

National Research Council Canada

Conseil national de recherches Canada



# Improving SMT by learning translation direction

#### **Cyril Goutte**, David Kurokawa, Pierre Isabelle

Interactive Language Technologies group Institute for Information Technology National Research Council

April 2008 SMART workshop, Barcelona 2009 Cyril Goutte

#### **Motivation**

We address two questions:

- 1. Is there a difference between original and (human-) translated text and can we detect it reliably?
- 2. If so, can we use that to improve Machine Translation quality?



## **Motivation**

We address two questions:

- 1. Is there a difference between original and (human-) translated text and can we detect it reliably?
- 2. If so, can we use that to improve Machine Translation quality?

Our answers:

- 1. Yes: on the Canadian Hansard, we get 90+% accuracy.
- 2. Yes: on French-English, we obtain up to 0.6 BLEU point increase.



## **Problem setting**

Translations often have a "feel" of the original language: *Translationese*.

If translationese is real, it may be possible to detect it!

Earlier studies:

- Baroni&Bernardini (2006): detect original vs. translation is a monolingual Italian corpus, with accuracy up to 87%.
- van Halteren (2008) : detect source language in multi-parallel corpus and identify source language markers.

Both show that various aspects of translationese are detectable.

We experiment on a large bilingual corpus (Hansard) and investigate how detecting translation direction may impact Machine Translation quality.



- 1 Motivation and setting > 1
- 2 Data ▷ 4
  - 3 Detecting Translation Direction > 8
  - 4 Exploiting Translation Direction in SMT  $\triangleright$  14
  - 5 Discussion  $\triangleright$  20



## Data: The Hansard corpus

Bilingual (En-Fr) transcripts of the sessions of the Canadian parliament.

Most of 35th to 39th parliaments, covering 1996-2007.

- 1. Tagged with information on original language (French or English).
- 2. High quality translation: Reference material in Canada.
- 3. Large amount of data: 4.5M sentences, 165M words.

|            | fo      | eo        | mx        |
|------------|---------|-----------|-----------|
| words (fr) | 14,648K | 72,054K   | 86,702K   |
| words (en) | 13,002K | 64,899K   | 77,901K   |
| sentences  | 902,349 | 3,668,389 | 4,570,738 |
| blocks     | 40,538  | 42,750    | 83,288    |



## Data: The Hansard corpus (II)

Corpus issues:

- Slightly inconsistent tagging, eg both sides claim to be original: puts overall tagging reliability into question.
- Missing text/alignment, eg valid English but no translation: seems to be a retrieval issue.
- Imbalance at the word/sentence level: 80% originally English.
- There may be lexical/contextual hints: Quebec MPs tend to speak French, western Canada MPs almost only anglophones.



# **Corpus (pre)processing**

- Tokenized (NRC in-house tokenizer)
- Lowercased
- Sentence-aligned (NRC implementation of Gale&Church, 1991)

We consider two levels of granularity:

- Sentence-level: individual sentences;
- Block-level: maximal consecutive sequence with same original language.

Block-level is balanced, sentence-level is imbalanced 4:1 (eo:fo).

Tagged using freely available "Tree Tagger" (Schmid, 1994).

 $\implies$  4 representations: 1) word, 2) lemma, 3) POS and 4) mixed n-grams.

"Mixed": POS for content words, surface form for grammatical words.



- 1 Motivation and setting > 1
- 2 Data ⊳ 4
- 3 Detecting Translation Direction ▷ 8
  - 4 Exploiting Translation Direction in SMT  $\triangleright$  14
  - 5 Discussion  $\triangleright$  20



## **Detecting translation direction**

Support Vector Machines trained with T. Joachims' SVM-Perf. Test various conditions:

- 1. Block-level (83K examples) or sentence-level (1.8M examples, balanced).
- 2. Features: word, lemma, POS, mixed...n-gram frequencies.
- 3. N-gram length: 1...3 for word/lemma, 1...5 for POS/mixed.
- 4. Monolingual (English or French) or bilingual text.

Sentence-level: test fewer feature/n-gram combinations (because of computational cost).

All results obtained from 10-fold cross-validation.

Results reported in *F*-score ( $\approx$  accuracy in this case).



## **Block-level Performance**

#### **Detection performance (en)**



n-gram size

Similar perf. on French, +1-2% for bilingual, same general shape.

tf-idf: small but consistent improvement.

#### Optimal:

word/lemma bigram, POS/mixed trigram.

Word bigram: F = 90%Mixed trigram: F = 86%.



## Influence of block length



Perf vs. length ( en )

Large range in block length (3-73887 words!).

Up to 99% accuracy for large blocks.

Much better than random for short blocks.

word>lemma>mixed



National Research Conseil national Council Canada de recherches Canada

Cyril Goutte

#### **Sentence-level Performance**





n-gram size

1.8M examples (balanced)

Some missing conditions (computational cost)

F=77%



National Research Conseil national Council Canada de recherches Canada

Cyril Goutte

## Analysis of

| Most important bigrams in English |
|-----------------------------------|
| (eo= original, fo=translation).   |

Most important=relatively more frequent.

"A couple of": no equivalent in French

Canadian alliance, CPC, NDP: mostly western, mostly anglophone parties BQ (Bloc Quebecois): French-speaking

French translation overuses articles, prepositions (because French does), and "Mr. Speaker"!

| eo                | fo        |  |
|-------------------|-----------|--|
| couple_of         | of_the    |  |
| alliance_)        | mr        |  |
| a_couple          | ,_the     |  |
| do_that           | in_the    |  |
| ,_canadian        | to_the    |  |
| the_record        | ,_i       |  |
| forward_to        | the       |  |
| ,_cpc             | )_:       |  |
| cpc_)             | speaker_, |  |
| of_us             | i         |  |
| this_country      | :_mr      |  |
| this_particular   | ,_and     |  |
| many_of           | speaker   |  |
| canadian_alliance | bq_)      |  |
| across_the        | ,_bq      |  |
| out_there         | hon       |  |
| the_things        | that_the  |  |
| for_that          | on_the    |  |



- 1 Motivation and setting > 1
- 2 Data ⊳ 4
- 3 Detecting Translation Direction > 8
- 4 Exploiting Translation Direction in SMT ▷ 14
  - 5 Discussion  $\triangleright$  20



## Impact on Statistical Machine Translation

Typical SMT system training:

- Gather as much English-French aligned sentences as possible.
- Preprocess + split data
- Estimate parameters in either direction (en $\rightarrow$ fr and fr $\rightarrow$ en)
- Original translation direction is not considered at all!

 $\Rightarrow$  We use French originals and English translations to train an en $\rightarrow$ fr system ("reverse" translation??)

We know SMT is *very* sensitive to genre/topic...

Does difference between original and translation matter? If so, by how much?



## Impact on Statistical Machine Translation

We analyze the impact of translation direction on MT by investigating:

1. Do we get better performance by sending original text to MT system trained only on original text?



## Impact on Statistical Machine Translation

We analyze the impact of translation direction on MT by investigating:

- 1. Do we get better performance by sending original text to MT system trained only on original text?
- 2. Detecting translation direction and sending text to the "right" MT system.





System trained on eo, fo, or mx, tested on eo/fo part of test set, or all (mx).

|       | mx test set |       | fo test set |       | eo test set |       |
|-------|-------------|-------|-------------|-------|-------------|-------|
| Train | fr⊳en       | en⊳fr | fr⊳en       | en⊳fr | fr⊳en       | en⊳fr |
| mx    | 36.2        | 37.1  | 36.1        | 37.3  | 36.1        | 36.9  |
| fo    | 31.2        | 30.8  | 36.2        | 36.5  | 30.5        | 30.1  |
| eo    | 36.6        | 37.8  | 33.7        | 36.0  | 36.8        | 38.0  |

eo system does (much) better on eo test, with 80% of training data.

eo system also does better on mx data (test is 88% eo data vs. 80% in train).

fo system does much worse on mx and eo data, but about the same as mx on the fo data, with only 20% of the training data!

 $\Rightarrow$  Idea: detect source language using classifier, then use the right MT system ("Mixture of Experts")



## **Impact of Automatic Detection**

Top part is more or less identical to previous table.

ref: using reference source language information, gain a consistent  $\sim 0.6$  BLEU points.

SVM: using SVM prediction, gain is similar.

|   |     | Full test set |                |  |
|---|-----|---------------|----------------|--|
|   |     | fr→en         | en→fr          |  |
|   | mx  | 36.86         | 37.78          |  |
|   | fo  | 32.00         | 31.85<br>38.23 |  |
|   | eo  | 37.20         |                |  |
| ĺ | SVM | 37.44         | 38.35          |  |
|   | ref | 37.46         | 38.35          |  |

Smaller gain over the eo system (due to having 88% eo data in test set).

 $\Rightarrow$  Detecting original vs. translation provides a small-ish but consistent improvement in translation performance.

 $\Rightarrow$  not worth looking for better classifier (for *that* task).

Other uses of translation direction detection?



- 1 Motivation and setting > 1
- 2 Data ⊳ 4
- 3 Detecting Translation Direction > 8
- 4 Exploiting Translation Direction in SMT > 14
- $\circ$  5 Discussion  $\triangleright$  20



#### Discussion

How general are these results? Will it generalize to:

- 1. Detection on other English-French data?
- 2. Training a classifier on another corpus?
- 3. Another language pair?
- 4. Other settings: source vs. translations from different languages.

Mixture of experts: could use additional input-specific information.

- Mother tongue?
- Gender?



## To Conclude...

Can we tell the difference between an original and translated document?

 $\rightarrow$  Yes.

To what level of accuracy?

 $\rightarrow$  Up to 90+% accuracy on blocks, 77% on single sentences.

Is translation direction useful for machine translation?

 $\rightarrow$  Yes!

Is the classification performance sufficient?

 $\rightarrow$  Indistinguishable from reference labels...



- 1 Motivation and setting > 1
- 2 Data ⊳ 4
- 3 Detecting Translation Direction > 8
- 4 Exploiting Translation Direction in SMT > 14
- 5 Discussion  $\triangleright$  20

