PAS of an English sentence are generated
synchronously by using a state-of-the-art HPSG parser on
English, Enju1 [6].

Note that the information available in the output of Enju
is a fairly crude approximation of the TFS used in the full
HPSG grammar [4, 5] due to practicable considerations [6].
Although the information taken from Enju’s output is much
more than the commonly used PCFG parser, the HPSG-based
translation rule is still extracted from an approximation of the
full HPSG grammar.

2. System Outline
2.1. Parameter Estimation

The diagram of parameter estimation in our system is shown
in Figure 1, which is similar to most syntax-based SMT sys-

1http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
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Figure 1: The parameter estimation and rule combination diagram of our system.

tems [1, 7]. Given bilingual parallel corpora, we first tok-
enize the source and target sentences (e.g., word segmenta-
tion of Chinese; punctuation segmentation and lowercase of
English). Then, we use GIZA++ [8] and grow-diag-final-
and balancing strategy (dealing with unaligned source/target
words) [9] on the tokenized parallel corpora to obtain a
phrase-aligned parallel corpora. A phrase translation table
(PTT) is estimated from the phrase-aligned parallel corpora.
We implement the step of phrase table extraction employing
the Moses toolkit2 [9].

Recall that the Moses-style phrase translation rule takes
the following form:

fm
1 ||| en

1 ||| a1 ||| a2 ||| p(f |e) l(f |e) p(e|f) l(e|f) wp. (1)

Here, a1 and a2 are word alignments between a source lan-
guage phrase fm

1 and a target language phrase en
1 ; p(·) and

l(·) are phrasal translation probabilities and lexical weights,
respectively; wp stands for the word penalty.

In order to be used in CKY-style decoding [10], a rule in
the form of (1) can be easily transformed into an end-to-end
Hiero-style [10] translation rule:

[X] ||| fm
1 ||| en

1 ||| p(f |e) l(f |e) p(e|f) l(e|f) wp. (2)

And the corresponding synchronous PCFG production takes
the form of:

X →∑
i wi∗log(pi) fm

1 , en
1 . (3)

It has been proved that the end-to-end phrase table signif-
icantly influence the translation result of syntax-based sys-
tems [11, 12]. Note that the phrase table mentioned here

2http://www.statmt.org/moses/

is not constrained to be linguistic phrases, i.e., a phrase in-
side the table is not necessarily covered by a subtree. This
makes the phrase table more flexible to be used than in the
tree/forest-to-string systems [11, 12] where additional ap-
proaches have to be employed in order to make use of non-
linguistic phrases [13, 14].

Return back to Figure 1, HPSG trees attached with PASs
are generated by parsing the target language sentences us-
ing Enju. Then, we extract HPSG and PAS based translation
rules from the word-aligned and target-language-parsed par-
allel corpora.

The HPSG-based xRs (tree-to-string, [15]) translation
rules (binarized inversely [16]) are extracted using the
GHKM minimal-rule extraction algorithm of [1]. In order to
trace the lexical level translation information (similar to PAS-
based rules (Section 3 and Figure 2)), we remember the end-
to-end alignments in an HPSG-based translation rule. The
ideas are described in [1, 11] in detail. In order to use the
dependency structure, we describe a linear-time algorithm
based on minimum covering trees to extract PAS-based trans-
lation rules (Section 3).

SRI Language Modeling (SRILM) toolkit3 [17] is em-
ployed to train a 5-gram language model (LM) on the to-
kenized target language side with Kneser-Ney smoothing.
Toolkit Z-mert4 [18] is used for Minimum-Error Rate Train-
ing (MERT) [19].

3http://www.speech.sri.com/projects/srilm/
4http://www.cs.jhu.edu/ ozaidan/zmert/
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2.2. Rule Combination

Since the PTT, the HPSG-based rules, and the PAS-based
rules are independently extracted and estimated, the distri-
bution overlapping among them is inevitable. As shown in
Figure 1, we use Z-mert to tune their weights on the devel-
opment sets. The optimal derivation is computed by:

d∗ = arg max
d∈D


3∑

i=1

∑
ji

log p
αiwji
ji

(d) + log pα4
LM (d)

.

Here, pj1 , pj2 , and pj3 represent the feature subsets from
PPT, binarized PAS-based rules, and binarized HPSG-based
rules, respectively. Bidirectional translation/lexical probabil-
ities are included in the three subsets. In addition, number of
phrases and words are contained in pj1 , and number of rules
are included in pj2 and pj3 .

2.3. Decoding

We use a CKY-style algorithm with beam-pruning and cube-
pruning [10] to decode Chinese sentences. For efficient de-
coding with integrated N-gram LMs, we binarize all transla-
tion rules into rules that contain at most two variables and can
be incrementally scored by LM [16]. For each source lan-
guage sentence f , the output of the chart-parsing algorithm
is expressed as a hyper-graph representing a set of deriva-
tions. Given a hyper-graph for f , we use the Algorithm 3
described in [20] to extract its k-best derivations. Since dif-
ferent derivations may lead to the same target language string
e, we further adopt Algorithm 3’s modification (i.e., keep a
hash-table to maintain the unique target sentences [21]) to
efficiently generate the unique k-best translations.

3. PAS-based Translation Rule Extraction
In this section, we first express an example of an HPSG tree
attached with PASs, and then describe the data structure and
an extraction algorithm of PAS-based translation rules (short
as PASR, hereafter).

3.1. Motivation

We start by observing an HPSG tree of the English sentence
She ignored the fact that I wanted to dispute., and the PAS
for a verb ignored, as shown in Figure 2. Being the predicate
in this sentence, ignored has two arguments. The first is She,
which is the subject of the whole sentence. And the second
is fact, which is modified by a relative clause. The PAS type
of ignored is named verb arg12. In which, ‘1’ and ‘2’ stand
for the subject and direct-object arguments, respectively.

There is a restricted order of She, ignored, and fact in the
English sentence. In contrast, the word order in the corre-
sponding Chinese sentence is also restricted in the sequence
of ta, wushi, and shishi. Thus, a translation rule can be ex-
tracted when we are provided with an alignment (as shown
in the bottom of Figure 2) without overlapping among these

three elements in the source and target language sides. In
particular, we observe that the “head” of this rule is ignored
whose arguments can be generalized into variables.

Note that PASs are not only attached to verbs in a sen-
tence, but also to all other words in the sentence. The cor-
responding PASRs are illustrated in Figure 2 as well. Even
apparently similar in data structure, we argue our PASRs are
still different from the traditional xRs rules [1, 11, 21], since
the knowledge of semantic dependencies are further explic-
itly employed. We give the formal definitions and a linear-
time rule extraction algorithm in the following subsections.

3.2. Definitions

Using a strategy similar to most string-to-tree systems [3],
we define a PASR to be an xRs rule and binarize it in an
inverse way [16].

3.2.1. Definition of PASR

A PASR is a 4-tuple ⟨S, T, A, n⟩, which describes the align-
ment A between a substring S = f j2

j1
and an HPSG subtree

T = T (ei2
i1

). n is the count of the rule.
In order to generalize the arguments of the “head” word

in a PAS yet retaining lexical information, we require T to
include only one terminal node e∗. T is extracted from the
best HPSG parse tree T (eI

1) of sentence eI
1 in such a way that

T covers all arguments of e∗, which correspond to some non-
terminal nodes in T (eI

1), in addition to the terminal node of
e∗. Moreover, T (ei2

i1
) is restricted to be a minimum sub-tree

that satisfies this constraint. String ei2
i1

, which is the postorder
traversal sequence of leaf5 nodes of T (ei2

i1
), consists of only

one terminal node (e∗) and some non-terminal nodes (phrasal
categories). Examples can be found in Figure 2.

The string f j2
j1

is also composed of both terminals (con-
tiguous or non-contiguous words which are aligned with e∗)
and non-terminals (placeholders). We regard two PASRs to
be identical (and n will be accumulated) if they contain the
same S, T , and A.

3.2.2. Definition of Minimum Covering Tree

Suppose we are given a parse tree T0 = ⟨N0, E0⟩, where
N0 = {n1, n2, ..., nM} is a set of nodes and E0 ⊆ N0×N0 is
a set of edges. For two nodes n1, n2 ∈ N0, we say n1 ⊑ n2,
if n1 is a descendant node of n2. Using this descendant-
ancestor relation ⊑, we define a least upper node of N (⊆
N0), which is the lowest common ancestor node of all the
nodes in N .

Definition 1 (Least Upper Node) nlun ∈ N0 is called
the least upper node of a set of nodes N ⊆N0, if the follow-
ing conditions are satisfied:

• ∀nm ∈ N , nm ⊑ nlun;

5We use leaf to denote a terminal/non-terminal node that does not have
any descendant nodes in a (sub)tree.
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Figure 2: PASR extraction based on the predicate-argument structure in an HPSG tree. The figure contains three parts: the
English-Chinese sentence pair and the alignment (bottom), the HPSG tree for the English sentence (middle), and the PASRs
extracted (top-right and bottom-left). Arrows with broken lines denote the PAS dependencies from the terminal nodes to their
argument nodes.
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Algorithm 1 PASR extraction
Require: fJ

1 , T = T (eI
1), A = {a} = {(j,i)}

1: PASRs = {}
2: for node ∈ Leaves(T ) do
3: if Open(node.PRED) and AlignCheck(node.index, A) then
4: Tc = MinimumCoveringSubtree(T , node, node.ARGs)
5: Regions = fWordRegion(Leaves(Tc), A)
6: if RegionCheck(Regions) then
7: S = Generalize f String(Leaves(Tc), eI

1, Regions);
8: A′ = ConstructAlignment(Leaves(Tc), S, A);
9: PASRs = PASRs ∪ {new PASR(S, Tc, A′, 1)}

10: end if
11: end if
12: end for
13: return PASRs

• for any common ancestor node n′ of N , nlun = n′ or
nlun ⊑ n′.

Let lun(N ) denote the least upper node of N . Obviously,
lun(N0) is the root node of T0.

Definition 2 (Minimum Covering Tree) T = ⟨N , E⟩,
which is a subtree of T0, is called the minimum covering tree
of a set of nodes N ′ (⊆ N ), if the following conditions are
satisfied:

• N includes all the nodes that appears on the paths of
from ∀n ∈ N ′ to lun(N ′);

• if n and at least one direct child node of n are included
in N , then all the direct child nodes of n should be
included in N ;

• ∀n1, n2 ∈ N , if (n1, n2) ∈ E0, then (n1, n2) ∈ E .

For example, the minimum covering tree of {t8, c11} is
shown in the bottom-left corner in Figure 2. It is easy to
see that lun({t8, c11}) equals to c10. There is an edge that
directly connects c11 and c10. The path from t8 to c10 also
includes the nodes of c16, c14, and c12. The definition of min-
imum covering trees forces us to include c13 (since c12 and
its direct child c14 are included already in the subtree) and c15

(since c14 and its direct child c16 are included already in the
subtree) as well. We include c13 and c15 here to retain the se-
mantic dependencies that depends on the tree-structures. In
order to release from the tree-structures in a PASR, it will be
interesting to investigate the condition of not including this
kind of nodes in the minimum covering tree. We leave this
as a future work.

3.3. PASR Extraction Algorithm

In a complete HPSG tree, a PAS is attached to each leaf
node which corresponds to a terminal word (c.f. Figure 2).
Thus, we extract PASRs by traversing the leaf nodes of an
HPSG tree (Lines 2∼12 in Algorithm 1). We explain the ex-
traction algorithm sketched in Algorithm 1 through focusing
on extracting a PASR headed by ignored (Figure 2).

First, we check whether the PAS in a leaf node (e.g.,
t1:ignored) is open or not, i.e., whether or not the corre-
sponding word has at least one argument (Line 3, first con-
dition). When a word does not have any arguments, x in
argx takes the value of 0 in PRED. In Figure 2, ignored has
two arguments: ARG1=c1 and ARG2=c4, while She does
not have any arguments and its PRED takes the value of
noun arg0. Obviously, PASRs can only be extracted from
the open PASs. Also, we check the alignment consistency be-
tween e∗=ignored and the fJ

1 sentence (Line 3, second con-
dition). e∗ may align with zero or more f phrase(s), which
may be contiguous or non-contiguous. The consistency con-
dition for the terminal node is that, if e∗ aligns with some f
words, then all these f words can only align with e∗ in A.
In Figure 2, ignored aligns with a word wushi that also only
aligns back to ignored.

Second, we pick a minimum covering subtree Tc from
T (eI

1) that covers e∗ and all e∗’s arguments (Line 4). In Fig-
ure 2, Tc for ignored is rooted at c0 with leaf nodes to be,
from left to right, c1, t1, and c4.

Third, through retrieving A, we look for the f word re-
gions for each leaf node in Tc (Line 5). In Figure 2, the region
of c1 is [1, 1], c4’s is [3, 7], and t1’s is [2, 2].

Fourth, we check the regions to ensure that there are no
overlapping among them (Line 6). Obviously, there are no
overlapping among [1, 1], [2, 2], and [3, 7]. Generally, we
require that there are no overlapping target words that the
tree’s leaves are aligned to. Under this constraint, each argu-
ment in the tree can be generalized into a unique variable in
the target string.

Finally, S is generalized to contain terminals and non-
terminals (Line 7). A non-terminal (placeholder) in S, which
aligns with a leaf of Tc other than e∗, takes the form of X 1,
X 2, etc. S takes the value of X 1 wushi X 2 in ignored’s
PASR. The alignment A′ is reconstructed between the leaves
in Tc and the symbols in S (Line 8). A′ takes the value of
{(1, 1), (2, 2), (3, 3)} in ignored’s PASR in Figure 2. A
PASR for ignored is created based on Tc, S, and A′, with an
initial number n to be 1 (Line 9). The PASRs for other words
with open PASs (as listed in Figure 2) can be easily extracted
through this process.

After using Algorithm 1 to extract PASRs from each sen-
tence pair in the tree-string training corpus, we accumulate
the count n of identical PASRs.

4. Binarization of HPSG and PAS based Rules
We use a linear-time algorithm [16] to binarize the HPSG
and PAS based translation rules. The main modifications
here are as follows. First, we inversely binarize English-tree
to Chinese-string rules into Chinese-string to English-string
rules. Second, instead of attaching the terminal words greed-
ily during binarizing, we first take the end-to-end alignments
into consideration. The process of binarizing a PASR is de-
scribed in Figure 3. Note the process is also applicable to the
HPSG-based rules.
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Figure 3: The binarization process of a predicate-argument structure based rule. * indicates the places where the Chinese words
(or contiguous phrases) are appended.

The PASR we extracted is headed by with. We first sim-
plify (Step 1) the tree structure, i.e., postorder traverse the
tree, and store the tags (e.g., c1, t0, etc.) of the leaf nodes
into a list. We create a hash-table to store the tag-to-TFS
mapping. Then we extract two flat SCFG rules (Step 2). In
a similar manner to [16], we create a specific nonterminal,
say, T123, which is a unique identifier for the left-hand side
subtree. Note that the English-to-Chinese direction has been
changed to Chinese-to-English in the second rule.

The binarization of a permutation into a binary-tree (Step
3) is similar to that described in [16]. Then, we use the end-
to-end alignments to guide the attachment of terminals into
the binary-tree with only nonterminals (Step 4). In Figure 3,
with is aligned with two Chinese words he and yiqi (which is
a non-contiguous phrase). Since there are two nonterminals
between he and yiqi, we fail to keep he and yiqi in one bi-
narized rule following the framework described in [16]. The
back-off strategy we use here is to keep yiqi and with in one
binarized rule. Finally, we gain the binarized rules through
pre-order traversal of the binary-tree (Step 5).

In order to make use of the binarized rules in the CKY
decoding integrated with N-gram LM, we add two kinds of
glues rules:

S → X m(1), X m(1); (4)
S → S(1)X m(2), S(1)X m(2). (5)

Here X m ranges over the nonterminals that appear in the

binarized rule set. For example, X m takes the value of the
nonterminals of T123, c{1,3,6}, and V{1,2} that appear in the
binarized rules shown in the bottom-left corner of Figure 3.
These glue rules can be seen as an extension of the two glue
rules described in [10].

5. Experimental Results
5.1. Setups

Our experiments are based on the IWSLT 2009 Chinese-to-
English translation data. IWSLT 2003, 2004, 2005, 2007 de-
velopment sets are used as our development set. We report
the final result on the IWSLT 2008 development set.

It took us 1,715.6 seconds using Enju2.3.1 to parse the
19,972 English sentences in the training data (0.086 seconds
per sentence), in which 19,129 sentences were successfully
parsed (successful rate of 95.8%).

Table 2 illustrates the statistical information of three
PTTs and three kinds of xRs translation rules, such as the
number of identical trees, the number of rules after binariz-
ing, and the number of glue rules appended for decoding.
Since there is only one nonterminal X in the Hiero-style
PTT (refer to form (2)), only two glue rules are appended
for CKY-decoding. shpsg stands for the simplified HPSG-
based rules, whereas only the POS/phrasal tags are kept in
place of the original TFSs for each tree node. We use shpsg
to approximate traditional PCFG-based rules.

- 104 -

Proceedings of IWSLT 2009, Tokyo - Japan



Rules # of trees # of rules # of binari- # of glue
zed rules rules

ptt 3 - 89,902 - 2
ptt 4 - 138,036 - 2
ptt 5 - 183,274 - 2
shpsg 21,940 31,143 34,505 11,146
hpsg 26,756 36,213 37,045 13,706
pasr 8,152 12,294 17,294 4,920

Table 2: Statistical information of three phrase translation
tables with maximum-phrase-length from 3 to 5, and three
kinds of xRs rules.

For the beam-search decoding in our system, we set the
beam size b to be 200 for pruning PTT rules, PASRs, and
HPSG-based rules. We extract top-k(=2,000) unique trans-
lations for MERT. Since LM integration with cube-pruning
does not guarantee strictly monotonic [10], the margin ϵ of b
and k was empirically set to be 0.1.

5.2. Results

As mentioned at the beginning of this paper, we focus on
answering two questions through our experiments:

• Does TFSs perform better than POS/phrasal tags for
SMT?

• Does PASRs help to improve the ordering of SMT?

Driven by these two questions, we design the following ex-
periments:

• ptt {3,4,5}: only makes use of a Hiero-style PTT for
CKY-decoding. During PPT extraction, the maximum
phrase length is restricted to be 3, 4, and 5;

• ptt 5+shpsg: makes use of the PTT and inversely bi-
narized simplified HPSG-based translation rules;

• ppt 5+hpsg: makes use of the PTT and inversely bina-
rized HPSG-based translation rules;

• ppt 5+pasr: makes use of the PTT and inversely bina-
rized PASRs;

• ppt 5+pasr+hpsg: makes use of the PTT, inversely bi-
narized PASRs and HPSG rules.

Table 3 lists the BLEU [22] score of our system using dif-
ferent configurations of translation rules. The BLEU scores
are computed under the configuration of case-sensitive with
punctuation. From this table, we can see that as the max-
imum phrase length changes from 3 to 5, the BLEU score
tends to be slightly better. ppt 5 performs the best among
ppt {3,4,5}. No reordering are performed here.

When the shpsg rules are appended to ppt 5, the BLEU
score improves 2.78 points. The syntactic information at-
tached xRs rules and linguistically constrained bilingual

Rule Configuration BLEU (%) Dev. Test
ppt 3 30.66 2003-2007 2008
ppt 4 30.75 2003-2007 2008
ppt 5 31.31 2003-2007 2008
ppt 5+shpsg 34.09 2003-2007 2008
ppt 5+hpsg 34.53 2003-2007 2008
ppt 5+pasr 32.51 2003-2007 2008
ppt 5+pasr+hpsg 34.65 2003-2007 2008
ppt 5+pasr+hpsg 36.14 2003-2008 2008
ppt 5+pasr+hpsg 35.38 2003-2008 2009

Table 3: BLEU scores (%) of our system on the test sets un-
der several translation rule configurations and using differ-
ent development sets for MERT.

phrases contribute to this significant improvement. In com-
parison with shpsg, hpsg rules perform better with a further
BLEU score improvement of 0.44 points. This provides an
evidence that TFSs outperform simple POS/phrasal tags.

ppt 5+pasr improves 1.2 points compared with ppt 5.
This suggests the effectiveness of our PASRs on reordering,
since there is totally no reordering in ppt 5. However, the im-
provement is weaker than ppt 5+shpsg and ppt 5+hpsg. Re-
call from Table 2 that the number of PASRs extracted is ap-
proximately 1/3 of the number of HPSG-based rules. Using
large scale training data to extract tree-structure independent
PASRs will be necessary to avoid the low coverage problem6.

Finally, when both PASRs and HPSG-based rules are em-
ployed in ppt 5, the BLEU scores turn to be the best. Under
this configuration, our system achieves the BLEU score of
36.14 (%) after employing MERT on the IWSLT 2008 de-
velopment set. The BLEU score on the IWSLT 2009 test set
is 35.38 (%).

6. Conclusion

In this paper, we introduced our string-to-tree system mak-
ing use of translation rules from Head-driven Phrase Struc-
ture Grammar and Predicate-Argument Structure. We first
described the training framework. Then we gave the defini-
tion and extraction algorithm of PAS-based translation rules
through a detailed example. Later we showed the process to
binarize the HPSG and PAS based rules assisted by a partic-
ular example. Finally, our experiments verified that the deep
syntactic information, instantiated as typed feature structures
and predicate-argument structures in this paper, does help
improving the BLEU score of string-to-tree translation. It
will be interesting to investigate the effectiveness of our pro-
posal on other source languages, and by making use of larger
scale parallel data and richer feature types.

6As one reviewer pointed out, a reasonable cause is due to syntax and
PAS may not work well on spoken languages, like BTEC data which is less
grammatical.
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